{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "hide_input": true, "slideshow": { "slide_type": "skip" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import numpy as np\n", "import scipy as sp\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib as mp\n", "import sklearn\n", "from IPython.display import Image, HTML\n", "import statsmodels.api as sm\n", "from sklearn import model_selection\n", "from sklearn import metrics\n", "\n", "import laUtilities as ut\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Logistic Regression" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "So far we have seen linear regression: a continuous valued observation is estimated as linear (or affine) function of the independent variables." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Today we will look at the following situation.\n", "\n", "Imagine that you are observing a binary variable -- a 0/1 value.\n", "\n", "That is, these could be pass/fail, admit/reject, Democrat/Republican, etc." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "You believe that there is some __probability__ of observing a 1, and that probability is a function of certain independent variables." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "So the key properties of a problem that make it appropriate for logistic regression are:\n", " \n", "* What you can observe is a __categorical__ variable\n", "* What you want to estimate is a __probability__ of seeing a particular value of the categorical variable." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## What is the probability I will be admitted to Grad School?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "```{note}\n", "The following example is based on http://www.ats.ucla.edu/stat/r/dae/logit.htm.\n", "```" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "A researcher is interested in how variables, such as _GRE_ (Graduate Record Exam scores), _GPA_ (grade point average) and prestige of the undergraduate institution affect admission into graduate school. \n", "\n", "The response variable, admit/don't admit, is a binary variable." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "There are three predictor variables: __gre,__ __gpa__ and __rank.__ \n", "\n", "* We will treat the variables _gre_ and _gpa_ as continuous. \n", "* The variable _rank_ takes on the values 1 through 4. \n", " * Institutions with a rank of 1 have the highest prestige, while those with a rank of 4 have the lowest. " ] }, { "cell_type": "code", "execution_count": 28, "metadata": { "hide_input": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
admitgregparank
003803.613
116603.673
218004.001
316403.194
405202.934
517603.002
615602.981
704003.082
815403.393
907003.922
\n", "
" ], "text/plain": [ " admit gre gpa rank\n", "0 0 380 3.61 3\n", "1 1 660 3.67 3\n", "2 1 800 4.00 1\n", "3 1 640 3.19 4\n", "4 0 520 2.93 4\n", "5 1 760 3.00 2\n", "6 1 560 2.98 1\n", "7 0 400 3.08 2\n", "8 1 540 3.39 3\n", "9 0 700 3.92 2" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# data source: http://www.ats.ucla.edu/stat/data/binary.csv\n", "df = pd.read_csv('data/ats-admissions.csv') \n", "df.head(10)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
admitgregparank
count400.000000400.000000400.000000400.00000
mean0.317500587.7000003.3899002.48500
std0.466087115.5165360.3805670.94446
min0.000000220.0000002.2600001.00000
25%0.000000520.0000003.1300002.00000
50%0.000000580.0000003.3950002.00000
75%1.000000660.0000003.6700003.00000
max1.000000800.0000004.0000004.00000
\n", "
" ], "text/plain": [ " admit gre gpa rank\n", "count 400.000000 400.000000 400.000000 400.00000\n", "mean 0.317500 587.700000 3.389900 2.48500\n", "std 0.466087 115.516536 0.380567 0.94446\n", "min 0.000000 220.000000 2.260000 1.00000\n", "25% 0.000000 520.000000 3.130000 2.00000\n", "50% 0.000000 580.000000 3.395000 2.00000\n", "75% 1.000000 660.000000 3.670000 3.00000\n", "max 1.000000 800.000000 4.000000 4.00000" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.describe()" ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "hide_input": false, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAlYAAAGrCAYAAAACQdlFAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6M0lEQVR4nO3de7gldX3n+/cnDSrSyiXoTgeITWYYEqTjhT7EhEmye4gRxdg6j+bgoDYOOZ3MqMFJZ2JjZmI8M5zhzEhG4yWZTjAwI9IiYmDwMjKEHY8TgQCizUUCSgcb2m4vgLZxMI3f88eqjovNvqy9V9Vea3e/X8+zn1X1q8vvW79a67e+u6pWVaoKSZIkDe+HRh2AJEnS/sLESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmKl1iVZnaSSHLTI5fck+fG245IkqWuL+uKTulRVK/cNJ7kY2FFV/2Z0EUmSNBiPWEmS1IHFHrXX8mZipYEl2ZzkS0m+neTOJK9oylckeUeSryf5MnDGtOWmkvz7JH/ZnOb770l+OMmlSb6V5K+SrO6bv5L8wyQbgbOA39633FJuryTNJMnzk3yu6Qs/nORDTR83mWRHkrck+Srwp0l+qK/v/EaSy5McOeptUHdMrLQQXwJ+DjgMeDvwgSSrgP8LeCnwPGAt8MoZlj0TeC1wNPAPgM8CfwocCdwFvG36AlW1BbgU+I9VtbKqfrntDZKkhUjyJOCjwMX0+q/LgFf0zfIjTfmzgI3AbwAvB34B+FHgIeC9SxawlpyJlQZWVR+uqger6vtV9SHgHuAU4FeAd1bVV6rqm8B/mGHxP62qL1XVI8AngC9V1f+sqr3Ah+klZZI07l5A7/rkP6iqv6uqK4Gb+qZ/H3hbVT1aVd8Ffg34naraUVWPAr8HvNLThPsvd6wGluR1wG8Cq5uilcBR9P4L+0rfrH8zw+K7+oa/O8P4SiRp/P0o8EBVVV9Zf//3tar6333jzwI+muT7fWWPARPAA92FqVHxiJUGkuRZwB8DbwR+uKoOB24HAuwEju2b/cdarLrmn0WSlsxO4Ogk6Svr7/+m91lfAV5cVYf3/T2lqkyq9lMmVhrUofQ6jK8BJHk9cFIz7XLgN5Ick+QIYHOL9e4CvKeVpHHxWXpHnN6Y5KAk6+ldEjGbPwLOb/45JckzmmW0nzKx0kCq6k7gQnqdyi5gDfC/msl/DPwP4PPArcCVLVZ9EXBikoeT/FmL65WkBauq7wH/FDgHeBh4DXAN8Ogsi7wLuBr4VJJvAzcAP919pBqVPP40sSRJWogkNwJ/VFV/OupYNHoesZIkaQGS/EKSH2lOBW4Afgr45Kjj0njwV4GSJC3MCfSuLV1J7/5+r6yqnaMNSePCU4GSJEkt8VSgJElSS8biVOBRRx1Vq1evHmje73znOxx66KHdBtSi5RYvLL+YjbdbC4n3lltu+XpVPaPjkJa1/v5uXN8LxrUwxrUw+0Ncc/Z1VTXyv5NPPrkGdf311w887zhYbvFWLb+YjbdbC4kXuLnGoE8Z57/+/m5c3wvGtTDGtTD7Q1xz9XWeCpQkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktWQs7mO1ENseeISzN3+s9fVuv+CM1tcpSVJbVi/wu2/Tmr0DfV/6/dcuj1hJ0gCS/KskdyS5PcllSZ6S5Mgk1ya5p3k9YtRxShotEytJmkeSo4HfANZW1UnACuBMYDNwXVUdD1zXjEs6gJlYSdJgDgIOSXIQ8FTgQWA9cEkz/RLg5aMJTdK4WHbXWEnSUquqB5K8A7gf+C7wqar6VJKJqtrZzLMzyTNnWj7JRmAjwMTEBFNTUwDs2bPn74fHiXEtzFLFtWnN3gXNP3HIYMssdZvu7/vRxEqS5tFcO7UeOA54GPhwktcMunxVbQG2AKxdu7YmJyeB3hfavuFxYlwLs1RxLfSHW5vW7OXCbfN/zW8/a3KRES3O/r4fPRUoSfP7ReC+qvpaVf0dcCXws8CuJKsAmtfdI4xR0hgwsZKk+d0PvCDJU5MEOA24C7ga2NDMswG4akTxSRoTngqUpHlU1Y1JrgBuBfYCn6N3am8lcHmSc+glX68aXZSSxoGJlSQNoKreBrxtWvGj9I5eSRIwwKnAJMcmuT7JXc3N8c5tyn8vyQNJbmv+XtK3zHlJ7k1yd5IXdbkBkiRJ42KQI1Z7gU1VdWuSpwG3JLm2mfafq+od/TMnOZHejfOeDfwo8D+T/KOqeqzNwCVJksbNvEesqmpnVd3aDH+b3gWbR8+xyHpga1U9WlX3AfcCp7QRrCRJ0jhb0DVWSVYDzwNuBE4F3pjkdcDN9I5qPUQv6bqhb7EdzJCIzXbDvPkMesOzherqZmXjeiO0uSy3mI23W8stXkkapYETqyQrgY8Ab66qbyX5Q+DfAdW8Xgj8cyAzLF5PKJjlhnnzefelVw10w7OF6uoGaeN6I7S5LLeYjbdbyy1eadRWL/BGntq/DHQfqyQH00uqLq2qKwGqaldVPVZV3wf+mB+c7tsBHNu3+DH0nqklSZK0XxvkV4EBLgLuqqrf7ytf1TfbK4Dbm+GrgTOTPDnJccDxwE3thSxJkjSeBjmndirwWmBbktuasrcCr07yXHqn+bYDvwZQVXckuRy4k94vCt/gLwIlSdKBYN7Eqqo+w8zXTX18jmXOB84fIi5JkqRlx2cFSpIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJactCoA5AkSaOzevPHOlnv9gvO6GS9484jVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUknkTqyTHJrk+yV1J7khyblN+ZJJrk9zTvB7Rt8x5Se5NcneSF3W5AZK0FJIcnuSKJF9s+sOfmasflHRgGuSI1V5gU1X9JPAC4A1JTgQ2A9dV1fHAdc04zbQzgWcDpwPvS7Kii+AlaQm9C/hkVf0E8BzgLmbpByUduOZNrKpqZ1Xd2gx/m15ncjSwHrikme0S4OXN8Hpga1U9WlX3AfcCp7QctyQtmSRPB34euAigqr5XVQ8zez8o6QCVqhp85mQ18GngJOD+qjq8b9pDVXVEkvcAN1TVB5ryi4BPVNUV09a1EdgIMDExcfLWrVsHimH3Nx9h13cHDnlga44+rP2VAnv27GHlypWdrLsryy1m4+3WQuJdt27dLVW1tuOQllyS5wJbgDvpHa26BTgXeGCmfnCG5Wfs78b1vWBcCzM9rm0PPDLCaH5g4hA6+b4c1Gzfq8tlP85lrr5u4DuvJ1kJfAR4c1V9K8mss85Q9oTsraq20OuoWLt2bU1OTg4Ux7svvYoLt7V/w/jtZw1W/0JNTU0x6LaNi+UWs/F2a7nF25GDgOcDb6qqG5O8iwWc9putvxvXtjWuhZke19kd3cl8oTat2dvJ9+WgZvteXS77cbEG+lVgkoPpJVWXVtWVTfGuJKua6auA3U35DuDYvsWPAR4cOlJJGp0dwI6qurEZv4JeojVbPyjpADXIrwJD77qCu6rq9/smXQ1saIY3AFf1lZ+Z5MlJjgOOB25qL2RJWlpV9VXgK0lOaIpOo3dacLZ+UNIBapBjhKcCrwW2JbmtKXsrcAFweZJzgPuBVwFU1R1JLqfX6ewF3lBVj7UduCQtsTcBlyZ5EvBl4PX0/jl9Qj8o6cA1b2JVVZ9h5uumoPdf20zLnA+cP0RckjRWquo2YKaLVWfsByUdmLzzuiRJUktMrCRJklpiYiVJktQSEytJkqSWmFhJkiS1xMRKkiSpJSZWkiRJLTGxkiRJaomJlSRJUktMrCRJklpiYiVJktQSEytJkqSWzPsQZkmS9kerN3+slfVsWrOXs1tal5Y/j1hJkiS1xMRKkiSpJSZWkiRJLTGxkiRJaomJlSRJUktMrCRJklpiYiVJktSSeROrJO9PsjvJ7X1lv5fkgSS3NX8v6Zt2XpJ7k9yd5EVdBS5JkjRuBjlidTFw+gzl/7mqntv8fRwgyYnAmcCzm2Xel2RFW8FKkiSNs3kTq6r6NPDNAde3HthaVY9W1X3AvcApQ8QnSZK0bAzzSJs3JnkdcDOwqaoeAo4GbuibZ0dT9gRJNgIbASYmJpiamhqo0olDeo8PaNug9S/Unj17Olt3V5ZbzMbbreUWrySN0mITqz8E/h1QzeuFwD8HMsO8NdMKqmoLsAVg7dq1NTk5OVDF7770Ki7c1v4jDrefNVj9CzU1NcWg2zYullvMxtut5RavJI3SojKUqtq1bzjJHwPXNKM7gGP7Zj0GeHDR0UmSpGVptodcD/vQ6u0XnLHoZZfCom63kGRV3+grgH2/GLwaODPJk5McBxwP3DRciJIkScvDvEesklwGTAJHJdkBvA2YTPJceqf5tgO/BlBVdyS5HLgT2Au8oaoe6yRySZKkMTNvYlVVr56h+KI55j8fOH+YoCRJkpYj77wuSZLUEhMrSRpAkhVJPpfkmmb8yCTXJrmneT1i1DFKGj0TK0kazLnAXX3jm4Hrqup44LpmXNIBzsRKkuaR5BjgDOBP+orXA5c0w5cAL1/isCSNofbvtClJ+593Ar8NPK2vbKKqdgJU1c4kz5xt4dmeNDGud7U/UOJq6ykeXT0RZFj7a1zj/qQUEytJmkOSlwK7q+qWJJOLWcdsT5oY17vaHyhxDXOTyn6b1uzt5Ikgw9pf4xr3J6WMX4tL0ng5FXhZkpcATwGenuQDwK4kq5qjVauA3SONUtJYMLGS9hOzPT5iWBeffmgn610uquo84DyA5ojVb1XVa5L8J2ADcEHzetWoYpQ0Prx4XZIW5wLghUnuAV7YjEs6wHnESpIGVFVTwFQz/A3gtFHGI2n8eMRKkiSpJSZWkiRJLTGxkiRJaonXWEmSpGVj3H8B7RErSZKklphYSZIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJL5k2skrw/ye4kt/eVHZnk2iT3NK9H9E07L8m9Se5O8qKuApckSRo3gxyxuhg4fVrZZuC6qjoeuK4ZJ8mJwJnAs5tl3pdkRWvRSpIkjbF5E6uq+jTwzWnF64FLmuFLgJf3lW+tqker6j7gXuCUdkKVJEkab4u98/pEVe0EqKqdSZ7ZlB8N3NA3346m7AmSbAQ2AkxMTDA1NTVYxYfApjV7Fxn27Aatf6H27NnT2bq7stxiNt6eLj4XsPzaV5JGqe1H2mSGspppxqraAmwBWLt2bU1OTg5UwbsvvYoLt7X/JJ7tZw1W/0JNTU0x6LaNi+UWs/H2nN3hYx6WU/tK0igt9leBu5KsAmhedzflO4Bj++Y7Bnhw8eFJkiQtH4tNrK4GNjTDG4Cr+srPTPLkJMcBxwM3DReiJEnS8jDvObUklwGTwFFJdgBvAy4ALk9yDnA/8CqAqrojyeXAncBe4A1V9VhHsUuSDgCrm9Pcm9bs7eyUt9SWeROrqnr1LJNOm2X+84HzhwlKkiRpOfLO65IkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkzSPJsUmuT3JXkjuSnNuUH5nk2iT3NK9HjDpWSaNlYiVJ89sLbKqqnwReALwhyYnAZuC6qjoeuK4Zl3QAM7GSpHlU1c6qurUZ/jZwF3A0sB64pJntEuDlIwlQ0tg4aNQBSNJykmQ18DzgRmCiqnZCL/lK8sxZltkIbASYmJhgamoKgD179vz98DgZt7g2rdkLwMQhPxgeJ8a1MOMaV1vvexMrSRpQkpXAR4A3V9W3kgy0XFVtAbYArF27tiYnJwGYmppi3/A4Gbe4zt78MaD3ZXzhtvH72jKuhRnXuC4+/dBW3veeCpSkASQ5mF5SdWlVXdkU70qyqpm+Ctg9qvgkjQcTK0maR3qHpi4C7qqq3++bdDWwoRneAFy11LFJGi/jdyxOksbPqcBrgW1JbmvK3gpcAFye5BzgfuBVowlP0rgwsZKkeVTVZ4DZLqg6bSljkTTePBUoSZLUkqGOWCXZDnwbeAzYW1VrkxwJfAhYDWwHfqWqHhouTEmSpPHXxqnAdVX19b7xfXciviDJ5mb8LS3UI0kaY6ub2yJIB7IuTgV6J2JJknRAGvaIVQGfSlLAf2lugjfUnYjn09UdW7u6y/C43cF4EMstZuPt6epOxsutfSVplIZNrE6tqgeb5OnaJF8cdMHZ7kQ8n3dfelUnd2zdftZg9S/UuN3BeBDLLWbj7Tm7o9Mwbd2NWJIOBEOdCqyqB5vX3cBHgVPwTsSSJOkAtejEKsmhSZ62bxj4JeB2vBOxJEk6QA1zTm0C+GjzENKDgA9W1SeT/BXeiViSJB2AFp1YVdWXgefMUP4NvBOxJEk6AHnndUmSpJaYWEmSJLXExEqSJKklJlaSJEktMbGSJElqiYmVJElSS0ysJEmSWmJiJUmS1BITK0mSpJaYWEmSJLXExEqSJKklJlaSJEktMbGSJElqiYmVJElSS0ysJEmSWmJiJUmS1BITK0mSpJYcNOoAJElLa/Xmj805fdOavZw9zzySZuYRK0mSpJaYWEmSJLWks8QqyelJ7k5yb5LNXdUjSaNkXyepXyfXWCVZAbwXeCGwA/irJFdX1Z1d1CdJo9B1XzfftVCSxk9XR6xOAe6tqi9X1feArcD6juqSpFGxr5P0OKmq9leavBI4vap+tRl/LfDTVfXGvnk2Ahub0ROAuwdc/VHA11sMt2vLLV5YfjEbb7cWEu+zquoZXQYzTgbp65ry2fq7cX0vGNfCGNfC7A9xzdrXdXW7hcxQ9rgMrqq2AFsWvOLk5qpau9jAltpyixeWX8zG263lFu8Sm7evg9n7u3FtW+NaGONamP09rq5OBe4Aju0bPwZ4sKO6JGlU7OskPU5XidVfAccnOS7Jk4Azgas7qkuSRsW+TtLjdHIqsKr2Jnkj8D+AFcD7q+qOlla/4NOHI7bc4oXlF7Pxdmu5xbtkWujrxrVtjWthjGth9uu4Orl4XZIk6UDkndclSZJaYmIlSZLUkrFNrOZ7TER6/qCZ/oUkzx9FnH3xzBfvWU2cX0jyl0meM4o4++IZ6DEcSf6PJI819+sZmUHiTTKZ5LYkdyT5i6WOcVos870fDkvy35N8von39aOIsy+e9yfZneT2WaaP1edtOUhybJLrk9zV7ONzm/Ijk1yb5J7m9Yi+Zc5r2vjuJC/qKK6nJLmp77339nGIq6+uFUk+l+SacYkryfYk25r+5eYxiuvwJFck+WLzPvuZMYnrhKat9v19K8mbRx1bkn/VvOdvT3JZ81loP6aqGrs/eheBfgn4ceBJwOeBE6fN8xLgE/TuI/MC4MYxj/dngSOa4RePe7x98/058HHgleMcL3A4cCfwY834M8c83rcC/28z/Azgm8CTRhjzzwPPB26fZfrYfN6Wyx+wCnh+M/w04K+BE4H/CGxuyjf3vQ9ObN4rTwaOa95DKzqIK8DKZvhg4MZmn440rr74fhP4IHBNMz7yuIDtwFHTysYhrkuAX22Gn9T0gyOPa1qMK4CvAs8aZWzA0cB9wCHN+OXA2V3ENK5HrAZ5TMR64L9Wzw3A4UlWLXWgjXnjraq/rKqHmtEb6N3vZlQGfQzHm4CPALuXMrgZDBLvPwOurKr7AapqlDEPEm8BT0sSYCW9xGrv0obZF0zVp5sYZjNOn7dloap2VtWtzfC3gbvode7r6X0h0ry+vBleD2ytqker6j7gXnrvpbbjqqra04we3PzVqOMCSHIMcAbwJ33FI49rFiONK8nT6f1DdBFAVX2vqh4edVwzOA34UlX9zRjEdhBwSJKDgKfSu+dc6zGNa2J1NPCVvvEdTdlC51kqC43lHHr//Y/KvPEmORp4BfBHSxjXbAZp338EHJFkKsktSV63ZNE90SDxvgf4SXof7G3AuVX1/aUJb1HG6fO27CRZDTyP3tGhiaraCb3kC3hmM9uStXFzuu02ev80XVtVYxEX8E7gt4H+z8I4xFXAp5q+Zd+jiUYd148DXwP+tDl1+idJDh2DuKY7E7isGR5ZbFX1APAO4H5gJ/BIVX2qi5jGNbEa5DERAz1KYokMHEuSdfQSq7d0GtHcBon3ncBbquqx7sOZ1yDxHgScTO+/3RcB/zbJP+o6sFkMEu+LgNuAHwWeC7yn+Q90XI3T521ZSbKS3pHfN1fVt+aadYayTtq4qh6rqufSO3J+SpKTRh1XkpcCu6vqlkEXmaGsq/fkqVX1fHqXcbwhyc/PMe9SxXUQvdP3f1hVzwO+Q+9U1qjj+kGFvZvmvgz48HyzzlDWamzNtVPr6Z3W+1Hg0CSv6SKmcU2sBnlMxDg9SmKgWJL8FL1D3Our6htLFNtMBol3LbA1yXbglcD7krx8SaJ7okHfD5+squ9U1deBTwOj+oHAIPG+nt6py6qqe+md+/+JJYpvMcbp87ZsJDmYXlJ1aVVd2RTv2ncatXndd9p6ydu4OXU0BZw+BnGdCrys6XO2Av8kyQfGIC6q6sHmdTfwUXqnhEYd1w5gR3O0EeAKeonWqOPq92Lg1qra1YyPMrZfBO6rqq9V1d8BV9K79rn1mMY1sRrkMRFXA69LzwvoHdbbudSBNuaNN8mP0duRr62qvx5BjP3mjbeqjquq1VW1mt4H9l9W1Z8teaQ9g7wfrgJ+LslBSZ4K/DS9a1pGYZB476d37QFJJoATgC8vaZQLM06ft2WhuX7uIuCuqvr9vklXAxua4Q303rv7ys9M8uQkxwHHAzd1ENczkhzeDB9C7wvni6OOq6rOq6pjmj7nTODPq+o1o44ryaFJnrZvGPgl4PZRx1VVXwW+kuSEpug0ej/gGWlc07yaH5wG3BfDqGK7H3hBkqc2n83T6H1HtB/TIFe4j+KP3q+Q/prelfi/05T9OvDrzXCA9zbTtwFrxzzePwEeonf65zbg5nGOd9q8FzPCXwUOGi/wr+l1LLfTO+0ytvHSOxT9qea9ezvwmhHHexm96w7+jt5/aueM8+dtOfwB/5jeqYMv9H3uXwL8MHAdcE/zemTfMr/TtPHdwIs7iuungM81cd0O/G5TPtK4psU4yQ9+FTjq9vpxer8O+zxwR9/neeTtRe8ygpubfflnwBHjEFdT11OBbwCH9ZWNel++nd4/EbcD/43eL/5aj8lH2kiSJLVkXE8FSpIkLTsmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkLZEkU0l+ddRxqDsmVpIkSS0xsZIkaUBJDhp1DBpvJlYaWpLnJ/lckm8n+XCSDyX590kmk+xI8tYkX0+yPclZfcud0Sz3rSRfSfJ7I9wMSZpR03e9JckXgO8k+TdJvtT0eXcmeUXfvGcn+UySdyR5KMl9SV48y3pXJflCkt9aso1R50ysNJQkTwI+ClwMHAlcBryib5YfAY4CjgY2AFuSnNBM+w7wOuBw4AzgXyR5+VLELUkL9Gp6/dThwN3AzwGHAW8HPpBkVd+8P93McxTwH4GLkqR/ZUlWA38BvKeq3tF18Fo6JlYa1guAg4A/qKq/q6orgZumzfNvq+rRqvoL4GPArwBU1VRVbauq71fVF+glZb+wlMFL0oD+oKq+UlXfraoPV9WDTd/1IeAe4JS+ef+mqv64qh4DLgFWARN9008EpoC3VdWWpdoALQ0TKw3rR4EHqqr6yr7SN/xQVX2nb/xvmmVI8tNJrk/ytSSPAL9O7z88SRo3f9+vJXldktuSPJzkYeAkHt93fXXfQFX9bTO4sm/6WcADwBXdhatRMbHSsHYCR087zH1s3/ARSQ7tG/8x4MFm+IPA1cCxVXUY8EfA4w6XS9KYKIAkzwL+GHgj8MNVdThwOwvru34P+DrwwSQr2g1To2ZipWF9FngMeGOSg5Ks5/GHxAHenuRJSX4OeCnw4ab8acA3q+p/JzkF+GdLFrUkLc6h9JKsrwEkeT29I1YL8XfAq5p1/bckfhfvR9yZGkpVfQ/4p8A5wMPAa4BrgEebWb4KPETvKNWlwK9X1Rebaf8S+L+TfBv4XeDypYtckhauqu4ELqT3T+UuYA3wvxaxnn195zOB95tc7T/y+EtjpOEluZHeab37gA9U1TEjDkmSpCVhhqyhJfmFJD/SnArcAPwU8MlRxyVJ0lLzDrJqwwn0TuOtBL4EvLKqdvbdr0qSpAOCpwIlSZJa4qlASZKklozFqcCjjjqqVq9ePe983/nOdzj00EPnna8ro6z/QN72A73+5bTtt9xyy9er6hkdh7SsDdrfwej3/UzGLaZxiweMaVDjFlNrfV1Vjfzv5JNPrkFcf/31A83XlVHWfyBv+4Fe/3LaduDmGoM+ZZz/Bu3vqka/72cybjGNWzxVxjSocYuprb7OU4GSJEktMbGSJElqiYmVJElSS0ysJEmSWmJiJUmS1BITK0mSpJaMxX2spGGs3vyxTta7/YIzOlmvpIWZ6zO+ac1ezl5kH+BnXF3wiJUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkNZK8P8nuJLfPMO23klSSo/rKzktyb5K7k7xoaaOVNI4WnVglOSHJbX1/30ry5iRHJrk2yT3N6xFtBixJHboYOH16YZJjgRcC9/eVnQicCTy7WeZ9SVYsTZiSxtWiE6uquruqnltVzwVOBv4W+CiwGbiuqo4HrmvGJWnsVdWngW/OMOk/A78NVF/ZemBrVT1aVfcB9wKndB+lpHHW1rMCTwO+VFV/k2Q9MNmUXwJMAW9pqR5JWlJJXgY8UFWfT9I/6Wjghr7xHU3ZTOvYCGwEmJiYYGpqaqC69+zZM/C8S2UUMW1as3fWaROHzD19Ll1th/ttMOMWU1vxpKrmn2u+lSTvB26tqvckebiqDu+b9lBVPeF04LSO5uStW7fOW8+ePXtYuXLl0PEu1ijrP5C3fb76tz3wSCd1rjn6sIHq79o4t/1069atu6Wq1nYcUqeSrAauqaqTkjwVuB74pap6JMl2YG1VfT3Je4HPVtUHmuUuAj5eVR+Za/1r166tm2++eaBYpqammJycXPzGdGAUMc33EOYLty3uGEFXD2F2vw1m3GJaSDxJZu3rhj5ileRJwMuA8xayXFVtAbZAr6MZZGNGvRNGWf+BvO3z1b/YJ9vPZ/tZP6jPfT+6+kfsHwDHAfuOVh0D3JrkFHpHqI7tm/cY4MElj1DSWGnjV4Evpne0alczvivJKoDmdXcLdUjSkquqbVX1zKpaXVWr6SVTz6+qrwJXA2cmeXKS44DjgZtGGK6kMdBGYvVq4LK+8auBDc3wBuCqFuqQpM4luQz4LHBCkh1Jzplt3qq6A7gcuBP4JPCGqnpsaSKVNK6GOhXYXH/wQuDX+oovAC5vOqT7gVcNU4ckLZWqevU801dPGz8fOL/LmCQtL0MlVlX1t8APTyv7Br1fCUqSJB1QvPO6JElSS0ysJEmSWtLWDUKl/U7/vXM2rdnb2m0durp3jiRp9DxiJUmS1BITK0mSpJaYWEmSJLXExEqSJKklJlaSJEkt8VeB0n5idUcPo7749EM7Wa8k7Y88YiVJktQSEytJkqSWDJVYJTk8yRVJvpjkriQ/k+TIJNcmuad5PaKtYCWpS0nen2R3ktv7yv5T08d9IclHkxzeN+28JPcmuTvJi0YStKSxMuwRq3cBn6yqnwCeA9wFbAauq6rjgeuacUlaDi4GTp9Wdi1wUlX9FPDXwHkASU4EzgSe3SzzviQrli5USeNo0RevJ3k68PPA2QBV9T3ge0nWA5PNbJcAU8BbhglSkpZCVX06yeppZZ/qG70BeGUzvB7YWlWPAvcluRc4BfjsUsSqA88wP1CZ67FcPmarXamqxS2YPBfYAtxJ72jVLcC5wANVdXjffA9V1RNOBybZCGwEmJiYOHnr1q3z1rlnzx5Wrly5qHjbMMr6D+Rtn6/+bQ880nn9E4fAru+2s641Rx+2oPkHbfuu2uG4w1YMvO/XrVt3S1Wt7SSQJdIkVtdU1UkzTPvvwIeq6gNJ3gPcUFUfaKZdBHyiqq6YYbkF93cw+s/dTEYR01zv7WE+mwv9LA6qqzYa5jM+Vzt11Q7zGbf390LimauvG+Z2CwcBzwfeVFU3JnkXCzjtV1Vb6CVmrF27tiYnJ+ddZmpqikHm68oo6z+Qt32++tt6OPJcNq3Zy4Xb2rk7yfazJhc0/6Bt31U7XHz6oSPd9+Miye8Ae4FL9xXNMNuM/6kupr+D0X/uZjKKmOZ6bw/z2VzoZ3FQXbXRMJ/xudqpq3aYz7i9v9uKZ5hrrHYAO6rqxmb8CnqJ1q4kqwCa193DhShJo5VkA/BS4Kz6wWH+HcCxfbMdAzy41LFJGi+LTqyq6qvAV5Kc0BSdRu+04NXAhqZsA3DVUBFK0gglOZ3edaIvq6q/7Zt0NXBmkicnOQ44HrhpFDFKGh/Dntt4E3BpkicBXwZeTy9ZuzzJOcD9wKuGrEOSlkSSy+j9+OaoJDuAt9H7FeCTgWuTQO+6ql+vqjuSXE7vH8q9wBuq6rHRRC5pXAyVWFXVbcBMF2+dNsx6JWkUqurVMxRfNMf85wPndxeRpOXGO69LkiS1xIcwa8l0dQ8WSZLGhUesJEmSWmJiJUmS1BITK0mSpJaYWEmSJLXExEqSJKklJlaSJEktMbGSJElqiYmVJElSS0ysJEmSWmJiJUmNJO9PsjvJ7X1lRya5Nsk9zesRfdPOS3JvkruTvGg0UUsaJ0MlVkm2J9mW5LYkNzdls3ZCkjTmLgZOn1a2Gbiuqo4HrmvGSXIicCbw7GaZ9yVZsXShShpHbRyxWldVz62qtc34jJ2QJI27qvo08M1pxeuBS5rhS4CX95VvrapHq+o+4F7glKWIU9L46uIhzOuByWb4EmAKeEsH9UjSUpioqp0AVbUzyTOb8qOBG/rm29GUPUGSjcBGgImJCaampgaqeM+ePQPPu1RGEdOmNXtnnTZxyNzT59LVdnTVRovdTpi7nUb1Hhu393db8aSqFr9wch/wEFDAf6mqLUkerqrD++Z5qKqecDpwWkdz8tatW+etb8+ePaxcuXLR8Q5rlPXvD9u+7YFHFr3sxCGw67tDVT+UNutfc/RhC5p/0LYfpn3nctxhKwbe9+vWrbul7+j1spRkNXBNVZ3UjM/YpyV5L/DZqvpAU34R8PGq+shc61+7dm3dfPPNA8UyNTXF5OTkorajK6OIafXmj806bdOavVy4bXHHCLZfcMZiQ5pTV200VzvMZ6526qod5jNu7++FxJNk1r5u2CNWp1bVg81/cNcm+eKgC1bVFmAL9DqaQTZm1DthlPXvD9t+dkedwlJos/7tZ00uaP5B236Y9p3LxacfOlad3wjsSrKqOVq1CtjdlO8Aju2b7xjgwSWPTtJYGeoaq6p6sHndDXyU3vUFu5rOh2mdkCQtR1cDG5rhDcBVfeVnJnlykuOA44GbRhCfpDGy6MQqyaFJnrZvGPgl4HZm74QkaawluQz4LHBCkh1JzgEuAF6Y5B7ghc04VXUHcDlwJ/BJ4A1V9dhoIpc0LoY5tzEBfDTJvvV8sKo+meSvgMubDul+4FXDhylJ3auqV88y6bRZ5j8fOL+7iCQtN4tOrKrqy8BzZij/BrN0QpIkSfsz77wuSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktWSYhzBrP7V688eeULZpzV7OnqFcOlAk+VfArwIFbANeDzwV+BCwGtgO/EpVPTSiECWNgaGPWCVZkeRzSa5pxo9Mcm2Se5rXI4YPU5JGJ8nRwG8Aa6vqJGAFcCawGbiuqo4HrmvGJR3A2jgVeC5wV9+4HY2k/dFBwCFJDqJ3pOpBYD1wSTP9EuDlowlN0rgY6lRgkmOAM4Dzgd9sitcDk83wJcAU8JZh6pGkUaqqB5K8A7gf+C7wqar6VJKJqtrZzLMzyTNnWj7JRmAjwMTEBFNTUwPVu2fPnoHnXSqjiGnTmr2zTps4ZO7pc+lqO7pqo8VuJ8zdTqN6j43b+7uteFJVi184uQL4D8DTgN+qqpcmebiqDu+b56GqesLpwGkdzclbt26dt749e/awcuXKRcc7rFHWv5R1b3vgkSeUTRwCu767JNXPaH+qf83Rhy1o/kH3/Uz7rQ3HHbZi4PfeunXrbqmqtZ0EMkLNJQ0fAf5P4GHgw8AVwHsG6e/6rV27tm6++eaB6p2ammJycnJxQXdkFDHNdN3nPpvW7OXCbYs7RrD9gjMWG9KcumqjudphPnO1U1ftMJ9xe38vJJ4ks/Z1iz5ileSlwO6quiXJYJH0qaotwBbodTSDbMyod8Io61/Kume6SH2YzqsN+1P928+aXND8g+77rn5ccPHph45V5zcivwjcV1VfA0hyJfCzwK4kq5qjVauA3aMMUtLoDfNNcSrwsiQvAZ4CPD3JB7Cjkea00P86/UXmWLgfeEGSp9I7FXgacDPwHWADcEHzetXIIpQ0FhZ98XpVnVdVx1TVanq/jvnzqnoNcDW9DgbsaCTtB6rqRnqn/m6ld6uFH6J3xP0C4IVJ7gFe2IxLOoB1cW7lAuDyJOfQ+y/vVR3UIUlLqqreBrxtWvGj9I5eSRLQUmJVVVP0fv1HVX0DOxpJknQA8pE2kiRJLTGxkiRJaomJlSRJUktMrCRJklpiYiVJktQSEytJkqSWjO4ZIRraMM+NkiRJ7TOxkiRJy0ZXBxUuPv3QVtbjqUBJkqSWmFhJkiS1xMRKkiSpJSZWkjSAJIcnuSLJF5PcleRnkhyZ5Nok9zSvR4w6TkmjtejEKslTktyU5PNJ7kjy9qbcjkbS/uhdwCer6ieA5wB3AZuB66rqeOC6ZlzSAWyYXwU+CvyTqtqT5GDgM0k+AfxTeh3NBUk20+to3tJCrJI0EkmeDvw8cDZAVX0P+F6S9cBkM9slwBQt9nfbHniEszv4BdT2C85ofZ2SehadWFVVAXua0YObvwI67WgkaQR+HPga8KdJngPcApwLTFTVToCq2pnkmTMtnGQjsBFgYmKCqampgSqdOAQ2rdk7fPTTDFr/TPbs2TPU8osxVxsM00ZdbUdXbTTMe2Gudlrq/bnPYtupi88EtLff0suPFrlwsoJeB/MPgfdW1VuSPFxVh/fN81BVPeF04LSO5uStW7fOW9+ePXtYuXLlouMd1ijrn6nubQ88smT1TxwCu767ZNVZ/5jUDXDcYSsGft+vW7fulqpa23FISy7JWuAG4NSqujHJu4BvAW8apL/rt3bt2rr55psHqvfdl17Fhdvav93gMEespqammJycbC+YAcx136JNa/Yuuo26OnLXVRsNc/+mudppVEcwF9tOXd7HatB4ksza1w31ia2qx4DnJjkc+GiSkxaw7BZgC/Q6mkE2ZhQf6HGpf6a6uzhFMJthOi/rX751w8I6m/3YDmBHVd3YjF9B7zKHXUlWNUerVgG7RxahpLHQyq8Cq+pheqf8TqfpaADsaCTtD6rqq8BXkpzQFJ0G3AlcDWxoyjYAV40gPEljZJhfBT6jOVJFkkOAXwS+iB2NpP3Tm4BLk3wBeC7w/wAXAC9Mcg/wwmZc0gFsmPMLq4BLmuusfgi4vKquSfJZ4PIk5wD3A69qIU5JGqmqug2Y6ZqK05Y4FEljbJhfBX4BeN4M5d/AjkaSJB2AvPO6JElSS0ysJEmSWmJiJUmS1BITK0mSpJaYWEmSJLXExEqSJKklJlaSJEktMbGSJElqiYmVJElSS0ysJEmSWmJiJUmS1JJFJ1ZJjk1yfZK7ktyR5Nym/Mgk1ya5p3k9or1wJWk0kqxI8rkk1zTj9nWSnmCYI1Z7gU1V9ZPAC4A3JDkR2AxcV1XHA9c145K03J0L3NU3bl8n6QkWnVhV1c6qurUZ/ja9DudoYD1wSTPbJcDLh4xRkkYqyTHAGcCf9BXb10l6glTV8CtJVgOfBk4C7q+qw/umPVRVTzhEnmQjsBFgYmLi5K1bt85bz549e1i5cuXQ8S7WKOufqe5tDzyyZPVPHAK7vrtk1Vn/mNQNcNxhKwZ+369bt+6WqlrbcUhLLskVwH8Angb8VlW9NMnDg/R1zbQF93cAu7/5SCf7fs3Rhy162VH0g3P1dcN8PoZph7l01UbD9PlztVNX7TCfxbZTV999bfV1Bw0bSJKVwEeAN1fVt5IMtFxVbQG2AKxdu7YmJyfnXWZqaopB5uvKKOufqe6zN39syerftGYvF24b+u1i/cusboCLTz90pJ+7UUvyUmB3Vd2SZHIx61hMfwfw7kuv6mTfbz9rsPpnMop+cK6+bpjPxzDtMJeu2miYPn+uduqqHeaz2Hbq6ruvrb5uqE9skoPpJVWXVtWVTfGuJKuqameSVcDuYYOUpBE6FXhZkpcATwGenuQD2NdJmsEwvwoMcBFwV1X9ft+kq4ENzfAG4KrFhydJo1VV51XVMVW1GjgT+POqeg32dZJmMMwRq1OB1wLbktzWlL0VuAC4PMk5wP3Aq4aKUJLGk32dpCdYdGJVVZ8BZrug6rTFrleSxlVVTQFTzfA3sK+TNI13XpckSWqJiZUkSVJLTKwkSZJaMrqb4xwgVrd0v41Na/Yu6X2rJEnSwnnESpIkqSUmVpIkSS0xsZIkSWqJiZUkSVJLTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktWSoxCrJ+5PsTnJ7X9mRSa5Nck/zesTwYUrS6CQ5Nsn1Se5KckeSc5ty+ztJjzPsEauLgdOnlW0Grquq44HrmnFJWs72Apuq6ieBFwBvSHIi9neSphkqsaqqTwPfnFa8HrikGb4EePkwdUjSqFXVzqq6tRn+NnAXcDT2d5KmSVUNt4JkNXBNVZ3UjD9cVYf3TX+oqp5weDzJRmAjwMTExMlbt26dt649e/awcuXKoeIdxmLq3/bAI63UPXEI7PpuK6uy/mVW/6i3/bjDVgz8vl+3bt0tVbW245BGqunzPg2cBNzfVX8HsPubj3Sy79ccfdiilx1FPzxXPzrM52OYdphLV200zPfJXO3UVTvMZ7Ht1Nb36nRt9XUjS6z6rV27tm6++eZ565qammJycnKoeIexmPrbfAjzhdtG98xs6x9d/aPe9otPP3Tg932S/TqxSrIS+Avg/Kq6ssv+DuDdl17Vyb7ffsEZi152FP3wXP3oMJ+PYdphLl210TDfJ3O1U1ftMJ/FtlNb36vTtdXXdfGrwF1JVjUVrwJ2d1CHJC2pJAcDHwEuraorm2L7O0mP00VidTWwoRneAFzVQR2StGSSBLgIuKuqfr9vkv2dpMcZ6hhzksuASeCoJDuAtwEXAJcnOQe4H3jVsEFK0oidCrwW2JbktqbsrdjfSZpmqMSqql49y6TThlmvJI2TqvoMkFkm299J+nveeV2SJKklJlaSJEktMbGSJElqiYmVJElSS0ysJEmSWmJiJUmS1BITK0mSpJaM7gFkY2aQZw9tWrOXszt6RpEkSVr+PGIlSZLUkmV3xKqrp1pLkiQNyyNWkiRJLTGxkiRJaklniVWS05PcneTeJJu7qkeSRsm+TlK/ThKrJCuA9wIvBk4EXp3kxC7qkqRRsa+TNF1XR6xOAe6tqi9X1feArcD6juqSpFGxr5P0OKmq9leavBI4vap+tRl/LfDTVfXGvnk2Ahub0ROAuwdY9VHA11sOdyFGWf+BvO0Hev3LadufVVXP6DKYcTJIX9eUL6a/g9Hv+5mMW0zjFg8Y06DGLaZW+rqubreQGcoel8FV1RZgy4JWmtxcVWuHCWwYo6z/QN72A73+A3nbl4F5+zpYXH8H49n24xbTuMUDxjSocYuprXi6OhW4Azi2b/wY4MGO6pKkUbGvk/Q4XSVWfwUcn+S4JE8CzgSu7qguSRoV+zpJj9PJqcCq2pvkjcD/AFYA76+qO1pY9YIPpbdslPUfyNt+oNd/IG/7WOuwr9tnHNt+3GIat3jAmAY1bjG1Ek8nF69LkiQdiLzzuiRJUktMrCRJkloyFolVkmOTXJ/kriR3JDl3hnnOSvKF5u8vkzynb9r2JNuS3Jbk5g7qnkzySLP+25L8bt+0oR5nMWD9/7qv7tuTPJbkyGG3vVn+KUluSvL5pv63zzBPkvxBs41fSPL8NrZ/wLo72e8LqL/LfT9I/Z3t+2YdK5J8Lsk1M0zrZL/r8ZK8P8nuJLfPMn3W/TDCmGb9XHQUzyD95JK204AxLXU7DdWfjyieJW2jvnoX1fcNpKpG/gesAp7fDD8N+GvgxGnz/CxwRDP8YuDGvmnbgaM6rHsSuGaGZVcAXwJ+HHgS8Pnpy7ZR/7T5fxn48za2vVk+wMpm+GDgRuAF0+Z5CfCJZt4X7Gv7Ybd/wLo72e8LqL/LfT9v/V3u+2Ydvwl8cJZt7GS/+/eEdv554PnA7bNMn3E/jDimGT8XHcYzSD+9pO00YExL3U6L7s9HGM+StlFfvQvu+wb9G4sjVlW1s6pubYa/DdwFHD1tnr+sqoea0Rvo3S9mSeqew9CPs1hE/a8GLltIHfPUX1W1pxk9uPmb/ouG9cB/bea9ATg8ySqG3P5B6u5qvw9a/xza2PcLrb/VfZ/kGOAM4E9mmaWT/a7Hq6pPA9+cY5bZ9sMoY1pSA/aTS9pOQ353dBXTMP35qOJZckP0fQMZi8SqX5LVwPPoZbazOYdeNrlPAZ9Kckt6j47oou6faQ5nfiLJs5uyo4Gv9M2zgyE+WPNte5KnAqcDH+krHnrbm0OitwG7gWuranr9s23n0Ns/QN39Wt/vA9bf2b4fdPs72vfvBH4b+P4s0zvb71qQcW3vmT4XnZujnxxZOy3iu6PLWBbbn48qHlj699I7WVzfN5CuHmmzKElW0vvieHNVfWuWedbR+4L9x33Fp1bVg0meCVyb5IvNf1xt1X0rvecC7UnyEuDPgOMZ8HEWLdS/zy8D/6uq+v+THHrbq+ox4LlJDgc+muSkquq/tmK27Rx6+weouxdAR/t9gPo73feDbj8t7/skLwV2V9UtSSZnm22mkOcoVzfGsb1n+1x0ap5+ciTttMjvjs4M0Z+PKp4lbaMh+76BjM0RqyQH03tzXlpVV84yz0/RO3S3vqq+sa+8qh5sXncDH6V3qqK1uqvqW/sOZ1bVx4GDkxxFS4+zGGTbG2cy7VTQsNs+bV0PA1P0joz0m207W3ucxxx1d7bfB6m/630/X/192t73pwIvS7Kd3qm8f5LkA9Pm6Xy/ayBj195zfC46M0A/ueTtNMR3R+cW0Z+PJJ4RtNEwfd9gaokvGJvpj152+F+Bd84xz48B9wI/O638UOBpfcN/Se9p823W/SP84GaqpwD3N8sdBHwZOI4fXMT77La3vZnvMHrXPBza1rY3yz0DOLwZPgT4/4CXTpvnDB5/Id9NTflQ2z9g3Z3s9wXU3+W+n7f+Lvd937ommfkCzk72u38z7oPVzH6h+Iz7YcQxzfi56DCWQfrpJW2nAWNa6nZadH8+wniWtI2m1b2gvm/Qv3E5FXgq8FpgW3MuFuCt9L5Uqao/An4X+GHgfUkA9lbvKdQT9A4vQq/D/2BVfbLlul8J/Iske4HvAmdWr/XbeJzFIPUDvAL4VFV9p2/ZYbcder9suSTJCnpHMC+vqmuS/Hpf/R+n9yuJe4G/BV7fTBt2+wepu6v9Pmj9Xe77QeqH7vb9EyzRflefJJfR6+CPSrIDeBu9i3zn3A8jjmm2z0VXBuknl7qdhvnu6Mqi+/MRxrPUbTSjNtvIR9pIkiS1ZGyusZIkSVruTKwkSZJaYmIlSZLUEhMrSZKklphYSZIktcTESpIkqSUmVpIkSS35/wHSgRbyb5PcQAAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df.hist(figsize = (10, 7));" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Let's look at how each independent variable affects admission probability." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "First, __rank__:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "hide_input": true, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEOCAYAAABIESrBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAvUElEQVR4nO3deXxU5b3H8c9vJgFCIIQloKARRBbZkSgoItYNsVpRXKGuRbxaF9q69l5qa61al6u24oLirmhtcV+wvVY2BQlSRBSCKIsgEAQCYWfyu3/MBGNMSGZIZkm+79drXiRnnjnzOx7l63Oec57H3B0REZFYBBJdgIiIpC6FiIiIxEwhIiIiMVOIiIhIzBQiIiISs7REFxBvrVq18vbt2ye6DBGRlDJnzpx17p5Tfnu9C5H27duTn5+f6DJERFKKmS2raHvcL2eZWQsze8XMtpjZMjMbUUm7i80sZGbFZV7Hlnn/AzPbXua9RfE6BhERCUtET2QcsBNoA/QB3jKzee6+oIK2H7n70XvZ11Xu/ngt1CgiItUQ156ImWUCw4Gx7l7s7tOB14EL4lmHiIjUjHhfzuoMhNy9oMy2eUD3Str3NbN1ZlZgZmPNrHzP6Y7I+zPKXuoqz8xGm1m+meUXFhbu0wGIiMj34h0iTYCictuKgKYVtJ0K9ABaE+69nA9cX+b9G4GDgXbAeOANM+tY0Ze6+3h3z3P3vJycH91cICIiMYp3iBQDWeW2ZQGbyzd096/c/Wt3L3H3+cCtwFll3p/l7pvdfYe7Pw3MAE6pjaJfnbuSgXe+T4eb3mLgne/z6tyVtfE1IiIpJ94hUgCkmVmnMtt6AxUNqpfngO3D+zF5de5Kbp40n5Ubt+HAyo3buHnSfAWJiAhxDhF33wJMAm41s0wzGwicDjxbvq2ZDTWzNpGfuwJjgdciv2eb2RAza2RmaWY2EjgGmFzTNd89eRHbdoV+sG3brhB3T9YdxSIiiZj25EogA1gLTASucPcFZpYbed4jN9LueOBTM9sCvE04fG6PvJcO3AYUAuuAq4Fh7l7jf7Ov2rgtqu0iIvVJ3J8Tcff1wLAKti8nPPBe+vt1wHWV7KMQOLyWSvyBttkZrKwgMNpmZ8Tj60VEkpomYKzC9UO6kJEe/NH2ow5pmYBqRESSi0KkCsP6tuOOM3vSLjsDA9o2a0S3/Zvycv43PPvR0kSXJyKSUPVuAsZYDOvbjmF92+35fcfuEL98fi5jX1tAqMS5eGCHBFYnIpI46onEoGFakIdGHsaQ7m34/RufM2H614kuSUQkIRQiMWqQFuDBEYcxtMd+/PHNz3ls6leJLklEJO4UIvsgPRjgL+f35ae99udPb3/BI1OWJLokEZG40pjIPkoPBnjg3D4EzbjznYWESpxf/uSQRJclIhIXCpEakBYM8L/n9CYYMO6evIhQiXPN8Z2q/qCISIpTiNSQtGCAe87uTcCM//1nAaESZ8wJnTCr8em8RESShkKkBgUDxl1n9SJg8MD/LabEnV+f2FlBIiJ1lkKkhgUDxp+H9yIYMP76/peESpzrh3RRkIhInaQQqQWBgHH7GT0JBoyHPlhCyJ2bTu6qIBGROkchUksCAeO2YT0ImPHolK8IhZz//umhChIRqVMUIrXIzLj19O4EA8bj078m5M7vTu2mIBGROkMhUsvMjFtO60bAjCdmfI073HKagkRE6gaFSByYGWNPPZS0oDF+6lfsLinh1p/1IBBQkIhIalOIxImZcfPQrgTMeGTKEkIl8KdhChIRSW0KkTgyM248uQvBAIz79xLcndvP6KkgEZGUFfcJGM2shZm9YmZbzGyZmY2opN3FZhaKrLte+jo22v0kGzPjupO6cM3xnXhx9gpu+MenhEo80WWJiMQkET2RccBOoA3QB3jLzOa5+4IK2n7k7kfXwH6Sipnx6xM7EzC4/1+LKSlx7j47PPeWiEgqiWuImFkmMBzo4e7FwHQzex24ALgp3vtJtDEndCZoxr3/LKDEnXvO7k1aULPzi0jqiHdPpDMQcveCMtvmAYMrad/XzNYB64FngTvcfXe0+zGz0cBogNzc3H07ghp29fGdCAaNu95dRMjhvnMUJCKSOuIdIk2AonLbioCmFbSdCvQAlgHdgZeA3cAdUe4Hdx8PjAfIy8tLugGIK489hKAZd7yzkJIS5/7z+pCuIBGRFBDvECkGssptywI2l2/o7mXXm51vZrcC1xMOkWrvJ1VcPrgjwYBx21tfUOLOX87vqyARkaQX77+lCoA0Myu7YlNvoDqD4Q6Ujjzvy36S1qhBB/O7U7vxzmer+eXzn7Bzd0miSxIR2au4hoi7bwEmAbeaWaaZDQROJzze8QNmNtTM2kR+7gqMBV6Ldj+p5tKjO/CHn3Xnvc/XcOXzc9ixO5TokkREKpWI6yVXAhnAWmAicIW7LzCz3MizIKUj38cDn5rZFuBtwqFxe1X7iddB1KaLjmrPH4f14F9frOWK5z5h+y4FiYgkJ3NPunHmWpWXl+f5+fmJLqNaXpi1nN++Mp/BnXN49IJ+NEoPJrokEamnzGyOu+eV366R2yQ2on8ufx7ek6mLC7nsmXz1SEQk6ShEkty5h+dy1/BeTP9yHb94ejbbdipIRCR5KERSwNl5B3LPWb35cMl3XPrUbLbu3J3okkREAIVIyhje7wDuO6cPs77+jkuenM2WHQoSEUk8hUgKGda3Hfef15f8ZRu4+MmPKVaQiEiCKURSzM96t+Uv5/Xlk+UbueiJj9m8fVeiSxKRekwhkoJ+2mt/Hjy/L/NWbOTCJz5mk4JERBJEIZKihvbcn3EjD+OzlUVcMOFjirYpSEQk/hQiKWxI9/14eGQ/Pl9VxAUTZlG0VUEiIvGlEElxJ3Rrw6MX9GPht5sZ8fhMNmzZmeiSRKQeUYjUAcd1bcP4C/uxeG0xIx6fxXoFiYjEiUKkjji2S2sevzCPrwqLGfHYTL4r3pHokkSkHlCI1CHHdM5hwkWHs/S7LYx4bBbrFCQiUssUInXM0Z1a8cRFh7N8/VbOHz+TtZu3J7okEanDFCJ10FGHtOLJSw5n5cZt4SDZpCARkdqhEKmjBhzckqcuOYLVRds5b/xMVhcpSESk5ilE6rAjOrTg6UuPYO3mHZw3/iO+LdqW6JJEpI6Je4iYWQsze8XMtpjZMjMbUY3PvG9mbmZpZbZ9YGbbI0vqFpvZotqtPDXltW/BM784gu+Kd3LuozNZuVFBIiI1JxE9kXHATqANMBJ42My6V9bYzEYCaZW8fZW7N4m8utR8qXXDYbnNeXZUfzZs3cl54z/imw1bE12SiNQRcQ0RM8sEhgNj3b3Y3acDrwMXVNK+GXALcEP8qqyb+hyYzfOj+lO0dRfnPjqTFesVJCKy7+LdE+kMhNy9oMy2eUBlPZHbgYeB1ZW8f4eZrTOzGWZ2bGVfamajzSzfzPILCwtjKLtu6HVANi9cNoDiHbs599GPWPbdlkSXJCIpLt4h0gQoKretCGhavqGZ5QEDgb9Wsq8bgYOBdsB44A0z61hRQ3cf7+557p6Xk5MTa+11Qo92zXjhsv5s2xXivPEzWbpOQSIisYt3iBQDWeW2ZQGby24wswDwEHCtu1e4fJ+7z3L3ze6+w92fBmYAp9RCzXVO97bNeOGyAezYXcK54z/iq8LiRJckIikq3iFSAKSZWacy23oDC8q1ywLygJfMbDUwO7L9GzMbVMm+HbCaLLYuO3T/LCZeNoDdIefc8TP5cq2CRESiF9cQcfctwCTgVjPLNLOBwOnAs+WaFgFtgT6RV2kPox8wy8yyzWyImTUys7TIHVzHAJPjcBh1Rpf9mvLi6AG4w3njZ7J4zeaqPyQiUkYibvG9EsgA1gITgSvcfYGZ5Uae98j1sNWlL6B0NHyNu+8E0oHbItvXAVcDw9xdz4pEqVObcJCYwfmPzWTRagWJiFSfuXuia4irvLw8z8/PT3QZSWdJZAr5XSHn+VH9OXT/8kNXIlKfmdkcd88rv13TnggAHXOa8OLoI2kQDDDisZksWFX+JjoRkR9TiMgeHVpl8tLlA8hIDzLy8Vl8tlJBIiJ7pxCRHzioZSYvXX4kmQ3SGPHYTD79ZmOiSxKRJKYQkR85sEVjXhw9gKyMdEY+Pov/rNiY6JJEJEkpRKRCB7ZozEuXH0nzxg244PFZfLJ8Q6JLEpEkpBCRSrXLzuDF0QNo0aQBF074mDnL1ie6JBFJMgoR2au22Rm8NPpIcpo25MIJHzN7qYJERL6nEJEq7desES+NHkCbZo246ImPmfXVd4kuSUSShEJEqqV1ViNeHD2AttkZXPzkbD5csi7RJYlIElCISLW1btqIiZcN4MAWGVz61GxmfKkgEanvFCISlZymDZl42QDat8zk0qdmM7Wg/i7yJSIKEYlByyYNeeGyARyc04RRz+TzwaK1iS5JRBIkraoGZnZcjPueFZn6XeqgFpkNeGFUf34+YRajn5nDIxccxnFd2yS6LBGJsypn8TWzEqq/4FNpOwcOd/dP9rnCGqZZfGvWxq07uWDCxyxcvYmHR/bjhG4KEpG6qLJZfKvsiURcBXxezbZpwHvVLUxSW3bjBjw3qj8XTpjFFc/PYdyIwzip+36JLktE4qS6ITLH3T+uTkMzC6JlauuVZhnpPDuqPxdO+Jgrn/+EB0f05eQe+ye6LBGJg+oMrB8IzK3uDt09FPnMp7EWJaknq1E6z/7iCHofmM0vX5jLW59+m+iSRCQOqgwRd1/p7rui2WnkM7sres/MWpjZK2a2xcyWmdmIqvZnZu+bmZtZWpltUe9HalfTRuk8fekRHJabzTUvzuWNeasSXZKI1LKobvE1s5CZHVHJe/3MLFSN3YwDdgJtgJHAw2bWfS/fOZKKL7tFtR+JjyYN03jqkiPod1Bzrn1xLq/9Z2WiSxKRWhTtcyJ7G+sIEr4rq/IPm2UCw4Gx7l7s7tOB14ELKmnfDLgFuGFf9iPxldkwjacuOZz+HVryq5f+w6RPvkl0SSJSS6oVImYWiAyYAwQiv5d9ZQJDgarmwegMhNy9oMy2eUBlPYjbgYeB1fuyHzMbbWb5ZpZfWKgnrOOhcYM0nrj4cI7s2JLfvDyPl/NXJLokEakFVYaImd0C7CJ86ciBGZHfy742Ab8DXq5id02A8gt3FwFNK/jePGAg8Nd92Q+Au4939zx3z8vJyamiRKkpGQ2CTLjocI4+pBU3/ONTXpq9PNEliUgNq84tvh9E/jTCQTEBKH99Ygfh50jerGJfxUBWuW1ZwOayG8wsADwEXOvuu81+dBWtWvuRxGuUHuSxC/MY/ewcbvzHfEIlMKJ/bqLLEpEaUmWIuPsUYAqAmTnwuLvHOlpaAKSZWSd3XxzZ1htYUK5dFpAHvBQJkNJLad+Y2dnAJ9XcjySBRulBxl/Qjyuem8NvX5lPyJ0LBhyU6LJEpAZENbDu7n/YhwAhMpfWJOBWM8s0s4HA6cCz5ZoWAW2BPpHXKZHt/fh+Tq7q7EeSRKP0II9c0I8TDm3N2Fc/4+kPlya6JBGpAdWZgPEJ4I/u/nXk571xd/9FFW2uBJ4A1gLfAVe4+wIzyyV8Saybuy+nzGC6mTWK/LimzPMnFe6nquORxGmYFuShkf345QufcMvrCwiVOJce3SHRZYnIPqjOmMhPgAciPx/H3m/j3ftsjoC7rweGVbB9OeEB84o+s5RytxdXth9Jbg3SAowbcRjXTJzLrW9+Tok7owYdnOiyRCRG1RkT6VDm5/a1Wo3UCw3SAvx1RF/GvPgfbnvrC0IlzuWDOya6LBGJQXUnYBSpUenBAA+c1wczuOOdhYTcufLYQxJdlohEKaYQMbMDCU+y2Kj8e+7+/r4WJfVDWjDA/ef2IRgw7np3EaGQc/XxnRJdlohEIaoQMbODgeeB0vmzSscpyi5GFazgoyIVSgsG+N9z+hA0495/FhByZ8wJnRNdlohUU7Q9kceBXGAMsJDwU+wi+yQYMO4+uzeBgHH/vxZTUuL86sTOVPCQqYgkmWhD5HDgYnf/R20UI/VXMGDcNbwXAYO/vP8lIXeuO6mLgkQkyUUbIt+g3ofUkkDAuPPMXgQDxrh/LyFUAjeerCARSWbRhsjtwI1m9n7kqXGRGhUIGH8a1pNgwHhkyhJK3Ll5aFcFiUiSiipE3P1ZM+sKLDWzmcCGHzfxi2qsOqmXAgHjj6f3IGDG+KlfsTvkjD31UAWJSBKK9u6si4GbgRBwGD++tFXlE+si1WFm/OFn3QkGjCdmfE2JO7ec1k1BIpJkor2c9QfgFeAX7r6x5ssR+Z6Z8btTuxE04/HpXxMqcf7ws+4EAgoSkWQRbYi0BB5SgEi8mBn//dNDCQaMR6d+Rcid207voSARSRLRhsh04FDg/2qhFpEKmRk3De1KIGA8/MESSkqc28/oqSARSQLRhsi1wN/MbAPwLj8eWMfdS2qiMJGyzIwbhnQhLWD89f0v+XpdMSs2bOPbjdtpm53B9UO6MKxvu0SXKVLvRBsiX0T+fKaS9z2GfYpUi5nx6xM7U7B6M5M/X7Nn+8qN27h50nwABYlInEX7F/6t6A4sSSAz47NVm360fduuEHdPXqQQEYmzaJ8T+X0t1SFSbas2botqu4jUnqjWWK8JZtbCzF4xsy1mtszMRlTS7jwzW2RmRWa21syeNrOsMu9/YGbbzaw48loUv6OQRGqbnVHh9qaN0giVqKMsEk/VWWP9d1Hsz939j1W0GUf4IcU2QB/gLTObV8H66DOAge6+zsyaAI8CtwHXlGlzlbs/HkV9UgdcP6QLN0+az7ZdoT3bAgabtu/m7Ec+5N5z+tChVWYCKxSpP6pzOev35X4vXTukvNL/Baw0RMwsExgO9HD3YmC6mb0OXADc9IOdua8o9/EQoKXvZM+4x92TF7Fq4zbaZmdw3UmdCQSMsa9+xtAHpnLTyV258Mj2ug1YpJZVZ431PZe8zKwb8DowHngRWEO4R3E+cBlwahW76wyE3L2gzLZ5wOCKGpvZ0cBbQBawFTijXJM7zOxOYBHw3+7+QVXHI3XDsL7tKhxE79+hJTdN+pTfv/E5732+hrvO6sUBzRsnoEKR+iHaMZEHgcfd/S53X+7uOyJ//hmYQPhS1d40AYrKbSsCmlbU2N2nu3sz4ADgbmBpmbdvBA4G2hEOtTfMrGNF+zGz0WaWb2b5hYWFVZQoqWy/Zo148uLDufPMnsxbsZGT75/G32avwF1jJSK1IdoQ6Q/kV/LebGBAFZ8vJtyrKCsL2Ly3D7n7SsIPN75YZtssd98cCbKnCY+hnFLJ58e7e5675+Xk5FRRoqQ6M+O8I3J5d8wx9GiXxQ3/+JRLn5rNmk3bE12aSJ0TbYgUASdW8t5J/LiXUV4BkGZmncps6w2UH1SvSBpQYU8jorKxGqmnDmzRmBdGDeCW07rx4ZLvOOm+qbw+b5V6JSI1KNoQeQK4zszGmdmxZnZo5M+HgF8TXoO9UpGFrCYBt5pZppkNBE4Hni3f1sxGmlmuhR0E/InInF1mlm1mQ8yskZmlmdlI4BhgcpTHI3VcIGBcMrADb187iINzMrlm4lyuemEu67dogU6RmhBtiPyO8OqGFxL+C/0z4H3Cd1fdzo/v5KrIlUAGsBaYCFzh7gsigVFsZrmRdt2ADwlfAptBePD8ssh76YRv9y0E1gFXA8PcXc+KSIU65jTh5cuP5IaTu/De56s56b4pvLdgdaLLEkl5FkvX3syygZ7A/sC3wKfuXtWlrKSQl5fn+fmVDetIfbBw9SZ+/dI8Pv92E2ce1o5bTutOs4z0RJclktTMbI675/1oe327PqwQEYCdu0t48P3FjPtgCTlNGnLXWb04prNuuhCpTI2GiJk1BzoBjcq/5+5TY6owThQiUta8FRv5zcvz+HJtMSP75/LbUw4ls6EmohYpr7IQiXaN9UaEB9fPofI7oYLRlyeSGL0PzObNq4/mf/9ZwGPTvmLa4nXcfVYv+h/cMtGliaSEaAfWxwLHAhcRDpGrgFGEVzxcQtVPrIsknUbpQX57yqG8NPpIAM57bCa3vfk528vMzSUiFYs2RIYTXlOk9KG/We7+pLsPJjx9yck1WZxIPB3RoQXvXDuIkf1zeXz61/z0L9OYt2JjossSSWrRhkgusMDdQ8AuoOxUqU8A59ZUYSKJkNkwjduG9eTZXxzB1p0hznz4Q+59bxE7d2vVZ5GKRBsi3xGe/wpgBeGnzUu1Ivz8h0jKG9Qph3fHHMMZfdvx1/e/5PRxM/ji2x+vqChS30UbIjOBvpGf/wH80cxuNrPrCU+QOL0mixNJpGYZ6dxzdm8euzCPws07+NmD0xn37y/ZHVKvRKRUtPcy/pnwJS0IPzF+COExkiDhgLmi5koTSQ4ndmtDv4OaM/bVz7h78iL++fka7j2nNx1zmlT9YZE6bp8fNjSzhkBDd0+Jvr6eE5F98ca8VYx97TO27Qxx48ldufgoLXwl9UNlz4ns8xrrkanYUyJARPbVab3b8t6YYxh4SCtuffNzzn9sJivWb010WSIJU2WImNmFZhbVk1eRzzSPvSyR5NU6qxETLsrjrrN6sWDVJk6+fyoTP16uKealXqpOT+RJwisIVouZBSOf6RBrUSLJzsw4J+9A3h0ziN4HZnPzpPlc/ORsVhdp4SupX6ozsG7AKDMbWs197vMlMpFUcUDzxjz3i/48N2sZd7y9kJPum8IfTu/OsD7tMNNYidR91b0767Kqm4jUT4GAceGR7RnUKYfrXp7Hr16ax+TP1nDbGT1o1aRhossTqVVV9hrcPVD6AtoAmWW37eX1Se2XL5I8OrTK5G+XH8nNQ7vy/sK1DLlvKu9+9m2iyxKpVdUZWA+Y2e/NbCOwGigys39EFqYSkTKCAePywR1585qj2T+7Ef/13CeMeXEuRVt3Jbo0kVpRnfGLKwgvi/sJcA/wGuF10e+rxbpEUlrnNk155cqBjDmhE29++i0n3T+Ffy9am+iyRGpcdULkMuAxdz/O3W9097OBXwI/N7MG0X6hmbUws1fMbIuZLTOzEZW0O8/MFplZkZmtNbOnzSwr2v2IJEp6MMCYEzrzypUDaZaRziVPzubmSZ9SvGN3oksTqTHVCZGDgZfLbXuJ8FQnB8XwneOAnYTHV0YCD5tZ9wrazQAGunuzSA1phKdaiXY/IgnV84BmvH7V0Vw++GBenL2Ck++fykdLvkt0WSI1ojoh0gQo/0T65sifTaP5MjPLJLwmyVh3L3b36cDrwAXl27r7CndfV2ZTiPBcXVHtRyQZNEoPcvPQQ/n7fx1JWsA4/7GZ/OGNBWzbqYWvJLVV9xbfdmZW9oHDYJntG8s2dPev9rKfzkDI3QvKbJsHDK6osZkdDbwFZAFbgTNi3M9oYDRAbm5uRU1E4qLfQS14+9pB/PmdhTw5YylTFhVyzzm9OSxXEzxIaqrug4F/BxaXeS2MbH+13PbFVeynCVBUblsRlfRo3H165HLWAYSnml8a437Gu3ueu+fl5ORUUaJI7WrcII0/nN6D50f1Z8fuEs56+EPuenchO3arVyKppzo9kUtq8PuKCfcqysri+8tjFXL3lWb2LuFleQ+LdT8iyWTgIa14d8wgbnvzCx76YAnvL1zLvef0pnvbZokuTaTaqgwRd3+6Br+vAEgzs07uXtpr6Q0sqMZn04CONbAfkaTRtFE6fz6rF0N6tOHGf8zn9AdncO3xnbji2I6kBTWDkCS/uP5b6u5bgEnArWaWaWYDCT9z8mz5tmY20sxyLewg4E/A/0W7H5FUcFzXNrw35hhO6bk/9/6zgOEPf8iXa9WxluSXiP/VuZLwWuxrgYnAFe6+IBIYxWZWOvLdDfiQ8KWrGcAifjiHV4X7idMxiNS45pkN+Mv5fRk34jCWr9/KKX+ZzuPTviJUoinmJXnt88qGqUYrG0oqKNy8g5snzedfX6zhiPYtuPvsXhzUMjPRZUk9VmsrG4pIzctp2pDHLuzHvWf35ovVmxj6wDSem7lMC19J0lGIiCQpM2N4vwOYPOYY+h3UnP959TMufOJjVm3clujSRPZQiIgkubbZGTxz6RHcNqwHc5ZtYMj9U/nHnG/UK5GkoBARSQFmxs8HHMQ71w7i0P2y+M3L8xj97BwKN+9IdGlSzylERFLIQS0zmTh6AP/z00OZUlDISfdN4e35WvhKEkchIpJiggFj1KCDefuaozmwRWOufP4Trpk4l41bdya6NKmHFCIiKeqQ1k2ZdMVR/ObEzrw9/1tOvG8q7y9ck+iypJ5RiIiksLRggKuP78RrVw2kZWYDLn0qnxv+Po/N27Ucr8SHQkSkDujethmvXTWQK4/tyN/nfMPJ90/jwy/XVf1BkX2kEBGpIxqmBbnh5K78/YqjaJgWYMTjs7jltc/YulPL8UrtUYiI1DGH5TbnrWsGccnA9jz90TJOeWAac5atT3RZUkcpRETqoIwGQW45rTsTLxvArpBz9iMfccc7X7B9lxa+kpqlEBGpw47s2JLJvzqGcw8/kEenfMXPHpzOZyvLLwoqEjuFiEgd16RhGnec2YsnLzmcom27GDZuBvf/q4BdoZJElyZ1gEJEpJ74SZfWvDdmMKf1bsv9/1rMGQ/NoGCNFr6SfaMQEalHmjVO575z+/DIzw/j243bOfUv03l0yhItfCUxU4iI1EMn99ifyb86hp90zeGOdxZyzqMfsXTdlkSXJSko7iFiZi3M7BUz22Jmy8xsRCXtLjKzOWa2ycy+MbO7zCytzPsfmNn2yJK6xWa2KH5HIZL6WjVpyCM/78f95/Zh8ZrNDH1gGs98tJQS9UokConoiYwDdgJtgJHAw2bWvYJ2jYExQCugP3A8cF25Nle5e5PIq0vtlSxSN5kZw/q2471fDeaIDi343WsLuOCJWazUwldSTXENETPLBIYDY9292N2nA68DF5Rv6+4Pu/s0d9/p7iuB54GB8axXpL7Yr1kjnrrkcO44syf/Wb6RIfdN5W/5K7TwlVQp3j2RzkDI3QvKbJsHVNQTKe8YYEG5bXeY2Tozm2Fmx1b2QTMbbWb5ZpZfWFgYbc0i9YKZcf4Rubw75hi6t83ihr9/yqin81m7aXuiS5MkFu8QaQKUf9KpCGi6tw+Z2SVAHnBPmc03AgcD7YDxwBtm1rGiz7v7eHfPc/e8nJycWGsXqRcObNGYiZcN4HendmP6l+s46f6pvDFvVaLLkiQV7xApBrLKbcsCKr1Z3cyGAXcCQ919z7Sk7j7L3Te7+w53fxqYAZxS8yWL1D+BgHHp0R14+9pBtG+ZydUT5/LLFz5h/RYtfCU/FO8QKQDSzKxTmW29+fFlKgDM7GTgMeA0d59fxb4dsBqpUkQA6JjThL//15FcP6QL7y1YzUn3TeWfn2vhK/leXEPE3bcAk4BbzSzTzAYCpwPPlm9rZscRHkwf7u4fl3sv28yGmFkjM0szs5GEx0wm1/5RiNQvacEAv/zJIbx+1dHkNG3IZc/kc93L89ikha+ExNzieyWQAawFJgJXuPsCM8uNPO+RG2k3FmgGvF3mWZB3Iu+lA7cBhcA64GpgmLvrWRGRWnLo/lm89suBXH3cIbwydyVD7pvKtMW6UaW+s/p2C19eXp7n5+cnugyRlPafFRv5zd/+w5LCLfx8QC43Dz2UzIZpVX9QUpaZzXH3vPLbddZFJGp9DszmrWsGcc/kRUyY8TXTFq/jnrN7s3LDNu6evIhVG7fRNjuD64d0YVjfdokuV2qReiIisk8+/no91708j+Xrt5IWMHaXmTYlIz3IHWf2VJDUAZX1RDQBo4jskyM6tOCdaweR2SD4gwAB2LYrxN2TNVRZlylERGSfZTZMY+vOipfeXblxG0sKizWFSh2lMRERqRFtszMqnbjx+HuncEDzDAZ3zmFw5xyOOqQVTTQQXyfoLIpIjbh+SBdunjSfbbu+75FkpAe5bkhnGqYFmVJQyKtzV/L8rOWkB428g1owuEs4VLru1xQzPSucijSwLiI15tW5K/d6d9bO3SXMWbaBKQWFfLBoLQtXh2c8at20YbiX0iWHow9pRXbjBok6BKlEZQPrChERSZg1m7YzpaCQKQWFTCsoZNP23QQsfAvx4M6tObZLDj3bNSMQUC8l0RQiEQoRkeS0O1TCvG+K9oTKp99sxB1aZDZgUKdWDO6cw6BOOeQ0bZjoUuslhUiEQkQkNazfspNpi8OBMrWgkHXF4RmEe7TLigzQt6ZvbjbpQd1kGg8KkQiFiEjqKSlxPv92U7iXsqiQOcs3ECpxmjZMY+AhrfYM0LfNzkh0qXWWQiRCISKS+jZt38WHX67bEyqrisKrL3Zq3YTBnXM4tktr8to3p1F6MMGV1h0KkQiFiEjd4u58ubZ4z1jKrK/WszNUQkZ6kCM7ttzzbEr7VpmJLjWlaQJGEamTzIxObZrSqU1TRg06mK07dzPrq/V8sGgtUwoKeX/hWgAOatl4T6Ac2bEljRvor7+aoJ6IiNRpS9dtYeri8GWvD5d8x7ZdIRoEAxzeoTnHdm7N4C45dGrdRA87VkGXsyIUIiL1147dIfKXbtgzlrJoTfhhx/2bNfrBlCzNMtITXGnyUYhEKEREpNS3RduYWvqw4+J1bN6+m2DAOCw3e89txN3bZulhR5IoRMysBTABOInw0rY3u/sLFbS7CLgG6ARsAl4Afuvuu6PZT3kKERGpyO5QCXNXbGTKonCozF9ZBEDLzAYcE+mlDOrUipZN6ufDjskUIhMJT0H/C6AP8BZwlLsvKNfuCuAzYBaQA7wOvOzud0azn/IUIiJSHeuKd4QfdlxUyNTF61i/ZSdm0Ktdsz3zfPU+IJu0evKwY1KEiJllAhuAHu5eENn2LLDS3W+q4rO/Bn7i7qfty34UIiISrZIS57NVRXt6KZ8s30CJQ1ajNAZ1CvdSjumcw37NGiW61FqTLLf4dgZCpX/xR8wDBlfjs8cApb2MfdmPiEhUAgGj1wHZ9Dogm6uP70TR1l3MWLJuT6i8Nf9bALru13TPAH2/9s1pmFb3H3aMd4g0AYrKbSsCmu7tQ2Z2CZAHjIplP2Y2GhgNkJubG13FIiLlNGuczik99+eUnvvj7ixas3lPoDwx42senfoVjRsEOapjeEqWYzvncGCLxokuu1bEO0SKgaxy27KAzZV9wMyGAXcCJ7j7ulj24+7jgfEQvpwVddUiIpUwM7rul0XX/bK4fHBHtuzYzUdLvguvmVKwln99sQaAg1tlhgfou+QwoENLMhrUjV5KvEOkAEgzs07uvjiyrTffX6b6ATM7GXgM+Km7z491PyIi8ZLZMI0TurXhhG5tcHeWfreVKZGn51+cvZynPlxKg7QA/Tu0iMzzlUPHnNR92DERd2e9CDjhS1N9gLep+O6s44CXgTPcfWqs+ylPA+sikijbd4X4+Ov1e+b5+nJtMQDtsjP2zER8VMeWNG2UfA87JsXdWZFCWgBPACcC3wE3ufsLZpYLfA50c/flZvZvYBCwvczHp7n70L3tp6rvV4iISLL4ZsNWphasY0rBWmZ8+R3FO3aTFjD6HdR8T6h02z8rKXopSRMiiaYQEZFktCtUwieR9eenFBSyYNUmAHKaNuSYTuGxlEGHtKJ5ZmLWn1eIRChERCQVrN28nWkF6/igoJBpiwvZuHUXZtD7gOw9Yym9DsgmGKcpWRQiEQoREUk1oRLn02827uml/GdFeP357MbpZR52bEXrprX3sKNCJEIhIiKpbsOWnUwvXdmxoJDCzTsA6LZ/1p6xlH4HNSc9GODVuSu5e/IiVm3cRtvsDK4f0oVhfdtF/Z0KkQiFiIjUJe7OF99ujgTKWvKXbmB3idOkYRrtWzZm0ZrN7Ap9//d8RnqQO87sGXWQKEQiFCIiUpdt3r6LDyMPO7708QpCFfwd3y47gxk3HRfVfisLkfox/aSISD3RtFE6Q7rvx+1n9KSkkk7Cqo3bauz7FCIiInVU2+yMqLbHQiEiIlJHXT+kCxnpP5yjKyM9yPVDutTYd8R77iwREYmT0sHzmrg7qzIKERGROmxY33Y1Ghrl6XKWiIjETCEiIiIxU4iIiEjMFCIiIhIzhYiIiMSs3k17YmaFwLIYP94KWFdlq9RQV46lrhwH6FiSVV05ln09joPcPaf8xnoXIvvCzPIrmjsmFdWVY6krxwE6lmRVV46lto5Dl7NERCRmChEREYmZQiQ64xNdQA2qK8dSV44DdCzJqq4cS60ch8ZEREQkZuqJiIhIzBQiIiISM4WIiIjETCFShpldZWb5ZrbDzJ6qou2vzGy1mRWZ2RNm1jBOZVZLdY/FzC42s5CZFZd5HRu3QqtgZg3NbIKZLTOzzWY218yG7qV90p6XaI4lBc7Lc2b2rZltMrMCMxu1l7ZJe06g+seS7OeklJl1MrPtZvbcXtrU2DlRiPzQKuA24Im9NTKzIcBNwPFAe+Bg4A+1XVyUqnUsER+5e5Myrw9qt7SopAErgMFAM2As8Dcza1++YQqcl2ofS0Qyn5c7gPbungX8DLjNzPqVb5QC5wSqeSwRyXxOSo0DZlf2Zk2fE4VIGe4+yd1fBb6roulFwAR3X+DuG4A/AhfXcnlRieJYkpq7b3H337v7Uncvcfc3ga+Biv4jT+rzEuWxJLXIP+Mdpb9GXh0raJrU5wSiOpakZ2bnARuB/9tLsxo9JwqR2HQH5pX5fR7QxsxaJqiefdXXzNZFuvJjzSxpV7w0szZAZ2BBBW+n1Hmp4lggyc+LmT1kZluBhcC3wNsVNEuJc1LNY4EkPidmlgXcCvymiqY1ek4UIrFpAhSV+b3056YJqGVfTQV6AK2B4cD5wPUJragSZpYOPA887e4LK2iSMuelGseS9OfF3a8k/M92EDAJ2FFBs5Q4J9U8lmQ/J38k3MNYUUW7Gj0nCpHYFANZZX4v/XlzAmrZJ+7+lbt/Hbm8Mp/w/8mclei6yjOzAPAssBO4qpJmKXFeqnMsqXJe3D3k7tOBA4ArKmiSEucEqj6WZD4nZtYHOAG4rxrNa/ScKERiswDoXeb33sAad0/p8YcIByzRRZRlZgZMANoAw919VyVNk/68RHEs5SXdeSknjYrHEZL+nFSgsmMpL5nOybGEB8mXm9lq4DpguJl9UkHbGj0nCpEyzCzNzBoBQSBoZo0queb5DPALM+tmZs2B/wGeimOpVarusZjZ0Mi1ecysK+E7hl6Lb7VVehg4FDjN3bftpV3SnxeqeSzJfF7MrLWZnWdmTcwsGLnb53zg/QqaJ/U5ieZYkvmcEJ4XqyPQJ/J6BHgLGFJB25o9J+6uV+QF/J7v784off0eyCXcBcwt0/bXwBpgE/Ak0DDR9cdyLMA9kePYAnxFuIuenuj6yxzHQZHat0fqLn2NTLXzEs2xJPN5AXKAKYTvAtoEzAcui7yXauek2seSzOekguP6PfBcPM6JJmAUEZGY6XKWiIjETCEiIiIxU4iIiEjMFCIiIhIzhYiIiMRMISIiIjFTiIjso8g6E17mtdPMlpjZ7ZEHPmvre58ys29qa/8i1ZE0M1CK1AFnA98QnsjuDODmyM9XJ7IokdqkEBGpOf9x9y8jP//TzDoRnl7iWncvSWRhIrVFl7NEas8nQAbQCsDMTjKztyNLsW41s8/M7DdmFiz7ITNbGlmy9Twz+8LMtlh4qeOjq/pCM7vEzHaZ2U21c0giP6SeiEjtaU94rYbS2VEPJrzi3F8Jz5+VR3iOoxzCy5WWNQjoQniSv+2E14p408zau/vGir7MzG4mvMzpZe7+VM0dhkjlFCIiNScYmSm5dExkODDG3UMA7v5IacPIlPDTgAbAdWb223KXvLKAPh5evpTI9N6zgVOAF8p+aWR9kgeAS4Ez3P2tWjo+kR9RiIjUnPIrFD7k7g+W/mJm+xPueZwMtOWH//21BlaX+f2j0gCJmB/5M7fcd6QBLwLHAye4+0cxVy8SA42JiNScM4DDCfcW/gVcaWYXwp7ewuvAqcBtwHGRtn+KfLb8rcDry/7i7jsqaZcF/BT4EPi4Ro5CJAoKEZGa85m757v7O4TDogC428wyCS8YlAfc6O6Pufs0d88HQvv4nesJh8hPgImVLKImUmsUIiK1INJzuJ7wZaorgcaRt/Ysh2tm6YQXpNrX7/oAGBp5vaggkXhSiIjUEnd/nfBg+HXAUmAZ8CczO8vMTgf+WYPfNY3wWMtJwEuRgBKpdQoRkdr1P4R7I5cCwwgPnj8DjAOmAnfW1Be5+wzCa2qfALxsZg1qat8ildHyuCIiEjP1REREJGYKERERiZlCREREYqYQERGRmClEREQkZgoRERGJmUJERERiphAREZGY/T8YJDzuMxp0pgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = df.groupby('rank').mean()['admit'].plot(marker = 'o',\n", " fontsize = 12)\n", "ax.set_ylabel('P[admit]', fontsize = 16)\n", "ax.set_xlabel('Rank', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Next, __GRE__:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYoAAAEOCAYAAACXX1DeAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAABFzUlEQVR4nO3deXicZbn48e+dfd+aNG3SpmnaptBSaCUFpCLIIm7nUOW4gYgLVECPuHGEc8QFPYriD48Liygoi+JxgaoHFZCytWxNWwoUaJO2WZouSZp1skySmef3xzuTTieTyazvZJL7c11ztXnnnZnnnbRzz7PdtxhjUEoppSaTkugGKKWUmt40UCillApKA4VSSqmgNFAopZQKSgOFUkqpoNIS3YBYKy0tNdXV1YluhlJKJZVt27Z1GmPKAt034wJFdXU19fX1iW6GUkolFRFpnuw+HXpSSikVlAYKpZRSQWmgUEopFZQGCqWUUkFpoFBKKRWU7YFCREpE5GERGRCRZhG5ZJLzRES+IyJtItIrIk+JyEq726uUUrG0cUcb627exOLrH2HdzZvYuKMtqvPskIgexW3ACFAOXArcMUkA+CDwKeAsoAR4HrjfrkYqpVSsbdzRxg0PvUpbzxAGaOsZ4oaHXp0QBEI9zy627qMQkVzgYuAkY4wD2CwifwEuA673O30xsNkYs8/z2AeAL9rZXqWUiqVbHt3N0KjruGNDoy5u3Pga+zoc48d+taUp4Hm3PLqb9WsqbWmrL7s33NUCLmPMHp9jO4GzA5z7O+DDIlIL7AcuB/4R6ElFZAOwAaCqqiqmDVZKqVg52DMU8Hi/c4yfPtk4/vNkZYIme3y82R0o8oBev2O9QH6Acw8BzwK7ARfQCpwb6EmNMXcBdwHU1dVpJSal1LRUUZRNW4AP+8qibLZcf+zjbd3NmwKeV1GUHdf2TcbuOQoHUOB3rADoD3DuN4C1wEIgC/gWsElEcuLaQqWUipPrLlxOZtrxH7vZ6alcd+HyCedlp6dOeZ5d7A4Ue4A0EVnmc+wUYFeAc08B/tcYc8AYM2aM+TVQDKyIfzOVUir21q+p5PIzFwEgWD2J731g1YR5h/VrKvneB1YxrzALgMLstIDn2cXWoSdjzICIPATcJCJXAKuBi4AzA5y+FfigiPwO6MBaIZUONAY4VymlksLSMmuk/enr3kHVnMkHSNavqeSi1RWccOM/+PDaqoQFCUhM9thrgHuAduAocLUxZpeIVAGvAyuMMS3A94G5wMtALlaAuNgY05OANiulVEy09w8DMLcgc8pzRYTKSeY17GR7oDDGdAHrAxxvwZrs9v48DHzWc1NKqRmhvd9JflYaWX5zEJOpKMpO2GonL03hoZRSNmrvczI3f+rehFdFUZYGCqWUmk06HE7m5meFfH5FUTbt/U5GxtxxbFVwGiiUUspG7f3DIc1PeFUUZWMMHO4djmOrgtNAoZRSNjHGhD30tMCzyS6RE9oaKJRSyiZ9w2M4x9xhDz1B4tJ3gAYKpZSyTUcYS2O9vJvuNFAopdQs0N7nBKAsjKGnrPRUSvMydehJKaVmg/Z+K1CEM/QEUFmUpYFCKaVmg3B2ZfuqLE7spjsNFEopZZP2PieZaSnkZ4aXFKOiMJuDPcOYyQpVxJkGCqWUskl7v5O5BZmISFiPqyjKZmjURc/gaJxaFpwGCqWUskl7/3DY8xNwbIlsouYpNFAopZRNOvrD22znVamBQimlZof2SANFcWI33WmgUEopGwyPuugfHmNuQfhDT8U56WSlp8yeQCEiJSLysIgMiEiziFwyyXl3iojD5+YUkUC1tZVSatqLZLOdl4h46lIkJjFgIirc3QaMAOVYpVAfEZGdxpjj6mYbY64CrvL+LCK/BhKXZ1cppaIwvocigkAB1jzFgdnQoxCRXOBi4EZjjMMYsxn4C3BZiI+7N/6tVEqp2It0V7aXtZdiFgQKoBZwGWP2+BzbCayc4nEXAx3AM4HuFJENIlIvIvUdHR2xaalSSsVQe19ku7K9Kouz6eh34hxzxbJZIbE7UOQBvX7HeoH8KR53OXCfmWRbojHmLmNMnTGmrqysLAbNVEqp2Grvd5KWIpTkZET0eO9eikQUMLI7UDiAAr9jBcCkk9QishA4G7gvju1SSqm4au93UpqXSUpKeLuyvSqKrCGrROylsDtQ7AHSRGSZz7FTgF2TnA/wceA5Y8y+uLZMKaXiyJu+I1Ljm+66Z3igMMYMAA8BN4lIroisAy4C7g/ysI8Dv7aheUopFTftfcOU5UUeKI4VMJr5Q08A1wDZQDvwIHC1MWaXiFR59ktUeU8UkbcCC4A/JKCdSikVMx1R9igy01KZm5+ZkJVPtu+jMMZ0AesDHG/Bmuz2PfY8kGtPy5RSKj5GXW66Bkcoi3BprFdFUTYHe2f40JNSSs1GRx0jGBP5ZjuvyqLsWTGZrZRSs060u7K9KoqyONgzZHsBIw0USikVZ948T5EkBPRVUZTN8KibroGRWDQrZBoolFIqzo6l74h+6AnsX/mkgUIppeLMO/RUGsXyWEhcpTsNFEopFWft/U5KcjPISIvuI/dYj0IDhVJKzSjtfZFVtvNXlJNOdnqq9iiUUmqm6egfjqhgkT+rgFGW9iiUUmqmsWplR7fiyauyOEcDhVJKzSRut6Gj3xmTHgVAZVEWbbrqSSmlZo7uwRHG3CYmcxRgVbrrdDgZHrWvgJEGCqWUiqMOh3ezXYwChWfl0yEbCxhpoFBKqTga35UdozmKigQskdVAoZRScRSrXdleC4rt33SngUIppeJoPCFgjIaeyguyEJnhPQoRKRGRh0VkQESaReSSIOfWiMj/iUi/iHSKyA/sbKtSSkWrvc9JXmYaORmxKf+TkZZiewGjRPQobgNGgHLgUuAOEVnpf5KIZACPA5uAeViV7h6wsZ1KKRW1jv7Y7Mr2VWFzXQpbA4WI5AIXAzcaYxzGmM3AX4DLApz+CeCgMeZWY8yAMWbYGPOKjc1VSqmotcdoV7aviqJsWzPI2t2jqAVcxpg9Psd2AhN6FMAZQJOI/N0z7PSUiKwK9KQiskFE6kWkvqOjIw7NVkqpyLT3O6OuQ+FvgadHYVcBI7sDRR7Q63esF8gPcO4C4CPAT4AK4BHgz54hqeMYY+4yxtQZY+rKyspi3GSllIqMMSZmCQF9VRRlMzLm5qhNBYzsDhQOoMDvWAHQH+DcIWCzMebvxpgR4IfAHODE+DZRKaViw+EcY2jUFZdAAdDWbc88hd2BYg+QJiLLfI6dAuwKcO4rgL2FYZVSKobG91DEaGmsV0WRNZRl18onWwOFMWYAeAi4SURyRWQdcBFwf4DTHwDOEJHzRSQV+ALQCbxhV3uVUioaHZ5AUZYX2zmKSpsr3SVieew1QDbQDjwIXG2M2SUiVSLiEJEqAGPMbuBjwJ1AN1ZA+VfPMJRSSk178epRFGank5uRatvKp9jsAAmDMaYLWB/geAvWZLfvsYeweiBKKZV02vs8u7JjPEdhFTDKnplDT0opNZt09DvJSEuhMDs95s9t56Y7DRRKKRUn7f1OyvIyEZGYP7f2KJRSagZo7x+O+fyEV2VRFkcHRmwpYKSBQiml4iQem+28Kovtq0uhgUIppeKkvd8Zs4JF/ioKvYEi/iufNFAopVQcDI+66B0ajVuPYnx3ds9gXJ7flwYKpZSKg4447aHwmldoFTBq0x6FUkolp2MlUOMz9JSemkJ5fpbOUSilVLLq8JRAjXUtCl+VxfYskdVAoZRScTA+9BTHQGHXXgoNFEopFQft/U5SBObkxTNQZHGwZxi3O76JtjVQKKVUHLT3OZmTl0lqSux3ZXtVFmUz4nLTOeCM22tACEkBReTcCJ/7RU9acaWUmnXa+4fjOuwEx++liNekOYSWPfafWAWEQgmL3vMMsBbYHnnTlFIqeVmb7eIbKHx3Z69eWBS31wk1zfjngNfDeM7HJrtTREqAu4F3YhUiusEY89sA533Cc57vTM37jDFPhdgOpVSS27ijjVse3c3BniEqirK57sLlrF9TmehmhaS938lJFYVxfQ3vprt4T2iHGii2GWNeCuVETzW6YL2P24ARoBxYDTwiIjuNMYHKoT5vjHlbiG1USs0gG3e0ccNDrzLkSXrX1jPEDQ+9CjDtg4XLbTjqcMZts51XQVYaeZlpHIhz7exQJrMXAjtCfUJjjMvzmFf87xORXOBi4EZjjMMYsxn4C3BZqM+vlJodbnl093iQ8BoadXHLo7sT1KLQHXU4cZv4Lo0FbwGj+G+6mzJQGGPajDGj4Typ5zFjAe6qBVzGmD0+x3YCKyd5qjUi0ikie0TkRhEJ2AMSkQ0iUi8i9R0dHeE0VSk1TU324WdXDYZoeHdll8Vxgtmroiibg72J71GMExGXiJw2yX2nishUidHzgF6/Y71AfoBznwFOAuZi9UI+ClwX6EmNMXcZY+qMMXVlZWVTNEEplQy84++hHp9O2j27suM99ATWEtl4Z5ANdx9FsLmHVKzVTsE4gAK/YwVAv/+Jxph9xpj9xhi3MeZV4Cbg38JprFIqeV134XKy01MnHP/YGVUJaE142vvivyvbq6Iom66BEYZG4lfAKKRAISIpnklqgBTPz763XODdWKuYgtkDpInIMp9jpwCBJrL9hbpEVyk1A6xfU8l31580/p++vCCT/MxUfvNiC52O+G4wi1bH+NCTPT0KIK71s6cMFCLyDWAUa6WSAbZ4fva99QFfB/4Q7Lk8G/AeAm4SkVwRWQdcBNwf4HXfLSLlnr+fANwI/DnkK1NKJb3TlszBAN9ZfxIv/uf5/ObKM+h0OLnyvnpbSoBGqr3fSVFOOplpE3tEsWbHEtlQlsc+5flTsILB3cABv3OcWPss/i+E57sGuAdoB44CVxtjdolIlec5VhhjWoDzgF+LSB5wBHgA+G4Iz6+UmiEajlij0svm5gFw8oIi/ufDq7nqge1c98dX+MlHViMy/QYa2vuHKYtjjidfFUXWhHlCA4Ux5mngaQARMcAvjTFtkb6gMaYLWB/geAvWZLf3568AX4n0dZRSya+x3QHA0rnjHw2866T5fPVdJ/D9f7zJ4tJcvnRBbaKaN6n2/vjvofCaV5BFiiS+RzHOGPOteDVEKaX8NbY7KMnNmJCB9aqza9jf6eAnTzSwuDSH969ZkKAWBtbe5+S0xSW2vFZaagrzCrLiWukulKSA9wDfNsbs9/w9GGOM+XRsmqaUmu0a2x0sLcubcFxE+M76VbR2DfHVP77KguIc1lbb88E8FWMMHTbkefJVUZQd19rZoax6egfHlrSe6/k52E0ppaJmjKGh3cHS8omBAiAjLYU7PvYWFhRns+G+epqPTo9k1b1Do4y43LasePKqiPNeilDmKBb7/L06bi1RSikfnY4ReodGA/YovIpyMrj7E2t5/+1b+Lc7nyMtJYXDvcMJTSA4Xiu7IP67sr0qirL5+2uHcLsNKXGof6GFi5RS01JDu2fF0yQ9Cq/Fpbl87PQqOvpHONQ7jOFYAsGNOyJedxMxOzfbeVUWZzPqMnHbXxLWZLaXiCzESvw3IWQaYzZF2yillNobYMXTZB7ecXDCMW8CQbt7FePpO2wMFC2eYbfTv/tEXHpTYQUKEakBfgN48z15+zi+BYviv8NEKTXjNbQ7yMtMY14IQzjTKYGg3UNPG3e0cd/zzQDH9aYgdunYw+1R/BKoAr4AvIm1W1sppWKusd3Bkrl5IW2os1b9TAwKiUgg2N7nJCcjlbzMiAZswnbLo7txjrmPOxbr3lS4V7IW+IQx5k8xeXWllJpEQ7uDs2tDywZ93YXLjytyBJCdnsp1Fy6PV/Mm1eGwd2msHb2pcCezD6C9CKVUnPUOjtLR7xxP3TGV9Wsq+d4HVlGalwHAnNwMvveBVYlZ9dQ3zFwb6lB42ZGOPdxA8V3gq55ssUopFReNHdaKp1Amsr3Wr6nkya+cA8AnzqxOWLnUjn6nrXsoAqVjj3VvKtwUHvd7Mrk2icgLQPfEU8zlMWudUjPYxh1t3PLobg72DCV03f901HDEWvG0bG6gmmaTy89Kp3pODrsO9sWjWSFp73fy9lr7AoX330w8/y2Fu+rpE8ANgAt4CxOHoaYqXKSUwgoSvmPq8Vipkswa2x1kpqVQWRz+8MnKikJebfMvpGmPwZExHM4x2xICeq1fUxnXfzfhDj19C3gYKDPGVBpjFvvdauLQRqVmnFse3X3cxCscW6mirInsJWV5pEawy3hFRQEtXYP0DY/GoWXBHdtsZ98chR3CDRRzgNuNMT1xaItSs8Z0Wvc/HTW2O8Kan/C1osJKTfd6AoafxvdQ2DhHYYdwA8Vm4MRoXlBESkTkYREZEJFmEbkkhMdsEhEjIvYsTFYqzuxYqWK3jTvaWHfzJhZf/wjrbt4UcfqMAecYbT1DIa948rfSEygSMU8xvivb5qGneAs3UFwLXCkil4rInAC1s0N5vtuw5jbKgUuBO0Rk5WQni8ilRJhqRKnp6roLl5ORdvx/l6z0lISs+48F75xLW89Q1LmW9nVY6Sgi7VHMzc+iLD+TXQftn6fQoSfLG8Aq4D6sUqb+tbOD7rHwLKu9GLjRGOMwxmwG/gJcNsn5hcA3gP8Is51KTWvr11TygbccP/l4Tu3caTmRPVVPwRjD9/7+RszmXEJNBhjMyoqChA09pacKxTnptr92PIX7Tf0molvZVAu4jDF7fI7tBM6e5PzvAncAh4M9qYhsADYAVFVVRdE8pewzNy+T1BThzW+/i2t+s50tezvpHRylcBp9yARanXX9n15h18FecjPTeOVAL68c6J00a2kkcy6N7Q7SUoRFcyLfrrWyooDNDZ0Mj7rISrcv/Zy3VvZ0rOMdjXD3UXwzytfLA/z7g73AhMXSIlIHrMMa7gpa59AYcxdwF0BdXZ0u0VVJoaVrkPmFWaSnpvDF82t5z0+e5Zeb9/Hld06f4adAq7OGx9z84tn9iMDSsjzOri3jn28coXdo4iqjSOZcGtodVJfmkp4aeRWEFfMLGXMbGo44WLWgMOLnCVdHv5MyG+tQ2MXusX8Hx6rleRUA/b4HPHMdtwPXGmPGZlp0VgqsQFFVkgNYK3Xes2oe92zez6fWLaY4NyPBrbNM1iMQ4LVvXkiuJ/Gdf88DIt8dvLfdQW15eBvt/B2b0O61PVAs9PxOZ5JQamZ/PYznM8aYbwe5fw+QJiLLjDENnmOnALv8zisA6oD/9QQJb9/xgIh80BjzbBhtUipq8dhF3dI1xPknzh3/+Qvn1/L31w7z82f2cf27T4i2yTERLCtrrk92VN/dwd7zb7poZdjvkXPMRdPRAd578vwoWg1VJTnkZabZvvKpvd/JqYuKbX1NO4TSo/im38/e2hP+vEM+kwYKY8yAiDwE3CQiVwCrgYuAM/1O7QUqfH5eCLwEnAp0hNBmpWImHruoB0fG6HQc/+2ztjyffzm5gnufa+KKsxZTmpf4JZbXXbicr/xhJ2PuYyO6k/UUvLuDn3jjCJ++t57KCIadmjoHcZvIVzx5paQIK+YX2LryaWTMTdfAiK15nuwy5SCgMSbFewNOAvYD1wPVQLbnzxs8xydd5urjGs/j2oEHgauNMbtEpEpEHCJSZSyHvTeOBYcjxhjNXqtsFY9d1K1d1rfuKr9himvPX4ZzzMWdT+2N+Lljaf2aSmrL80hLEQSoLMqeMivraYtLSE0RNjd2hv163hVP0QYKsIbz3jjUj8ttz7Sld0J/pi2NhfDnKH4G/NIY8wOfYy3A9z3zCrcB5wV7AmNMF7A+wPEWrMnuQI9pInAvRqm4i8cu6tauQWBioFhSlsf71yzg/hea2fD2GtuqpE3G7TYc7B3m/WsqueWDp4T0mPysdE5ZUMiWvUfDfr3Gdgci1vsQrZUVBQyNWkNZsXi+YDbuaOO/H3kDgB8+tpucjNRpudQ5UuEuKzgdqJ/kvq3AGdE1R6npJx67qFs8gSLQxOfnz1vKmNtw+zToVezrdNAzOEpddXjj7m9bWsqrB3oCroQKpqHdwcLinJgsaV1h0w5t79Bkh6dH0TUwEvFmw+kq3EDRC1wwyX3vZOLSV6WS3lXnTMx1GW2+/5auQfIy0wJuzFo0J5cPnrqA377YwqHexOZ+qm+yKgmcuqgkrMedubQUt4EX94XXq9jb7og4dYe/ZXPzSU+VuM9TzIYEj+EGinuAr4jIbSJyjoic6PnzduBLWDW1lZpRDvda+XtyM61vufMKsqKuntbaNcjCkpxJN2Z97tylGAw/29QY8WvEQn1zN8U56SwpC2/z25qqIrLSU3gujOGnMZebfR0DMZmfAMhIS6G2PD/uO7RnQ4LHcAPF17F2S38ceAJ4DdiElYLju0xcIaVUUusbHuW+55p5z6p5/OKyOgBu/dApMVgaO0hVyeRDVwuKc/jw2oX8vr51fD4jEbY1d3PqouKwdxpnpqWytrqELWFMaLd2DzHicscsUIA1T7HrYB/GxG9CeyYmePQXVqAwxriNMTdiLVc9B/goVvqNBcaYrxtj3LFvolKJ88ALzfQ7x7jmnKUs9nyr3ts5ENVzGmNo7R6cMJHt77PvWIqIJKxX0elwsr9zIOxhJ691S0tpaHfQ3jcc0vkNR2K34slrZUUhXQMjHOkLnGIkFq67cDn+ZTNiXYo00SLaI2+M6THGPGuM+b3nT52bUDPO0IiLu5/dz9tryzipspB5BVnkZKSyr8MR1fN2OJwMj7qn3ME7vzCbS06r4o/bD9B8NLrgFIltzdb8RLgT2V7rlpQCsGVvaL2KRs/7GuseBRDXeYpVCwpxG8jLTAt5CXGyiSiFh4gUA8uACWv3jDHPRNsopaaD39e3cnRghM+eswQAEWFxae54GuxItQZZ8eTvmnOW8OBLLfz4iQZu/dDqqF43XNubu8lITWFVZWQpMFZUFFCUk86WxqO8f03QdG0ANB5xMK8gi/ys2CVFPGF+ASLWyqfzTiyP2fP6+sUz+8hMS+HJr5wzIzfbQfg1s7OwJrQ/xOT7GuxL1TjLxCONhAps1OXmrmf2UbeomNMWHxt6qSnL4+XW7qieu2WSPRSBzC3I4swlJTy0vY2Ht7fZ+nuvb+7mpMqCiJeqpqYIb62Zw3ONnRhjppznaGh3RJVaPJC8zDSq5+TGrUdxuHeYP20/wIfXLpyxQQLCH3q6EWtu4nKsQPE54Aqsynd7gffFsnHqmFgWhlFT+/PLB2nrGRqfJ/CqKc3lQPcQw37LIcPRcnQIEUJKcbFxRxvP7+sCsPX3Pjzq4tUDvdRVRzY/4XXm0lIO9g7TdDT4hLzbbdjb4YjLxrgVngnteLhny35cbsOGs5bE5fmni3ADxcVYNSl+5/n5RWPMr4wxZ2PVlXhXLBunjpkNa7WnC5fbcPtTjZw4v4Bzlpcdd19NWS7GHOsVRKKla5B5BVkhfVO/5dHdDI8ev0bEjt/7a229jLjcUSe4W7dkDsCUq58O9g4xOOKKeY8CrHmKA91D9A6Gt/lvKr2Do/zmhWbed3IFVXNmXsZYX+EGiipglzHGhVXRzndx9T3Ah2PVMHW82bBWe7p4bNdh9nUMcM05SyYMl3i/8UYzoe3dQxGKRP3e65u9G+2iCxSLS3OZX5jFc1NMaDe2eyay49CjWFlhzbG8fii2vYoHXmxmYMTFZ86euCFzpgk3UBzlWD6mVqwU4V6lWMn+VBxMtiY7P0vLiceSMYbbnmqkek4O71k1MdV1dalniWwUE9qt3YMsLA4tUCRqjX59UzeLS3OjzmArIpy5pJTn9h7FHSQ5nzdQLIuyDkUgK+bHfuXT8KiLX23Zz9m1ZeOBaCYLN1C8AKzx/P1PwLdF5AYRuQ64BWuuQsXBtectnXAsVaBveIyfbWoI8AgViWcaOnmtrY+rz1lCqv/ieKzJ0fKCzIhXPg2PujjcNxzSRDZYa/Sz/YaoUoS4rtE3xrC9pTtmdRXetmwOPYOjQb/RN7Y7KMnNoCQOBZvK8jOZm58Z0x3af9h2gE7HCFefM7PnJrzC/Tr6fazhJ4DvAEux5ixSsYLI1bFrmvLV7RlfLc3L4KhjhIqibL58wTKeaejkh4/tYcxtuPa8ZTOuVq/dbn+ykfmFWUGXc9aU5rGvM7Khp7aeIYyBqjmh9Qh8CwId7BkiLyuN/uGxuGZD3dc5QNfACHUxChRnevdTNHZy0iRLbRvaHTHdP+FvZQwntMdcbu56Zi+rFxZx+uLoJvuTRbg1s+vxZI81xvQDF4tIJpBpjLG3lNQs4nCOcefTezlrWSn3f/r04+67aM0C0lJT+J9/NjDmMnz5nbUaLCJU39TFi/u7+Pr7VpCRNnlnu6Ysl/975VBISz79hbM01stbEAigf3iUs37wJLc+vptfffK0sF47VNuaotto56+8IIulc/PYsvconzl74jdwYwyN7Y6oq9oFs7KikGcaOhkedUWdmfZvrx2mtWuIr713xaz5vxZ59XIPY4wznCAhIiUi8rCIDIhIs4hcMsl5HxGR3SLSKyLtInKviPjX254V7n2uie7BUb50Qe2E+1JThB9cfDIfWbuQnz3ZyM3/eDOueW1mstuf2ktxTjofOW1h0PNqyvLoHRqlayD8GlrhbLYLJD8rnQ1vr+HJ3R1sb4luP8dk6pu7KMpJp6Y0dt/w1y2Zw9b9XYyMTczy0+Fw0js0GrOssYGsrCjA5Tbs8aQJiZQxhjue2suSslwuiNMGvuloykAhIh8XkTnhPKnnMZN9HbkNGAHKgUuBO0QkUGW8LcA6Y0whUIPV+/lOOO2YCfqGR7nrmX2ce8Jc1lQFfktTUoTvvn8VHzujip8/vY/vPPKGBoswvX6wj01vtvOpdYvJyQje0a7x5HzaF0HOp5ajg2Slp1AWxSTx5W+tZk5uBj96fE/EzxFMfXM3p1YVkxJgjiZSZy4tZWjUxY4AwW18xVNcA4U15BXt8NMzDZ28caiPz5y9JKbvz3QXSo/iV1gf1CERkVTPYxYHuC8Xay/GjcYYhzFmM/AXrOyzxzHGtBpjfNfUubDmRGaVezbvp3cocG/CV0qK8O2LTuITZ1Zz9+b9fOuvr2uwCMMdT+8lLzONj7+1espzl3i+ae+PYEK7pcta8RTNkEVuZhpXnb2EZxs6eWl/V8TPE0jXwAj7OgY4NUbDTl5n1MwhRQhY9W58xdPc2K948lpYkk1+ZlrUK5/ueKqReQVZrF89uzIihDJHIcAVIvLuEJ8zWPCpBVzGGN+vQjuxMtBOfGGRtwGPAAXAIPD+Sc7bAGwAqKqqCnRKUuoZHOHuZ/fzzhXlk04C+hIRvvEvK0hLEX65eT9jbjc3/etJs+qbTzh8U6IY4LwT5lIYoJCQv8ribDJSU9gbwYR2a/dQWPMTk/nYGYu469l93Pr4bn634a1RP5/XeCLACDPGTqYwO51VC4p4rrFzwpeexnYH+Z7VZPEiIpwY5YT2jpZuXtjXxdfee2LQOayZKNTJ7Ctj9Hp5TKyC1wsE/Crh6XEUikilpw1Nk5x3F3AXQF1d3Yz5Gv3LZ/fT7xzji1P0JnyJCP/13hNJS03hzqf3MuYyfPf9qzRY+PGmRPHd7b6lsZONO9qmzKOUmiIsmpMT9hJZYwytXYMxWSmTnZHKNecs4Vt/fZ3n9naOryyKVn1zF+mpwskLYr83YN2SOdz1zD4czjHyMo999DQccbBkbl7cJ4ZXVhTwu5dacblNwKXPU7nz6b0UZqfzkdNmzpfRUE0ZFo0xKd4b1rxCru+xILftAZ7OgdU78FUABJ1hMsa0Af/gWOqQGa9rYIRfbdnPe1fN58T54c3hiwhffddy/v3cpfxuayv/8adXcAXZ7DQbBUqJMjzmDjk1Rk1Zbti7s7sHR3E4x2LSowD46GlVzCvI4tbH9sRsmHFbUzcnVRbGpGa1v3VLSxlzG17af/zwU2NH7MqfBrOyopChURf7I+gJNrb38+iuI1z+1kXHBbnZIpTJ7BQR+aaI9ACHgV4R+ZOIFEXwenuANBFZ5nPsFGBXCI9NA2bH7hbg58/sZXDUxRfOXzb1yQGICF9+53K+eH4tf9x2gK/8YSdjLq0r5RVtaoyasjxaugbDek8jWRobTFZ6Kp89dyn1zd082xB6JbnJOMdcvNLWG7P9E/5OXVRMRloKWxqPBYrewVE6+p1xncj2OlabIvzhp58/vY+s9BQuP7M6xq1KDqEMtF2NVQJ1O/BD4M/ARcCPwn0xY8wA8BBwk4jkisg6z3Pd73+uiFwqIlViWQT8N1b51Rmvo9/Jfc8186+nVESd0uDa85dx3YXLeXhHG1/8vQYLr2hTY9SU5jLqMrR2h55zqSXKpbGBfKhuAZVF2dz6ePS9itfaehkZc0dc0W4qWemp1C0qPi5BYGOHNZgQj2SA/pbOzSMjLSWsHdobd7Rxxnf/yR+2HSBVJCYBORmFEiiuBH5hjDnXGPNVY8wHgc8CHxORSPbbX4OVE6odeBC42hizyxMUHCLiHQBcATyHNVy1BdhN7OZKprU7n96Lc8zFtedF1pvw99l3LOWGd5/AX3ce5N8f3MGoBguuu3D5hHHqcMpX1kSQHPDYHorY5WnKTEvl389dysutPTy5uz2q56pvik0iwGDWLS3lzcP9dDqs0qQNR7zJAOO34skrPTWF5eX5IfcovPNYhz1lVAdGXLM2tX8ogaIG+IPfsf/FStuxKNwXNMZ0GWPWG2NyjTFVxpjfeo63GGPyjDEtnp//yxizwHPeAmPMBmPMxLV1M8yRvmEeeKGZ969ZMP5hFAufOXsJX3vvifz9tcN89jfbA258mk3OXDoHjCEnIzWi8pVLvHspwpjQbu0apDQvc8p9GuG6+NQFVJXkRN2rqG/upnpOTlwL8Kxbak26P+9ZJtvY7iArPYXKYnvyia6YX8Cug70hvU+a2v+YUAJFHuAfgr2Tz/H/GjDL3P5k43jepli74qwavvWvK3ns9SNc/cA2nGORF99Jdnc9vQ8D/O3zZ7H/5vey5fpzw6oaV5STQXFOelib7lq6BqmKYW/CKz01hc+ft4zX2vp47PUjET2HMYbtzd1xG3byWlVZSH5W2nja8YZ2BzWleRGtQorEysoCugdHOdQ7POW5mtr/mFAXA1eKSI33xrENeMcd99ynItTWM8SDL7XywVMXxK0QyuVnVvPf7z+JJ95sZ8N926Kq1JasOvqdPPBiM+tXV46nDY9ETVleWENPVqCIz+91/eoKakpz+dHje4Km857M/s4Bjg6MxCy/02RSU4Qzauaw2TNP0RiH8qfBhDqh3djuYLLVuvFO8T4dhdoH/uMkxzcGOKY1syN025ONGAyfOze+G9AvPX0RaSnC9Q+9yr/+dDMO5xiHeodnTR3uXzy7j5Exd9Tvc01pLk/t6Qjp3FGXm4M9QyyM03ublprCtecv49rfvcyp33mcnsHRsH6f9eMb7eIbKMDaT/H460d483AfbT1DfKQseG6tWDphXgEiVsqWC1YEztV0oHuQy+5+kZyMVEZdBqfPMG0481gzSSiB4pNxb4WitWuQ329t5SOnLWRBiEVtovHhtVW83NrDgy+1jh/z1mMGZmywOOpwcv/z1oqyaOeAasry+MO2A/QPj5KfFXxH98GeIdwmtiue/LlcBuFYSvpwfp/bm7spzE6Pa/pyL+88xf3PNwP2rHjyys1MY3Fp7qSpPDr6nXzsly8y4BzjD1edye7D/eO792fLF6lApgwUxph77WjIbPfTTQ2kpAiffYd96aye2TNxqZ93sm6m/mf4xbP7GR5z8blzo58DqvGZ0D5lYVHQc2O9hyKQ//f4HvwHnUL9fdY3W4WK7NjBv3RuHnPzM3loe9v4z3ZaWVHI9uaJyQl7h0b5+D0vcaTPyQNXnM6J8ws4cX7BjP2/EI7ZlbBkmmrqHOBP29u45LQq5hfaN/452ybrugZGuO/5Jv7l5IqYfDiNr3wKYadva5f1nsYzUET6++wZHKGx3RHXZbG+RISqkuzxFUUfv+clW5ecrphfQFvPED2Dx9LED46M8alfb2Vvu4O7Pn6qbe9FstBAMQ385IkG0lOFa95h78bzRNVjTpRfPruPoVEX/x6jOaCqklxSJLQlsi1dg2SkplBekBWT1w4k0t/nNhvnJ8Dan7DzwLGhn4M9w7buT/BOaHs33jnHXHzm/m3saOnmJx9dzVnLymxpRzLRQJFgje0ONr7cxmVnLGJufvw+RAIJVI95pk7WdQ+McO9zTbxn1fyod7t7ZaSlsLAktOSArV2DLCjOjusy0EC/T4CL1lQEfVx9czfpqTLl8Fms3PLobkZdxw+S2bk/YTxQHOrD5TZ88X9f5tmGTm6++GTedVL8quwls9mX3Wqa+fETDWSlp3JVgBKR8eZbj7mtZ4jMtJSwNp0lk7s372dgxMXnYzA34aumNDekvRQtXYMsiOOwE0ysr11emAXG8KvNTZy9rIzTawLXH9vW1M3KivgkAgwk0UOezzZ0kiLwnUfe4NbH9zA44uJr7z2RD9XZt/oq2WigSKDdh/v5v1cOctXZS5gTRcWzaHjrMX/pf1/mub1HZ2SQ6Bkc4dfPNfGeVfNYPi+2e0RryvJ4ft9R3G4TdCK4pWuQUxbGPnW3P9/62mCt4vnoL17gk7/eyr2fOo211cdvqBsZc7PzQA+XnRF2koWIVRRl0xYgKNgx5OlNy+HdajI44iItRShN0P+/ZKFDTwn0P//cQ25GGhvOSvw+xWXl+RzuG6Z3aDTRTYm5e7Y04XCO8fk47HavKctleNTNob7Jd/r2Do3SOzQa14nsyZTlZ/LbK09nXmEWn7jnpfH5CK/XDvbiHHPHfaOdr0QOeQZKyzHmNrMyLUc4NFAkyK6Dvfz9tcN8al01xbmR5FaMreXzrFVADVEWn59ueodG+dWW/bxr5TxOmBdeXY9Q1JROnRyw1YalscHMzc/iwSvPYG5BFpff89Jxdau3jScCjG/qDl/r11TyvQ+sorIoO6I8W9FI9LBXstJAkSA/eryB/Kw0Pj0NehNwrF7xniPhF3WZzn61ZT/9w/HpTUBoyQFb45BePFzlBVn89srTmZOXwcfveYlXDvQAVkW7RXFOBBjI+jWVbLn+3IjybEVjtq30ixUNFAnwyoEe/vnGEa48q4bC7KlrNNuhsiib3IxU9sygHkXf8Cj3bLZqjq+oiH1vAqyhnbzMtKA9injUoYjE/MJsHrzyDIpy0vnQnc+x9r//yaO7jtDe55w1qbNn00q/WLI9UIhIiYg8LCIDItIsIpdMct7lIrJNRPpE5ICI/EBEZsTk+62P76EoJ51PrqtOdFPGpaQIS8vzZ0Sg2LijjXU3b+Lkbz5G3/AYq+JQ/9lLRFg8xcqnlq5BinLSKZgizYcdKoqy+eSZ1TjHDB39Vp2FodHZU2chkcNeySwRH7y3ASNY9bdXA4+IyE5jjH851BzgC8CLQBnwF+ArwM22tTQOtjV389TuDv7jXcunzA9kt+XleWx6M7riN4nmXdXiO2F5+5N7WVicE7cPg5qy3PGiP4HEM2tsJO7e3BRxqo+ZwH9lmJqarT0KEckFLgZuNMY4jDGbsQLAZf7nGmPuMMY8a4wZMca0Ab8B1tnZ3nj40eN7mJObweVvrU50UyaoLc+n0zHCUU/1sWSUiGIzNaV5HOwdmjRle2vXYMKHnXzphK4Kl91DT7WAyxizx+fYTmBlCI99O+Df6wBARDaISL2I1Hd0hJb2ORFe3HeUzY2dXHX2EnIzp98oWm158k9oJ+JDsKYsF2Osmg7+XG5DW8/QtOpR6ISuCpfdgSIP8M/v28sUlfJE5JNAHfDDQPcbY+4yxtQZY+rKyqZnnhZjDLc+voey/Ew+ZuPmpnB4A0VDe/LOUyTiQ7AmyMqnw33DjLrMtAoUOqGrwmV3oHAA/stPCjhWWnUCEVmPNS/xbmPMxLzYSeL5vUd5cX8X15yzhOyM6Vnbqbwgk4KsNHYfti9QeCeeF1//COtu3hT1hOp1Fy4nI/X4HdLx/hBcXOoNFBN7Yi1HPSuebKgxEiqd0FXhsnv8Yw+QJiLLjDENnmOnMPmQ0ruAXwDvNca8alMbY84Yw/97fA/zCrL46GlViW7OpESE2vJ8GmwaevKfeI5F4aT1ayr5y8ttbNrdgYAtxWZyMtKoKMwKuPIp0ZvtJqMTuioctgYKY8yAiDwE3CQiV2CteroIONP/XBE5F2sC+/3GmJfsbGesPdPQybbmbr69/iTbEq9FqnZePo+8cghjDDJZ0eAYCTbxHM2HmGPExSkLi/jzZ+1b+7C4LDdwj6JrkNQUYX6RvZmBlYqlRGy4uwbIBtqBB4GrjTG7RKRKRBwi4v3KfSNQCPzNc9whIn9PQHujYozh1sd2U1mUzYeTIDtl7dw8eodGx9fYx1M8Jp7HXG5ePdDLGptSZnvVlOaxr2MAY45feNrSNUhFURbpqbq3VSUv25feGGO6gPUBjrdgTXZ7f36Hjc2Km01vtrPzQC83f2AVGWnT/8Oi1pNddfeRfubGscgOxCeLaGOHg6FRly2ZWn3VlOXS7xyj0zFyXDqM1u7ptYdCqUhM/0+uJOZd6VRVksPFpy5IdHNCYucS2esuXE5aSmwnnl9u6QFg9UJ7S1nWlAVODtg6zTbbKRUJDRRx9OiuI+w62Mfnz1uWNEMPpXmZzMnNYI8NK5/Wr6lkydw8vLGiICst6tU3Ow/0UJCVRvUcez+ca7wrn3wmtAc8PYwF02jFk1KRSI5PryTkdht+9PgeakpzWb86eCnK6WZZeR57bNhL4XIbDnYP8dHTqqgpy+W0xSVRr8TZ0dLDKQuL4j4R76+yKJvMtJTjehSt3dNzxZNS4dJAESd/e+0Qu4/0c+35y0hLkt6E13LPEln/idlY2324n37nGGurS1i7qIT65m7c7shfc3BkjD1H+m2fyAYrqeLi0tzjNt1591BooFDJLrk+wZKEy234n382sGxuHu87Obl6E2BVu3M4xzjYO3nVtliob+4C4NRFxZxaXUzP4Ch7g6TrnsprbX24DZySgEABTMgi2zJN91AoFS4NFHHw150HaWx38IXza0kNUkd5uvLWlY73PMXWpm7mFWSxoDh7vJbz1iBZWKfycqv12EQFipqyXFq6BhkZcwNwoHuI/Mw0inKmV5ZgpcKlgSLGxlxufvxEAyfMy+fdJ81LdHMiUjte7S6+gaK+qYu66mJEhOo5OZTmZVDf1BXx8+1s7WVBcTalefZWa/OqKc3D5TbjPYmWrkEWlOTYPl+iVKxpoIixh3e0sb9zgC9eUEtKEvYmAApz0ikvyGR3HANFW88Qh3qHx3sSIkLdohK2NkceKF5u7UlYbwKOJQf0ZpG16lBoRlaV/DRQxNCoy81PNjVwUmUB71xRnujmRCXeOZ+8PYe66mP7Heqqi2ntGuJIX/hzIx39Ttp6hhIyke3lu5fC7Ta6h0LNGBooYuiP2w7Q2jXEly6oTfrhhtryfBra+6NahRTM1qYu8jLTOGHesWTC3t5FsGpxk9nZ2gMkbn4CoDA7ndK8DPZ1DNDhcOIcc2ugUDOCBooYcY65+OkTDaxeWMQ7ls9NdHOiVluex/Coe3wvQKzVN3WzpqrouMn+FRUFZKensjWCeYqXW3tITRFOqrA3dYe/mtI89nU6xucpplNlO6UipYEiRn6/tZWDvcMzojcBx1J5xKM2Re/QKLuP9I/3ILzSU1NYvbBofNlsOHYe6GF5eX7Ca31491JM1/TiSkVCA0UMDI+6+NmTjdQtKuasZaWJbk5MLBuvdhf7eYrtLd0Yc/z8hNfa6mJeP9iHwzkW8vO53YadCZ7I9qopy+XowAivtvUiApXFOpmtkp8Gihj47YstHOlz8qV3zozeBEBeZhqVRdlx6VHUN3WRliKsDvDBXlddgtscS+4Xiv1HB+gbHmO1zRljA/FOaD+9u4N5BVlkpk3v+iNKhUIDRZSGRlzc/tRezqgp4cwlM6M34VVbnheXvRRbm7pZWVlITsbELPdrqopIEcKap/BOZNudMTaQ8frZnQM6P6FmDNsDhYiUiMjDIjIgIs0icskk550kIo+KSKeIxDfpUBTuf6GJToeTL10w8wrT15bns69jgDGXO2bP6RxzsbO1h7pFgT/U87PSOWFeQVjzFDtbe8jNSGXp3LypT46zqpKc8dTpOj+hZopE9ChuA0aAcuBS4A4RWRngvFHg98CnbWxbWAacY9z59D7OWlbKaYtLpn5Akqktz2fE5abpaOxWPr3W1odzzM3aAPMTXmuri9nR0sNoiAHq5dYeVi0onBbpUh555dD43x/ddZiNO9oS2BqlYsPWQCEiucDFwI3GGIcxZjPwF+Ay/3ONMbuNMXcDu+xsYzh+/VwTXQMjfPGC2kQ3JS6OFTGK3fDTtvFEgJMH1rrqEgZHXLxxqG/K53OOuXj9UN+0mMjeuKONGx56lTHP3pP+4TFueOhVDRYq6dndo6gFXMaYPT7HdgKBehQhE5ENIlIvIvUdHR1RNTBU/cOj3PXMPt6xvIy3VCV+bDwels7NQyS2gWJrUzeLS3OPKxfqz7saKpSNd68f7GPUZVi9oChWTYzYLY/uZmjUddyxoVEXtzy6O0EtUio27A4UeUCv37FeID+aJzXG3GWMqTPG1JWVlUXzVCG7Z3MTvUOjM3Juwis7I5WqkpyYBQpjjJUIcJL5Ca/5hdksKM4OaZ5ifCK7qigGLYzOwQD1v4MdVypZ2B0oHECB37ECIP7l1GKod3CUX27exwUrylm1IPFLMuOptjw/ZvWz93YM0D04GnD/hL+6RcVsbeqesnjSzgO9zM3PZF5BVkzaGI2KosB7JiY7rlSysDtQ7AHSRGSZz7FTmMbzEIH8cvM++ofH+OL5M3NuwldteR77OwdwjrmmPnkKxxIBTj3xX1ddQke/czwVxmS8GWOnw/6V6y5cTnb68fsmstNTue7CmdvrVLODrYHCGDMAPATcJCK5IrIOuAi43/9csWQBGZ6fs0QkMYUGfHQPjHDP5v28Z9U8VlT4d45mntryfFxuM546Oxr1zd2U5GZQU5o75bmhFDLqGRxhf+dAwI17ibB+TSXf+8AqKouyEaw62t/7wKqo64ArlWgTdzzF3zXAPUA7cBS42hizS0SqgNeBFcaYFmARsN/ncUNAM1Btb3OP9/Nn9jE46uILs6A3AcfnfPLN9BoJ7/xEKN/+l83NoyArjfqmLv7t1AUBz3nlgDXdNV0CBVjBQgODmmlsDxTGmC5gfYDjLViT3d6fm4DEjyf46HQ4ufe5Jv7l5IrxD9CZrqYsl9QUibo2RXv/ME1HB7n09EUhnZ+SItRVl1DfPHmP4uXWHkSY8fNESiWapvAIw51P7cU55uLa85dNffIMkZmWSvWcnKir3W3zDCGFMpHtVVddTGO7g66BkYD372ztYUlZHgVZWpNaqXjSQBGi9r5h7n+hmfVrKllSlvhUEXZaPi+fhigDxdambjLTUlgZRr2IOs+mvG0BehXGGGsiexrsn1BqptNAEaLbn9rLmNtw7XmzpzfhtWxuPs1dgwyNRL7yaVtzF6sXFpGRFvo/uZMXFJKRmjK+WsrXge4hjg6MTIv9E0rNdBooQnCod4jfvtjCv71lAYvmTL1iZ6ZZPi8fY2BvR2TzFIMjY7x2sG9CoaKpZKWnsmpBYcBMsjsP9ABMix3ZSs10GihC8LNNjRgMnzt3aaKbkhC15dZQW6S1KV5u6cHlNmHNT3jVVRfzalsvw36pMV5u6SEjLYXl82bHogKlEkkDxRRauwb5fX0rH6pbOGvrCyyak0tGagp72iMLFFubuhGBt0yRuiOQtYtKGHWZ8aWwXjsP9HBSRUFYQ1lKqcjo/7Ip/GxTI4LM2t4EWLWsa8py2RNhj6K+uYvl5fkRrU461RNcfIefxlxuXm3rnRYZY5WaDTRQBNF8dIA/bj/AJadXMb9wdufriTTn05jLzfbm7rDnJ7yKczNYOjfvuAnt3Uf6GR51T6uNdkrNZBoogvjxEw2kpQjXnLMk0U1JuNryPNp6hnA4x8J63JuH+xkYcUU0P+G1trqYbc3duD11Hna2Tr8d2UrNZBooJrG3w8HGHW1cdsYi5k6DzKSJ5t2JHu5+Cm9PINIeBVj7KfqGx2hot3o0L7d2U5yTrqVGlbKJBopJ/PifDWSmpXKV9iaAyKvdbW3uprIoO6pU28cSBFpBZ2dr77TJGKvUbKCBIoA9R/r56ysHufzMakrzEp6wdlpYWJJDVnpKWPMU3kJFp0aw2un4186mLD+T+qYuHM4x9rT3645spWykgSKAH/+zgZz0VD7z9ppEN2XaSE0Rls7NC6tHcaB7iCN9TtZGMT8BICKsrbYKGb16oBdjdH5CKTtpoPDz+sE+Hnn1EJ9622KKczMS3ZxpxVr5FHqg8JYyDaVQ0VTqFpXQ1jPEo7sOA+jSWKVspIHCz//8cw/5WWlc8TbtTfirLc/nSJ+T3sHRkM7f2tRNflZaTFKye+cpfl/fSlVJDiUaxJWyje2BQkRKRORhERkQkWYRuSTIuV8UkcMi0isi98Srwt3GHW2su3kTi69/hMdeP8K6JaUU5mjqan9dDicAq296jHU3b2LjjraA53nfz9++2MLImJu/7jwY9Ws3HOlDgMERFx39zklfWykVe4noUdwGjADlwKXAHSKy0v8kEbkQuB44D6uqXQ3wrVg3ZuOONm546FXaeoYwnmNP7WnXDyI/G3e0ce/zzQAYoK1niBseenXC++T7fgI4x9wBzwv3tf9r467x38/QqCvq51RKhU6MMVOfFasXE8kFuoGTjDF7PMfuB9qMMdf7nftboMkY85+en88DfmOMmRfsNerq6kx9fX3IbVp386bxDzVflUXZbLn+3JCfZ6ab7H1KSxEW+9TA3t85wJh74r+paN5P/R0pFX8iss0YUxfoPrt7FLWAyxskPHYCE3oUnmM7/c4rF5E5/ieKyAYRqReR+o6OjrAadDDAB1Cw47PVZO/HmNuwrDxv/BYoSAR7fDSvrb8jpexhd6DIA3r9jvUCgWY7/c/1/n3CucaYu4wxdcaYurKysrAaNNlGsGg2iM1Ek70flUXZ3H7pqeO3yji8n/o7Uiqx7A4UDqDA71gBEGjNpf+53r9HV5PTz3UXLic7PfW4Y9npqVx34fJYvkzSC/V9isf7qb8jpRIrzebX2wOkicgyY0yD59gpwK4A5+7y3Pd7n/OOGGOOxrJB69dUAnDLo7s52DNERVE21124fPy4soT6PsXj/dTfkVKJZetkNoCI/A5r4cwVwGrgb8CZxphdfue9C/g1cC5wCPgT8JL/pLe/cCezlVJKTa/JbIBrgGygHXgQuNoYs0tEqkTEISJVAMaYfwA/AJ4Emj23bySgvUopNavZPfSEMaYLWB/geAvWBLbvsVuBW+1pmVJKqUA0hYdSSqmgNFAopZQKSgOFUkqpoGxf9RRvItKBNfHtqxToTEBz4mWmXQ/MvGuaadcDM++aZtr1QHTXtMgYE3DH8owLFIGISP1ky76S0Uy7Hph51zTTrgdm3jXNtOuB+F2TDj0ppZQKSgOFUkqpoGZLoLgr0Q2IsZl2PTDzrmmmXQ/MvGuaadcDcbqmWTFHoZRSKnKzpUehlFIqQhoolFJKBaWBQimlVFBJGyhEJFNE7haRZhHpF5EdIvJun/vPE5E3RWRQRJ4UkUU+94mIfF9EjnpuPxARScyVHE9EHhCRQyLSJyJ7ROQKn/uS8poARGSZiAyLyAM+x5LyekTkKc+1ODy33T73Jes1fURE3hCRARHZKyJneY4n3fX4/F68N5eI/NTn/mS8pmoR+ZuIdIvIYRH5mYikee6L//UYY5LyBuQC3wSqsQLe+7Cq31Vj7U7sBT4IZAG3AC/4PPYzwG5gAVAJvA5clehr8rRtJZDp+fsJwGHg1GS+Jk/7HgOeBR7w/Jy01wM8BVwR4HhSXhNwAVY2gzM8/5cqPbekvB6/a8vFqpb59iT/Hf0Nqz5PFjAPeBX4vF3Xk/BfZIzfzFeAi4ENwHN+/1iGgBM8Pz8HbPC5/9O+b+50uQHLsYo2fSiZrwn4CFalwm/6BIpkvp7JAkVSXpOnXZ+eKdfjdw2XA/s4tsIzKa8JeAN4j8/PtwA/t+t6knboyZ+IlAO1WCVUVwI7vfcZYwaAvZ7j+N/v+ftKpgkRuV1EBoE3sQLF30jSaxKRAuAm4Mt+dyXl9fj4noh0isgWETnHcyzprklEUoE6oExEGkXkgGdYI5skvJ4ALgfuM55PSZL3mn4MfEREckSkEng38A9sup4ZEShEJB34DXCvMeZNrAJIvX6n9QL5nr/7398L5E2HsUgAY8w1WG09C3gIcJK81/Rt4G5jTKvf8WS9HoCvAjVYXfm7gL+KyBKS85rKgXTg37D+va0G1gBfIzmvZ5xY1TLPBu71OZys1/Q01gd8H3AAqAc2YtP1JH2gEJEU4H5gBPic57ADKPA7tQBrDiPQ/QWAw+dbR8IZY1zGmM1YY4tXk4TXJCKrgfOBHwW4O+mux8sY86Ixpt8Y4zTG3AtsAd5Dcl7TkOfPnxpjDhljOrGqSibr9fj6OLDZGLPf51jSXZPnM+5RrC+NuVjzEsXA97HpepI6UHii4t1Y34ouNsaMeu7aBZzic14usMRzfML9nr/vYnpK41jbk+2azsFaXNAiIoeBrwAXi8h2kvN6JmMAIQmvyRjTjfUNNdAHR9Jdj5+Pc3xvApLzmkqAhcDPPF9OjgK/wgrm9lxPoidpopzguRN4AcjzO16G1cW6GGslwPc5fiXAVViTQ5VAheeNmw4rG+ZiTfzmAanAhcAAcFEyXhOQg7VCw3v7IfBHz7Uk3fV42lXk+b1kYQXxSz2/o+VJfE03AVs9//6KsVanfTtZr8fTtjM9v5d8v+NJeU1YE/LXe/7NFQEPYw2323I9Cf+FRvHGLcL6FjSM1b3y3i713H8+1mTwENYqlWqfxwrwA6DLc/sBnlURCb6mMqyxyB6sschXgSt97k+6a/K7vm/iWfWUrNfj+R1txera92B9Ubkgya8pHbjdcz2HgZ8AWcl6PZ62/Ry4f5L7ku6asOaOngK6sQoT/QGYa9f1aFJApZRSQSX1HIVSSqn400ChlFIqKA0USimlgtJAoZRSKigNFEoppYLSQKGUUiooDRRKRUhE3ioiv/Mk0hsRq4bIVhH5tojM9znP+NzcnmSCfxaRCcnZRKTJ73zf2xdsvUClPHQfhVIREJEvY6V6fhIr19g+rB31ZwJXAtuNMe/2nGuwagn8HGtn7cnAt7A2i64yxvT4PG8T1uapbwZ42SZjzOF4XI9SwaQlugFKJRsReQdWkPixMeaLfnf/TUS+h1VIxlebMeYFz983i0gv8ADwLuB3fud2+pyrVMJpoFAqfF/FSqPw1UB3GqsmwK+neI7tnj+rYtcspeJDA4VSYfDUKT4beMgYMxLFU1V7/twb+GVkwv9NY8xYFK+nVMR0Mlup8MzBytLZ4n+HiKT53ibeLWkikikia/HUNgb+EuA1LgFG/W8iUhfLC1EqVNqjUCo8ASuDicg8rLK1vsfSfXoB/+m5eTUB7zDHaqj4+jvw9QDHXw+7tUrFgAYKpcLTibVayX9uoRNY6/n7BqyVT77uAe7A6o2chxUIfici55uJSw+7jDH1MW21UlHQQKFUGIwxYyLyDHCBiGR45yk8PYd6ABF5X4CHHvL58N/sqc74Daxa1X+woelKRUznKJQK3w+w6hZ/P4rn+D5wEPhGuIXulbKb9iiUCpMx5gkRuR64WUROBu4D9mMNK9VilbMdIHAdau9zDInId4GfAR8A/uRzd6mInBHgYYeNMU2xuQqlQqc7s5WKkIisA64F1mGVSB0GdgN/A+40xhzynGeA/zbGfM3v8RnAHqzylm8xxhjPzuxFk7zkbcaYz8XjWpQKRgOFUkqpoHSOQimlVFAaKJRSSgWlgUIppVRQGiiUUkoFpYFCKaVUUBoolFJKBaWBQimlVFAaKJRSSgX1/wHZJOZCloHGOwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "ax = df.groupby('gre').mean()['admit'].plot(marker = 'o',\n", " fontsize = 12)\n", "ax.set_ylabel('P[admit]', fontsize = 16)\n", "ax.set_xlabel('GRE', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Finally, __GPA__ (for this visualization, we aggregate GPA into 10 bins):" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "hide_input": true, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEOCAYAAABIESrBAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA6GUlEQVR4nO3deXhU5fXA8e+Z7AtJgCQsgbATZF/iBqLEqri1IohVqbXaqj+tVqulai3uihW1tVapuC8trkDdcQMRUIQkLAZIWBMISxJIQhKy5/39MRMNIYGZyczcmeR8nmeeJHfuvPckkJy573JeMcaglFJKucNmdQBKKaUClyYRpZRSbtMkopRSym2aRJRSSrlNk4hSSim3BVsdgK/Fx8ebvn37Wh2GUkoFlPT09CJjTELz4x0uifTt25c1a9ZYHYZSSgUUEclt6bh2ZymllHKbJhGllFJu0ySilFLKbZpElFJKuU2TiFJKKbd1uNlZSinVkSzKzGfO4mz2lFTSMy6CmZNTmDImyWPtaxJRSql2alFmPnct2EBlbT0A+SWV3LVgA4DHEokmEaVUu+Ptd9+BYs7i7B8TSKPK2nrmLM7WJKKUUi3xxbvvQLGnpNKl4+7QgXWlVLtyrHffHU3PuAiXjrtDk4hSql3xxbvvQHHNaX2POhYREsTMySkeu4YmEaVUu7G1oAyRlp/z5LvvQNDQYPgsaz9hQUK3mDAESIqLYPbUETo7Symlmlu7q4SrX/6eqNAgauoN1XUNPz4XbBOPvvsOBC+t2MGqHQd57JKRXJra22vX0TsRpVTA+2ZLIVc8/x2dwkP48A8T+du0kSTFRSBAZGgQdQ2GxJgwq8P0mZz9ZTy2OJuzh3Zj+rheXr2Wz5OIiHQRkYUiUiEiuSJyhROv+UpEjIgENzm2VESqRKTc8eh4o2ZKKT5av5drXllNcpdI3v2/U+nTNYopY5JYceeZ7Hj0Atb89Sz6x0dx21vrKDlcY3W4XldT18Ctb66lU1gws6eOQFrr3/MQK+5EngFqgG7ADGCuiAxr7WQRmUHr3W43GWOiHY+Oda+qlOKN73K5aX4Go3vH8db1p5IYE37UOZGhwTx12RgOVFRz14INGGMsiNR3nvoyh417DzF76gjio71/9+XTJCIiUcA0YJYxptwYsxx4H7iylfNjgXuBP/suSqWUvzPG8K+vtvDXRT9wZkoir11zMrERIa2eP6JXLLefk8InP+zj7TW7fBipb6XnFjN36Tamj+vFOcO6++Savr4TGQzUG2NymhxbB7R2J/IIMBfY18rzs0WkSERWiMik1i4qIteJyBoRWVNYWOhG2Eopf9HQYHjgw408/lkOU8ck8e8rxxERGnTc1103sT/jB3Tlvvc3sr2w3AeR+tbhmjpuf3stPWIjuOfnQ312XV8nkWigtNmxUqBT8xNFJBWYADzdSlt3AP2BJGAe8IGIDGjpRGPMPGNMqjEmNSHhqC2ClVIBora+gdvfWcfLK3ZyzYR+PD59FCFBzv0Zs9mEJy8dTViIjVveXEtNk9lb7cHDH20i9+Bhnrh0FJ3CW78r8zRfJ5FyIKbZsRigrOkBEbEBzwK3GGPqWmrIGLPKGFNmjKk2xrwKrADO90LMSik/UFlTz/Wvp7MwM5+Zk1OYdeEJ2GyuDRp3jw3n0akj2ZBfypOf5xz/BQFiSXYB/1mVx+9O68cp/bv69Nq+TiI5QLCIDGpybBSQ1ey8GCAVeEtE9gGrHcd3i8jEVto2gHenISilLFF6uJYrX1zFkuwCHrl4BL9PG+j2rKNzh3fn8pN689yybazcVuThSH2vuKKGO95dz+Bu0dx+ju/nF/k0iRhjKoAFwAMiEiUiE4CLgNebnVoK9ARGOx6NdxjjgFUiEicik0UkXESCHTO4TgcW++DbUEr5UMGhKn4571vW7y7lmSvGcsXJyW1uc9aFQ+nnmPZbXBG4036NMfz1fz9QfLiGJy8dTXjI8ceGPM2KKb43AhFAATAfuMEYkyUiyY71HsnGbl/jA2gcDd9vjKkBQoCHHMeLgJuBKcYYXSuiVDuSe6CCaf9eSd7Bw7z0mxM5f0QPj7QbGRrMP9vBtN/31+3ho/V7ufWswQxPirUkBp+XPTHGHASmtHA8D/vAe0uv2UmTripjTCFwonciVEr5g6w9pVz10mrqGxqYf+0pjOod59H2hyfF8qdzUpj9yWbeWr2Ly05q+x2OL+0trWTWoh8YmxzH9af3tywOLXuilPI7q7Yf4LLnviMkSHjn/8Z7PIE0unZifyYM7Mr9H2xkWwBN+21oMPz53fXU1huevHQ0wU7OUPMGTSJKKb/yxcb9/Pql70mMCeO9G8YzMLHFDgqPsNmEJ6bbp/3eGkDTft9Ylcs3W4q4+4IT6BsfZWksmkSUUn7j3fTdXP9GOkO6d+Kd/xvvk/Lt3WPD+ds0+7TfJz73/2HVbYXlPPLxJialJDDDA5MM2kqTiFLKL7zwzXb+9M46Tu3flf9cewpdokJ9du3Jw7pz+UnJzFu2nZVb/Xfab119A7e9vY7wkCAemzbS68UVnaFJRCllKWMMj326mYc+2sT5I7rz4m9SiQ7z/VZHsy48gX7xUfzx7bV+O+33mSXbWLerhIemDG+x2KQVNIkopSxT32D4y8INPLt0G1ecnMzTl48lLNj3ax3gp2m/BytquHPBer+b9rt+dwlPf7WFi0b35MKRPa0O50eaRJRSlqiuq+em/2Yw//td3HzmQB6eMpwgF8uYeNrwpFhmTk5hcdZ+3lztP9V+q2rr+eNba4mPDuOBXwy3OpwjaBJRSvlceXUdV7+8mk9+2MesC4dy+zkpftG/D/C70/pz2sB4HvCjab9/+3Qz2wormDN9JLGRviuu6AxNIkopnzpQXs0Vz3/Hqh0HefLSUfz2tH5Wh3QEm0144tJRhIfYuOXNTMun/a7cWsTLK3Zy1al9mDjI/6qQaxJRSvlMfkkl05/7lux9ZTz/63FMHevd/b/d1S3GPu33h/xDPPGZddN+Sytr+dM76+gfH8Wd551gWRzHoklEKeUTW/aXMe3ZlRSWVfPG707mzCHdrA7pmM4Z1p0rTk7muWXbWWHRtN/7389if1k1T/5ytFMbb1lBk4hSyusy84qZ/ty31BvD29efyol9u1gdklNmXTCUAQlR3GbBtN9PNuxlQWY+v08byGgvlX3xBE0iSimv+mZLITNeWEVMeAjv/d94TujRfF86/xURGsRTjmm/d7znu2m/BWVV/GXhBkYkxXLzmQN9ck13aRJRSnnNh+v3cM0rq+nTNYp3bziV5K6RVofksuFJsfx58hA+27if+d97f9qvMYY739vA4Zp6/v5L57f/tYrvl4UqpdqtRZn5zFmczZ6SSmIiQiitrOXEvp154aoTiY3wr6mprvjtaf1YtqWQBz7M4qR+XbxaFPKt1bv4anMB91w4lIGJnbx2HU/x7xSnlAoYizLzuWvBBvJLKjHYZxbZBKaP6x3QCQTs034fnz6KiJAgbnkzk+q6eq9cJ+/AYR78cCPjB3TlN+P7euUanqZJRCnlEXMWZ1NZe+Qf1wYDT325xaKIPKtbTDiPXTKKrD2HeOKzHI+3X99guO3ttdhEmDN9FDaLV+87S5OIUsoj9pRUunQ8EJ09tBszTrZX+12+xbPTfuct286a3GLuv2gYST4oge8pmkSUUh7R2t4fvtgTxJf+esFQBiZGc9vbaznooWm/m/Ye4snPszlveHcuHpPkkTZ9RZOIUsojZk5OISToyC6YiJAgZk5OsSgi77BP+x1NyeFaj0z7ra6zF1eMjQjl4YtH+E0NMWdpElFKecSUMUmk9umMAAIkxUUwe+oIpgTYO2tnDOsZy5/PTeHzjfv57/d5bWrryc9z2LyvjMcuGeHTjbg8xedJRES6iMhCEakQkVwRucKJ13wlIkZEgpscc7kdpZR3Hayo5fTBCex49AJW3Hlmu0wgja6Z0I+Jg+J58MONbC0oc6uN1TsPMm/Zdi4/qbffl4FpjRV3Is8ANUA3YAYwV0SGtXayiMyg5fUsLrWjlPKuQ1W15BSUMTa5s9Wh+ITNJjwxfRSRocH8Yf5al6f9llfXcdvba+ndOZK/XjDUS1F6n0+TiIhEAdOAWcaYcmPMcuB94MpWzo8F7gX+3JZ2lFLetzavBGNgXJ+OkUQAEh3VfjfuPcTji12r9vvQhxvZXVzJE5eOIsqC7YA9xdd3IoOBemNM00nW64DW7iAeAeYC+9rSjohcJyJrRGRNYWGhe5ErpY4pPbcYm8Co3rFWh+JTZw/txq9OSeb5b3bwzRbn/r58ucm+c+L1pw8ImGKUrfF1EokGSpsdKwWOWtsvIqnABODptrQDYIyZZ4xJNcakJiT436YuSrUHGXnFDO7WiU7hgb063R13n9847XcdB8qrj3nugfJq7nhvA0O6d+KPZw/yUYTe4+skUg40L+EZAxwxKiUiNuBZ4BZjTJ277SilfKO+wbA2r6RDdWU1FREaxD8vG0Ppcab9GmO4e+EPHKqs5e+/HE1YsH/uEeIKXyeRHCBYRJqm31FAVrPzYoBU4C0R2QesdhzfLSITXWhHKeUDWwrKKKuu6zCD6i0Z2jOGP5+bwhebCnhjVcvTfhdm5vNp1j5uO2dwQJXEPxafJhFjTAWwAHhARKJEZAJwEfB6s1NLgZ7AaMfjfMfxccAqF9pRSvlAem4x0LEG1VvSOO33oQ83smX/kR0j+SWV3Pu/LE7s25lrJ/a3KELPs2KK741ABFAAzAduMMZkiUiyiJSLSLKx29f4ABpHq/YbY2qO1Y6PvxelFJCRW0LXqFD6BOB+IZ7UOO03KiyYP7z507TfhgbDn95eR4MxPDF9NEEBUlzRGT6fV2aMOQhMaeF4HvYB85ZesxP7ItjjtqOU8r2MvGLGJHcOuJId3pAYE86cS0by21fXcN1ra9haUEG+owjlL1N7BeTGXMeiZU+UUm1ysKKGHUUVHb4rq6mfndCNCQO68nVO0Y8JBOD9dXtYlJlvYWSep0lEKdUmGToe0qIdRRVHHausbWCOi4sS/Z0mEaVUm6TnFRNsE0b26liLDI9nb2lVi8fb0/4qoElEKdVGGbnFDOsZQ3hI4K958KSOsr+KJhGllNtq6xtYt7uEMR14fUhrZk5OIaJZYm2P+6sEbtUvpZTlNu09RFVtg46HtKCxDP6cxdnsKamkZ1wEMyentLvy+JpElFJu00H1Y5syJqndJY3mtDtLKeW29LwSuseEt7t+fuU8TSJKKbdl5BbrXUgHp0lEKeWWfaVV5JdUMlaTSIemSUQp5ZaMPPt4yNjkOGsDUZbSJKKUcktGbjGhwTaG9dRFhh2ZJhGllFvS84oZmRRLaLD+GenI9F9fKeWyqtp6fsgv1UF1pUlEKeW6rD2l1NYbHVRXmkSUUq5r3MmwI2+Hq+w0iSilXJaeW0xyl0gSOoVZHYqymCYRpZRLjDFk5JXoeIgCNIkopVy0u7iSwrJqXR+iAE0iSikX/bjIUO9EFBYkERHpIiILRaRCRHJF5IpWzrtMRLJFpFRECkTkVRGJafL8UhGpEpFyx6N97TmplJ9Kzy0mMjSIlG6drA5F+QEr7kSeAWqAbsAMYK6IDGvhvBXABGNMLNAfe9n6h5qdc5MxJtrxaF87vSjlp9JzixndO47gIO3IUE7sJyIiZ7rZ9ipjzBE71YtIFDANGG6MKQeWi8j7wJXAnU3PNcbsatZePTDQzViUUh5QUV3H5n1l3DhpgNWhKD/hzKZUXwAGECfObTzPACcCGc2eHwzUG2NymhxbB5zRUmMichrwERADHAYubnbKbBF5FMgG7jbGLHUiRqWUm9btLqG+wej6EPUjZ3c2vAnY6EKbn7XyXDRQ2uxYKdBi56oxZjkQKyJJwLXAziZP3+GIqQa4DPhAREYbY7Y1b0dErgOuA0hOTnby21BKNde4k+EYnZmlHJxNIunGmO+dOVFEgmj9rqUc+11FUzFA2bHaNMbki8inwJvAWMexVU1OeVVELgfOB55u4fXzgHkAqampxolvQynVgoy8EgYmRhMXGWp1KMpPODMy1hvIdLZBY0y94zXrW3g6BwgWkUFNjo0CspxoOhg4Vkess11uSik32BcZFuv6EHWE4yYRY0y+MabWlUYdr6lr4XgFsAB4QESiRGQCcBHwevNzRWSGiCSLXR/gYeBLx3NxIjJZRMJFJFhEZgCnA4tdiVMp5bztRRWUHK7VlerqCC7N0RORehE5qZXnxolIvRPN3AhEAAXAfOAGY0yWI2GUi0jjoMVQYCX2LrAV2AfPr3U8F4J9um8hUATcDEwxxuhaEaW8RIsuqpY4OybS6FjdRUHYu5SOyRhzEJjSwvE87APvjV/fDdzdShuF2Gd/KaV8JCO3mJjwYAYkRB//ZNVhOJVERMTGTwnE5vi6qQjgPOx3BUqpdigjr5ixfTpjs+nQo/qJM4sN7wXucXxpsHctteZZTwTlbxZl5jNncTZ7SirpGRfBzMkpTBmTZHVYSvlMaWUtOfvLuXBkT6tDUX7GmTuRpY6Pgj2ZvAjsbnZONfY1Gx96LDI/sSgzn7sWbKCy1j7ck19SyV0LNgBoIlEdRqaj6KIOqqvmjptEjDFfA18DiIgBXjDG5Hs7MH8xZ3H2jwmkUWVtPXMWZ2sSUR1GRl4JNoFRveOsDkX5GZcG1o0x93srEH+1p6TSpeNKtUcZucWkdI8hOszVuTiqvXNmTOQl4EFjzA7H58dijDG/9Uxo/qFnXAT5LSSMnnERFkSjlO/VNxjW7iphyhgdD1FHc+ZtRRrwlOPzMzn2NN52V1Jk5uSUI8ZEACJCgpg5WSvPq44hZ38Z5dV1uj5EtciZMZF+TT7v69Vo/FDjuMecxdnkl1RiE3jk4uE6HqI6jMZFhjqorlqiu8o4YcqYJFbceSaPXTKSBgMp3ZvXkFSq/crIKyY+OpTkLpFWh6L8kFujZCLSG3uRxfDmzxljvmprUP5q0uAEAJZkFzC0pyYS1TFk5BYzJrkzIrrIUB3NpSQiIv2B/wCN9bMa/1c13YwqyGPR+ZnEmHCGJ8WwNLuA36fpJouq/Ssqr2bngcNcdpLuw6Na5uqdyAtAMnArsBn7hlAdSlpKIs8s2Urp4VpiI0OsDkcpr8rMKwF0PES1ztUkciLwG2PMe94IJhBMSknk6a+2smxLIT8fpVMeVfuWnltMsE0YkRRrdSjKT7k6sL6bDnj30dTo3nHERYawJLvA6lCU8rqMvGKGJcUSHtJue6lVG7maRB4B7hCRKG8EEwiCbMIZgxP4OruQhoZ2tyxGqR/V1jewbleJ7mSojsnVsievi8gQYKeIfAcUH32Kucpj0fmptJRE/rd2DxvyS7WWkGq3Nu45RHVdg46HqGNydXbWb4C7gHpgLEd3bXWIt+anD05AxD7VV5OIaq8ytHKvcoKr3Vn3AwuBBGNMkjGmX7NHfy/E6He6RIUyunccS7ILrQ5FKa9Jzy2mR2w4PWK1TpxqnatJpCvwrDGmxAuxBJRJgxNZv7uEA+XVVoeilFdk5Np3MlTqWFxNIsuBE7wRSKBJG5KAMbBsi96NqPZnb2kle0qrGKdFF9VxuJpEbgGuFZEZItJVRGzNH94I0h8N7xlLfHQoSzZrElHtT0ZuCYDeiajjcvWP/iZgBPAaUADUNnscdw2JiHQRkYUiUiEiuSJyRSvnXSYi2SJSKiIFIvKqiMS42o632GzCGYMT+TqnkHqd6qvamYy8YsKCbQztoTXi1LG5umL9Ado+A+sZ7MmmGzAa+EhE1hljspqdtwKYYIwpEpFo4DngIeAPLrbjNWlDEngvYzdrdxUzrk8XX11WKa9Lzy1mZK9YQoM7TOeCcpOr60Tua8vFHIsUpwHDjTHlwHIReR+4Eriz2bV2NXt5PTDQ1Xa8aeLABIJswpLNhZpEVLtRVVtP1p5Srjmt3/FPVh2er99mDAbqjTE5TY6tA4a1dLKInCYipUAZ9qTxDzfbuU5E1ojImsJCz41hxEaGMC65s5ZAUe3KD/ml1NYbHVRXTnFmj/V7XGjPGGMePMbz0UBps2OlQKdWGlsOxIpIEnAtsNPNduYB8wBSU1M9OoAxaUgCj32azf5DVXSLOWp7FaUCTuNOhjqorpzhTHfWfc2+btw7pLnGP87HSiLlQPORuhjsdxqtMsbki8inwJvYV8q71Y43pKUk8tin2XydXcilJ/b29eWV8rj03GL6dI0kPjrM6lBUADhud5Yxxtb4AIYDO7CPO/QFIhwf73Icb7E7qYkcIFhEBjU5NgpwZjA8GBjggXY8akj3TnSPCdcuLdUuGGPIyCvRrizlNFfHRP4FvGCMecwYk2eMqXZ8/BvwIvYZU60yxlQAC4AHRCRKRCYAFwGvNz/XsRYlWez6AA8DX7rajreJCGlDEli+pYja+gZfX14pj9p1sJKi8mrGaFeWcpKrSeRkYE0rz60GTnGijRux38EUAPOBG4wxWY6EUS4ijftwDgVWYu+6WgFkYx8XOWY7Ln4/HnHG4ETKqut+7EtWKlD9WHRR70SUk1xdJ1IKnA180cJz53D0YPdRjDEHgSktHM/DPmDe+PXdwN2utmOFCQO7EhIkLMku4JT+Xa0ORym3pecWExUaREr3FueoKHUUV+9EXgL+JCLPiMgkETnB8fFZ4Dbse7B3OJ3CQzixbxeWagkUFeDSc4sZnRxHkK2luTNKHc3VJHIP9t0Nf419fOIH4Cvsi/we4eiZXB1GWkoi2fvLyC+ptDoUpdxSUV3H5n2HtCtLucSlJGKMaTDGzAJ6A5OAy4EzgF7GmHuMMR12ZDltSAIAS3WWlgpQ63aV0GDQQXXlErdWrBtjSowx3xhj3nZ8PO5YSHs3ICGaXp0jtKqvClg/LjLsrUlEOc/VgXUARKQzMAg4aom2MWZZW4MKRCJCWkoi76bvprqunrDgIKtDUsolGXnFDEqMJjYyxOpQVABxdY/1cOyD65fS8qp1gA771zNtSAKvf5fL9zsOMnFQgtXhtGuLMvOZszibPSWV9IyLYObkFKaMSbI6rIDV0GBfZHjusO5Wh6ICjKvdWbOwj4VchT2J3AT8DvuOh9uACz0ZXKA5tX88ocE27dLyskWZ+dy1YAP5JZUYIL+kkrsWbGBRZr7VoQWs7UUVlFbWMk7HQ5SLXE0i07DvKfKm4+tVxpiXjTFnYK+ie64ngws0EaFBnNq/qw6ue9mcxdlU1tYfcayytp45i7MtiijwZfxYdDHO2kBUwHE1iSQDWcaYeuw7GUY1ee4l4JeeCixQpaUksL2ogtwDFVaH0m7taWUatU6vdl96bjGxESH0j48+/slKNeFqEjnAT6vKd2EvetgoHnsZkg5tUkoiAEuztUvLW3rGtf7f7Kb/ZlBYVu3DaNqHjLxixibHYdNFhspFriaR74Axjs/fAx4UkbtEZCYwB/vYSIfWNz6KfvFRWtXXi6an9jrqWHiIjfOHd+ezrP2c9eTXvL1mF8Z4dOuYdqv0cC1bCsoZq4sMlRtcTSJ/AzY7Pn8I+2r1BxzHtwM3eC60wDUpJYFvtx2gsqb++Ccrl9TWN/DpD/uICQ+mR2w4AiTFRfDo1JE8+6txfHzLRFK6deLP767nVy+u0m5FJ2TschRd1EF15QZX91hfg6OKrzGmDJgmImFAmDHmkBfiC0hpKYm8vGIn320/QNqQRKvDaVfmLdvO5n1lPP/rVM4e2u2o5wcmRvPmdacwf3Uej368mcn/WMYfzxrMb0/rR3CQr3eDDgyZucXYBEb1jrM6FBWA2vxb5dhTRBNIEyf160JESJB2aXnY9sJynvpyCxeM6NFiAmlkswkzTu7D57edwcRBCcz+ZDNTnl3BD/kdvrBCi9LzihnSPYaoMLfWHqsO7rhJRER+LSIu1Td3vKbD3huHhwQxYWBXvtpcoP3yHtLQYLhrwQbCg23c+4uhTr2me2w4864cx9wZY9l/qJqLnlnB7E82aTdjE/UNhrV5JdqVpdzmzJ3Iy0B/ZxsUkSDHa/q5G1R7MCklkd3FlWwr1D55T3hrzS5W7TjI3RecQGKno6rttEpEOG9ED7744xlMH9eL577ezrlPLWPl1iIvRhs4sveVUVFTr+tDlNucuX8V4Hcicp6TbWrHM/bBdbBX9R2YqHPv26LgUBWPfLyJU/p34dLU3m61ERsZwqPTRvKL0T35y4INXPHCKi5N7cXd5w/t0LWi0n/cybCLxZGoQOVsJ+i1xz9FNdWrcySDu0WzJLuA3010+kZOteDe97Oormtg9tSRiLRtHcP4AfF8euvpPPXlFuYt285Xmwu5/xfDOH9E9za3HYgyc4uJjw6jd5cOv8RLuem4dw3GGFvjA+gGRDU9doxHhvfD929pKYl8v+Mg5dV1VocSsBZn7eOTH/Zxy88G0S8+6vgvcEJ4SBB3nDuE92+aQI/YcH7/3wyufS2dvaUdb8V7umORYUdMoMoznBlYt4nIfSJSAuwDSkXkPRGJ83ZwgW5SSiK19YYV2v/ulkNVtdzzvx8Y0r0T153u+bu5YT1jWXjjeO4+/wSWby3k7CeX8fq3O2lo6BiTIYrKq8k9cFgH1VWbODN+cQP2bXEzgMeB/wEXAX/3YlztQmrfzkSHBWtBRjc99ulmCsuq+du0kYR4aY1HcJCNa0/vz2e3nsGY5Dhm/S+LS5/7lq0FZV65nj9pLLqoSUS1hTO/mdcCzxtjzjTG3GGMmQ78HviViIS6ekER6SIiC0WkQkRyReSKVs67SkTSReSQiOwWkcdEJLjJ80tFpEpEyh0PvyvhGhJk47SB8SzNLtSpvi5avfMgb3yXx2/G9/PJIrjkrpG8ds1JPD59FFsKyjn/qeX888st1NS13x2f0/OKCQkShifFWh2KCmDOJJH+wDvNjr2FffOpPm5c8xmgBvv4ygxgrogMa+G8SOBW7IUdTwZ+Bvyp2Tk3GWOiHY8UN2LxurQhCewtrSJ7f/t/Z+sp1XX13PneepLiIrj9nME+u66IcMm4Xnxx2xlMHt6dJz/P4cKnv/lx29j2JjO3hGE9YwkP6bD7yCkPcCaJRAPNV6Q3/kXs5MrFRCQK+54ks4wx5caY5cD7wJXNzzXGzHXs315jjMkH/gNMcOV6/qCxqq9uVOW8Z5ZsY1thBQ9fPNySVdQJncJ4+vIxvPSbVMqr6rjk3yu57/2sdjVBoqaugXW7S7ToomozZzuak0Skf+ODnxYfHnHc8dyxDAbqjTE5TY6tA1q6E2nudCCr2bHZIlIkIitEZFJrLxSR60RkjYisKSz07R/zbjHhDO0RoyVQnJSzv4y5S7cyZXTPHxOwVc4c0o3PbjuDq07ty6vf7uScJ79myeb28e+4ce8hqusadDxEtZmzSeRdYEuTR2Ml30XNjm85TjvRQPMCRqUc545GRK4GUrEP7De6A3sySwLmAR+IyICWXm+MmWeMSTXGpCYk+H7v87QhCaTnFlNaWevzaweShgbDne+tJzosmFkXOlfaxNuiw4K57xfDePf/xhMVFszVr6zmD/MzKSoP7D1LdCdD5SnO9BVc7cHrlQMxzY7F8FP32FFEZArwKHCWMebHubLGmFVNTntVRC4Hzgee9li0HpKWksgzS7axfEsRF4zsYXU4fuuNVblk5JXw5KWj6BodZnU4RxjXpzMf/uE0/r10O/9asoVlWwqZdcFQbAKPf5bDnpJKesZFMHNyClPGJFkd7nGl5xXTMzacHrG6yFC1zXGTiDHmVQ9eLwcIFpFBxpjGu5ZRHN1NBYCInAs8D1xgjNlwnLYN9hItfmd07zhiI0JYkl2gSaQVe0oq+dsnm5k4KJ6L/fSPcFhwELecNYjzR3TnzgUbuP2dddgEGpeV5JdUctcC+39Tf08kGbnF2pWlPMKnda6MMRXAAuABEYkSkQnY15y83vxcETkT+2D6NGPM982eixORySISLiLBIjID+5jJYu9/F64LDrJx+uAElmYXdpiFbK4wxnDP/36gwcAjF4/w+9XTg7p14p3rTyU2IoTm/5yVtfXMWex3s82PsKekkr2lVZpElEdYUSzxRux7sRcA84EbjDFZIpLsWO+R7DhvFhALfNxkLcgnjudCsO+sWAgUATcDU4wxfvvbm5aSQFF5NVl7dOuV5j7esI8vNhVw29mD6d0l0upwnGKzCYdaGePaU+Lf5VMyHEUXdWaW8gSfz580xhwEprRwPA/7wHvj12nHaKMQONEb8XnL6YMTEIEl2QWM6KWLuxqVHq7l3vezGJEUy9UT+lodjkt6xkWQ30LC6Bnn3+MM6bnFhIfYGNqz+fCkUq7Tsu0+Eh8dxsikWJ3q28wjH2+i+HANj04bEXDb186cnEJEs4V6Atx61iBrAnJSRl4JI5PivFZKRnUs+r/IhyalJLJ2VwkHK2qsDsUvrNxWxFtrdnHtxP4M6xl4d2dTxiQxe+oIkuIiEKBrVCgGWL/bf7fhraqtJyu/lLE6HqI8RDdV9qG0IYk89eUWvtlSyEWj/Xv2jrdV1dbzlwUb6NM10u/fuR/LlDFJR8zEevijjTz/zQ7GD+jKeSP8bybehvxS6hqMDqorj9E7ER8amRRL16jQdrPquS2e+nILOw8cZvbFI9pV7aaZk4cwqlcsf35vPbsOHrY6nKM01gEbkxxnbSCq3dAk4kM2m3DG4AS+zimkvgNP9d245xDzlm1n+rhejB8Yb3U4HhUabOPpy8eCgVvezKS23r+qAKfnFtO3ayTxfraYUwUuTSI+NmlIIsWHa1m3u8TqUCxR32C4c8F6OkeGcPcFJ1gdjlckd43kkakj7KvvP885/gt8xBhDZl6xjocoj9Ik4mOnD4rHJrC0g3ZpvbxiB+t3l3Lvz4cRF+nydjQB4+ejenL5Sb2Zu3Qby3L8o4Jz3sHDFJXX6PoQ5VGaRHwsLjKUscmdWZLtH39YfGnXwcM88VkOZw5J5MIOUP7lnguHMSgxmtveXktBWZXV4fw4HqKD6sqTNIlYIG1IIhvyS/3iD4uvGGO4e9EP2AQenDLc70ubeEJEaBD/umIsZVV13PbWOstL3mTkFRMdFszgbi5tA6TUMWkSscCkFHs5+q870N3IorX5LMspZObkFJL8fEW3J6V078R9vxjG8q1F/HvZNktjSc8tYXTvOIJs7T+BK9/RJGKBoT1iSOwUxtIOkkQOlFfzwAcbGZMcx5Wn9rU6HJ+77MTeXDCyB098lkN67kFLYiivriN73yEdVFcep0nEAiLCpJQElm0ppM7PpoB6w0MfbaK8uo5Hp47skO+CRYTZU0fQMy6cP8xfS+lh329Otm5XCQ0Gxur6EOVhmkQskpaSSFlVHRl5JVaH4lVf5xSyMDOfG84YQEr3jtsXHxMewtOXj2X/oSr+/N46jPHt+MhPiwz1TkR5liYRi0wYFE+wTdp1QcbDNXXcvXAD/ROiuDFtoNXhWG507zjuOHcIi7P288Z3uT69dkZeMYO7RRMbEeLT66r2T5OIRWLCQ0jt27ldl0B58rMcdhdX8ujUke2qtElb/Pa0fkxKSeDBjzaRtcc3hRobGgwZucW6PkR5hSYRC6WlJLJ5Xxl7S/17EyN3rNtVwksrdnDFycmc1K+L1eH4DZtNeGL6KOIiQrh5fiYV1XVev+a2wnIOVdXpoLryCk0iFkobkgjQ7mZp1dY3cOeCDcRHh3HneUOsDsfvdI0O4x+XjWZHUQX3vp/l9evpTobKmzSJWGhQYjRJcRHtrkvrhW92sGnvIR64aDgx4doH35LxA+K5OW0g76bvZmHmbq9eKz23mLjIEPrHR3n1Oqpj0iRiocapviu2FlFdV291OB6xs6iCf3yRw7nDunPu8O5Wh+PX/vCzQZzUtwt3L/yB7YXlXrtORl4JY5M7Y+uA06uV92kSsVhaSiIVNfWs2VlsdShtZozhrgUbCA22cf9Fw6wOx+8FB9l46vLRhAbbuHl+plfeSJQcrmFrQbmuD1Feo0nEYuMHdiU0yNYuurTeWbObb7cf4K7zTqBbTLjV4QSEHrERPH7JKLL2HGL2x5s93n6mYx2SDqorb/F5EhGRLiKyUEQqRCRXRK5o5byrRCRdRA6JyG4ReUxEgl1tx99FhgZzcv8uAb9epKCsioc/3sRJfbtw2Ym9rQ4noJw1tBtXT+jLKyt38vnG/R5tOyOvmCCbMKpXnEfbVaqRFXcizwA1QDdgBjBXRFrq+4gEbgXigZOBnwF/cqMdvzcpJZFthRV+uZ2qs+7/YCOVNfU8MnWE9r274c7zhjA8KYaZ765jT4nnpnyn5xYzpHsnosKCj3+yUm7waRIRkShgGjDLGFNujFkOvA9c2fxcY8xcY8w3xpgaY0w+8B9ggqvtBII0R1XfpQF6N/LFxv18tH4vN585kIGJ0VaHE5DCgoN4+vKx1NY1cMubmR6pqVZX38DaXSW6f4jyKl/fiQwG6o0xTfcMXQc4cwdxOtA4qd6ldkTkOhFZIyJrCgv9b01Gv/go+nSNDMiNqsqqapn1vx9I6daJ688YYHU4Aa1ffBQPXzyC1TuLeerLLW1uL3t/GYdr6nV9iPIqXyeRaKB5rYdS4JiV+UTkaiAVeNyddowx84wxqcaY1ISEBJeD9jYRIS0lkZXbiqiqDaypvo8vzmbfoSpmTxtBaLDO02irKWOSmD6uF/9aspWVW4va1FaG7mSofMDXv/XlQEyzYzFAWWsvEJEpwKPAecaYxt8ql9vxd5NSEqiqbeC77QesDsVp6bnFvPZdLled2lff7XrQ/RcNo398FLe8tZai8mq328nIKyGhUxi9OnecTcCU7/k6ieQAwSIyqMmxUfzUTXUEETkXeB74uTFmg7vtBIJT+nclPMQWECVQFmXmM372l0ybuxIbMKQDl3j3hsjQYP51xVhKK2u5/W33t9VNzy1mbHJch9iKWFnHp0nEGFMBLAAeEJEoEZkAXAS83vxcETkT+2D6NGPM9+62EyjCQ4IYPyCerzYX+HyvCVcsysznrgUb2FNq3x++3thnZi3KzLc4svblhB4xzLpwKF/nFPLC8u0uv76wrJq8g4e1K0t5nRWd2DcCEUABMB+4wRiTJSLJIlIuIsmO82YBscDHjuPlIvLJ8drx3bfheWkpCeQdPMyOogqrQ2nVnMXZVDYbt6msrWfO4myLImq/fnVyMucN785jn2aTmedaRYPGoouaRJS3+XzyuDHmIDClheN52AfMG79Oc6edQDYpJRHIYkl2If0T/G+qrDGG/FbWMHhybYOyExEenTqS9bu/4eb5mXz0h4lObyqVkVtMSJAwrGesl6NUHZ1Op/EjvbtEMjAx2i/Xi9TWN3Dnextafb5nnA7eekNsZAj/vHwMe0ur+MuCDU53dabnFjM8KVY3A1Nep0nEz6SlJLBq+0GfbFbkrENVtVzzymreWrOLyUMTiQg58r9NREgQMyenWBRd+zeuT2f+dE4KH23Yy/zvdx33/Jq6Btbnl+qMOeUTmkT8TFpKIjX1Dazc5h9TffNLKpk+91u+3XaAxy4ZyXO/PpHZU0eSFBeBAElxEcyeOoIpY5KsDrVdu/70/kwcFM/9H2SRve/YM9mz9pRSU9eg4yHKJ7Sgjp9J7duFqNAglmQXcPbQbpbG8kN+Kde8sprKmnpeufokThsUD9gXxGnS8C2bTXjy0tGc99Q33PTfDN6/6TQiQlvuqspwVO7VJKJ8Qe9E/ExosI0JA+P5OrvQ0qm+X27az6XPfUtIkI13bxj/YwJR1knoFMY/fjmarYXl3P9B6xMRM3KLSYqL0HL8yic0ifihtCGJ5JdUsqXAe7vdHcvr3+7k2tfW0D8hioU3jidFFxP6jdMGxXPjpAG8uXoX76/b0+I56bnFun+I8hlNIn5okqOqr683qmpoMDz04UZm/S+LM4ck8tZ1p5Ko72b9zq1nDWZcn878ZcEGcg8cuaZoT0kl+w5VMU53MlQ+oknED/WIjWBI904+3aiqsqaeG/+TwQvLd3DVqX147spU3YPCT4UE2XjqstHYBG6en0lN3U9l49MdRRf1TkT5iiYRP5U2JJE1O4s5VFXr9WsVlVdz+fPfsXjjPmZdOJT7fjGMIN1Yyq/16hzJY5eMYv3uUh779KdtddNziwkPsXFCj+b1SZXyDk0ifiotJZG6BsOKLW0rB348WwvKufjZFWzed4i5M8bx29P6acG+AHHu8O78+tQ+vLB8B19ttm+rm5lXzMhecYQE6a+28g3tr/BTY5Pj6BQezJLsAs4b0cMr1/hu+wGue20NocE23rzuVEb3jvPKdZT3/OX8E1i9s5ib/pNBp4gQ9h+qJjosmEWZ+ToNW/mEvl3xU8FBNk4fnMASL031XZi5mytfXEVCpzAW3jhBE0iACg8JYsqYnhyubWD/IfveI+XVddy1YINWVlY+oUnEj6WlJFJYVk3WnkMea9MYwz+/3MIf31rHuD6dWXDDBHp3ifRY+8r3XluZe9QxraysfEWTiB87Y7B9qq+nCjLW1DUw8931PPl5DlPHJPHaNScTG+lcVVjlv1qroKyVlZUvaBLxYwmdwhiRFMsSD+x2WFpZy29e/p5303dzy88G8cSlo3RP9HaitQrKWllZ+YL+FfFzaSkJZOYVU3K4xu02dhcf5pK5K1m98yCPTx/FH88erDOw2pGZk1OIaFbyXSsrK1/RJOLnJg1JpMHAMjen+q7fXcLFz65k36EqXr36JC4Z18vDESqrTRmTxOypI7SysrKETvH1c6N6xdE5MoSlmwv4xaieLr32i437uXl+Jl2iQvnv705mUDetgdVeaWVlZRVNIn4uyCacMTiBpTmFNDQYbE6uJH9lxQ4e+HAjw5NieeGqVBI7aQ0spZTnaXdWAEgbksjBihrW55ce99z6BsMDH2zkvg828rMTuvHmdadoAlFKeY3Pk4iIdBGRhSJSISK5InJFK+cNF5HFIlIkIketthORpSJSJSLljke7nRR/+qAERI5f1beypp4b3kjnpRU7uGZCP/79q3FEhurNplLKe6y4E3kGqAG6ATOAuSIyrIXzaoG3gd8eo62bjDHRjke7nYrSOSqUMb3jjrlepLCsmsvmfcvnm/Zz78+Hcs/Ph2oRRaWU1/k0iYhIFDANmGWMKTfGLAfeB65sfq4xJtsY8yLQ+hZuHUhaSiLrdpdSWFZ91HNb9pdx8bMryNlfzrwrU7l6Qj8LIlRKdUS+vhMZDNQbY3KaHFsHtHQn4ozZju6uFSIyqa3B+bO0IYkALMs5cuHhym1FTJ27kqraBt66/hTL92VXSnUsvk4i0UDz0eFSwJ25p3cA/YEkYB7wgYgMaOlEEblORNaIyJrCwrav/rbC0B4xJHQKO2KjqvfSd3PVS9/TPSacRb8fz8hecdYFqJTqkHw96loONN8tJwYoc7UhY8yqJl++KiKXA+cDT7dw7jzsiYbU1FTPl8T1AZtN6Nc1ko/W7+Wj9R8RHR5MWVUd4wd0Ze6vxhEboTWwlFK+5+s7kRwgWEQGNTk2Cs+Mexig3Y4kL8rMJ3NXCQb7N1pWVUeQCFPHJGkCUUpZxqdJxBhTASwAHhCRKBGZAFwEvN78XLELB0IdX4eLSJjj8zgRmew4FiwiM4DTgcU++2Z8bM7ibGrrj7yJqjeGv3+xxaKIlFLKmim+NwIRQAEwH7jBGJMlIsmO9R7JjvP6AJX8dJdSCTSuBQkBHgIKgSLgZmCKMabdrhXRct9KKX/k85VoxpiDwJQWjudhH3hv/HonrXRPGWMKgRO9E6F/6hkXQX4LCUPLfSulrKRlTwKElvtWSvkjrYkRIBortM5ZnM2ekkp6xkUwc3KKVm5VSllKk0gA0XLfSil/o91ZSiml3KZJRCmllNs0iSillHKbJhGllFJu0ySilFLKbWJMQNYjdJuIFAK5VsfRRvHYV+or/Vk0pz+PI+nP4ydt/Vn0McYkND/Y4ZJIeyAia4wxqVbH4Q/0Z3Ek/XkcSX8eP/HWz0K7s5RSSrlNk4hSSim3aRIJTPOsDsCP6M/iSPrzOJL+PH7ilZ+FjokopZRym96JKKWUcpsmEaWUUm7TJKKUUsptmkQChIiEiciLIpIrImUikiki51kdl9VEZJCIVInIG1bHYjURuUxENolIhYhsE5GJVsdkFRHpKyIfi0ixiOwTkX+JSIfY+kJEbhKRNSJSLSKvNHvuZyKyWUQOi8gSEenT1utpEgkcwcAu4AwgFpgFvC0ifa0Myg88A6y2OgiricjZwN+Aq4FOwOnAdkuDstazQAHQAxiN/ffmRisD8qE9wEPAS00Pikg8sAD7344uwBrgrbZerENk5vbAGFMB3Nfk0IcisgMYB+y0IiarichlQAmwEhhobTSWux94wBjznePrfCuD8QP9gH8ZY6qAfSLyKTDM4ph8whizAEBEUoFeTZ6aCmQZY95xPH8fUCQiQ4wxm929nt6JBCgR6QYMBrKsjsUKIhIDPADcbnUsVhORICAVSBCRrSKy29F9E2F1bBZ6CrhMRCJFJAk4D/jU4pisNgxY1/iF443pNtqYXDWJBCARCQH+A7zalncQAe5B4EVjzC6rA/ED3YAQ4BJgIvbumzHAXy2MyWpfY//jeAjYjb3rZpGVAfmBaKC02bFS7N2fbtMkEmBExAa8DtQAN1kcjiVEZDRwFvB3i0PxF5WOj08bY/YaY4qAJ4HzLYzJMo7fkcXY+/+jsFev7Yx9zKgjKwdimh2LAcra0qgmkQAiIgK8iP2d5zRjTK3FIVllEtAXyBORfcCfgGkikmFlUFYxxhRjf7et5SfsugC9sY+JVBtjDgAv00GTahNZwKjGL0QkChhAG7vENYkElrnACcDPjTGVxzu5HZuH/T//aMfj38BHwGTrQrLcy8DNIpIoIp2BW4EPrQ3JGo47sR3ADSISLCJxwFU0GQ9ozxzfczgQBASJSLhjevNCYLiITHM8fw+wvq1d4ppEAoRjPvf12P9o7hORcsdjhrWR+Z4x5rAxZl/jA/ttepUxptDq2Cz0IPapzjnAJiATeNjSiKw1FTgXKAS2AnXAHy2NyHf+ir2L807gV47P/+r4/ZiG/f9FMXAycFlbL6YFGJVSSrlN70SUUkq5TZOIUkopt2kSUUop5TZNIkoppdymSUQppZTbNIkopZRymyYRpbxERE4VkTcdBRFrROSQiKwWkQdFpEeT80yTR52I7BCRl0WkVwttvuA470nffjdKtUzXiSjlBSJyOzAHWIK91tl27AXwxgPXAhnGmPMc5xrgFeA57NszjMZe2r0IGN1YncBRlXcf9npHBUCSMabOZ9+UUi3Q/USU8jARScOeQJ4yxjRfJf2xiMwGpjc7nt9kL5DlIlKGPbGch72QIMDF2BPIx9jrQJ1LBy1tovyHdmcp5Xl3YL+LuKOlJ40xFcaYV47TRuNujU0327oKe7mK32AvZfHrNkWplAdoElHKgxyF7s4APjfG1LShqX6OjyWOdntiL3//lqMG0iLgF45ii0pZRpOIUp7VFQgH8po/4aiu+uPj6Kft1VdF5BTgceAwP3VXXYn99/U1x9evAmHAL73xTSjlLE0iSnmWtHhQpDtQ2/TRLJH8xXG8EvjW8fn5xpg9jud/DWwxxnzr+PoLYA/apaUspklEKc8qAqqA5BaOn+h4PN/C615yPDcGiDfGjDTGfA0gIicCQ4EFIhLn2B+jE/YB91NFZLA3vhGlnKFJRCkPcky5XQacLSKhTY8bY9YYY9Zgv4Nobq/j+bWOnfiausrx8Q7sA+uNj8btkfVuRFlGk4hSnvcY9n2927yntyMRXQasAtJaeKwFrnRsnayUz+k6EaU8zBjzpYjcCTwqIiOxD4bvwD7gPhh7UqjAuT3RL8Q+WH+7MWZp8ydF5Dns2yZPwr6wUSmf0jsRpbzAGPMYMBE4ADyCfSD8XexdU28Bg4wx9U40dRVQBrzTyvPzsQ/GX9XK80p5lZY9UUop5Ta9E1FKKeU2TSJKKaXcpklEKaWU2zSJKKWUcpsmEaWUUm7TJKKUUsptmkSUUkq5TZOIUkopt/0/r+PL4cgZYuMAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "bins = np.linspace(df.gpa.min(), df.gpa.max(), 10)\n", "ax = df.groupby(np.digitize(df.gpa, bins)).mean()['admit'].plot(marker = 'o',\n", " fontsize = 12)\n", "ax.set_ylabel('P[admit]', fontsize = 16)\n", "ax.set_xlabel('GPA', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true, "slideshow": { "slide_type": "fragment" } }, "source": [ "Furthermore, we can see that the independent variables are strongly correlated:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAmEAAAFNCAYAAABIc7ibAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8HUlEQVR4nO3dfZwW9X3v/9ebG4UI3hQIokAghVhpRGI3RnKOicaqkJpgj0mPaYwn9hhiT+1J0+ZEbXNjm6SmNo020RRtQtV4Ej1Vf4g2jabGm6Roy2IRBYNsRWGji0hEwQCCfH5/XLPrtcu118y11zU7s/B+Ph77YOc73/l+PzM78+FzzTXXriICMzMzMxtcw4oOwMzMzOxA5CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwiwzSQ9IurDoOLKSNFXSdknDWzjmIkmfb9V4ZjY4nL+cv8rIRdh+RtIzknYkF2+XpBskjSkgjosltUvaJemGlL4fl/TTFsz5jKTf7F6OiA0RMSYiXk/WN5SEa8UVERdFxJeajdXM9lWG/CXpYEnfkfSspG2S/kPS/Dr9nb9swFyE7Z8+EBFjgDnAO4DLCojhOeDLwOIC5jazoavo/DUC2Ai8FzgM+Dzw/yRNG+Q47ADgImw/FhFdwD1UkhkAki6V9J/JK7w1kn67at3HJf1U0tckvSRpfX+vACVNkrRK0mf6mfuOiFgCbGk07uQV4WeS8V+WdKukUcm68ZLulrRV0i8k/UTSMEnfBaYCdyWvoj8raZqkkDRC0leAk4FrkvXXVK+vmvsBSRdKOhZYBMxN+m9N1t8g6ctV/T8hqSOJZamko6rWhaSLJK1Ljue1kpSsmyHpwWT/XpR0a6PHyWx/VlT+iohXI+LyiHgmIvZGxN3AeuA3ssTt/GWNcBG2H5M0GZgPdFQ1/yeVi/kw4M+BmyVNqlr/LmAtMB64EvhO94VXNe404EHgmoj4Wk7h/w4wD5gOzAY+nrT/CdAJTAAmAn8KRER8DNhA8io6Iq6sHiwi/gz4CXBxsv7iepNHxJPARcDDSf/D+/aR9D7giiTWScCzwC19up0FvBM4Pul3ZtL+JeBe4AhgMvDNevGYHWjKkr8kTQTeBqxuIHznL8vERdj+aYmkbVRuqb8AfLF7RUT8Y0Q8l7zCuxVYB5xYte2zEfH3yXMIN1K5OCdWrZ8FPAB8MSKuz3EfvpHE+QvgLt54Nbw7iektEbE7In4Sxf0B1I8CiyPi0YjYReVtk7nq/bbFVyNia0RsAO6n9368BTgqInZGRNPPlJjtJ0qTvySNBP4vcGNE/KyBfXD+skxchO2fzo6IscApwK9ReVUIgKTzJa1MbodvBd5evR7o6v4mIn6ZfFv9YOxHgZ8Dt+UT+r5xAL+siuGvqbwyvlfS05IuzTmOeo6i8uoRgIjYTuXt16Or+vS3H58FBPy7pNWSfi/nWM2GilLkL0nDgO8CrwF17zzV4PxlmbgI249FxIPADcDXACS9Bfh7KgllXHKL+gkqF1NWlwMvAt9TCz86nVVEbIuIP4mItwIfAP5Y0mndq9M277P8avLvm6rajqzTv6/nqLwaBEDSIcA4Kkm+fiARXRHxiYg4Cvgk8C1JM9K2MztQFJm/krcwv0PlLto5EbG78T3Yl/OX9eUibP93NXC6pDnAIVQuzM0Aki6g8kqyEbuBDydjfTd5tbiP5GHSUcBwYLikUdUPkA6UpLOSh0IFvAK8nnwBbALeWmfzXusjYjOVhHOepOHJq7lf7dN/sqSD+hnve8AFkuZIOhj4S+DfIuKZDPvx4eSZF4CXqPxcXq+zidmB6GoKyF/A3wHHUnlGa0fjYdfm/GV9uQjbzyUX6k3A5yNiDfA3wMNULtDjgH8dwJivAf8NeDOwuJ9E9jlgB3ApcF7y/ecGsg99zAT+BdhOZT++FREPJOuuAD6XvFVR61Obfwt8KPmkzzeStk8A/4fKbfhfB5ZV9f8xlYdxuyS92HewiLiPysfXbweep5IAz824H+8E/k3SdmAp8KmIWJ9xW7MDQhH5K7nj9kkqzz91JZ8u3C7po83sS8L5y3pRcc8EmpmZmR24fCfMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwK4CLMzMzMrABN/96mwTZ+/PiYNm1a0WGY2SBasWLFixExoeg4WsE5zOzAUi9/DbkibNq0abS3txcdhpkNIknPpvcaGpzDzA4s9fJXbm9HSlos6QVJT/SzXpK+IalD0ipJJ+QVi5lZo5zDzCxveT4TdgMwr876+VR+e/BMYCGVPxNh+4kt23fx2MatbNm+q+b69vVb+Pq9a2lfv2VA43ds2sZt7Rvp2LRtQOOnbd9s/Pet6eKS2x7jvjVdNdenjZ+m2fiamT/t2KW5edl6PrxoGTcvK/0v2L6BAnNYs+dIXmMN5lzNnmuNjJM17iy5K+36zxpTq+YCWPLoRi68cTlLHt3Y1HzX3b+O+X/7ENfdv67pmLIc8yx9shzLVvWB5v//qpbrb8yXNA24OyL2+ftekq4DHoiI7yfLa4FTIuL5emO2tbWFb+WX250rf84lt69i5LBh7N67lyvPmc0H5xzds/68bz/CTzveOHlPnjGO7154Uubxv7DkcW56ZEPP8vlzp/IXC47LPH7a9s3Gf8ZVD/DUpld7lo+ZeAj3fPqUzOOnaTa+ZuZPO3Zpjr/8h7y8840/MXfYqOE8dnm9OqdC0oqIaMs8UYsUlcOaPUfyGmsw52r2XGtknKxxZ8ldadd/1phaNRfASX/5I7peea1nedKhB/Hwn57e8HzHfu4H7NjzRs0weoR48svvH1BMWY55lj5ZjmWr+sDA/v+ql7+K/HTk0UB1Sd6ZtNkQtmX7Li65fRU7d+9l26497Ny9l8/evqrnVUz7+i29TmCAn3RsyfyKomPTtl4XCsBND2/oeeWSNn7a9s3Gf9+arl4JCGDtpld7XhGmjZ+m2fiamT/t2KW5edn6XgUYwMs7Xx8Kd8T6k0sOa/YcyWuswZyr2XOtkXGyxp0ld6Vd/1ljatVcULkDVl2AATz/ymu97ohlme+6+9f1KsAAduyJXnfEssaU5Zhn6ZPlWLaqDzT//1ctRRZhqtFW87acpIWS2iW1b968OeewrBmdL+1g5LDep9XIYcPofGkHAA+t2+fvyNZt72vlxq1129PGT9u+2fjvXbOp5vru9rTx0zQbXzPzpx27NHeuqn2DqL/2ISCXHNbsOZLXWIM5V7PnWiPjZI07S+5Ku/6zxtSquQDufrz2W4LV7VnmW9LPdVrdnjWmLMc8S58sx7JVfaD5/79qKbII6wSmVC1PBp6r1TEiro+ItohomzBhv/iU+n5r8hGj2b13b6+23Xv3MvmI0QC8Z+b4mtv1197XnCmH121PGz9t+2bjP2PWxJrru9vTxk/TbHzNzJ927NIsmD2pofYhIJcc1uw5ktdYgzlXs+daI+NkjTtL7kq7/rPG1Kq5AM467sia/arbs8x3dj/XaXV71piyHPMsfbIcy1b1geb//6qlyCJsKXB+8gmjk4CX056lsPIbN+ZgrjxnNqNGDmPswSMYNXIYV54zm3FjDgagbfo4Tp4xrtc2J88YR9v0cbWG28eMiWM5f+7UXm3nz53KjIljM42ftn2z8Z8260iOmXhIr/XHTDyE02YdmWn8NM3G18z8accuzXnvns5ho4b3ajts1HDOe/f0TNuXUC45rNlzJK+xBnOuZs+1RsbJGneW3JV2/WeNqVVzAZx9whQmHXpQr7ZJhx7E2Se88fohy3yfPHUmo0f0vvk7eoT45KkzG44pyzHP0ifLsWxVH2j+/69acnswX9L3gVOA8cAm4IvASICIWCRJwDVUPn30S+CCiEh94t4P5g8NW7bvovOlHUw+YnTNJNy+fgsPrXuR98wcP6ATuGPTNlZu3MqcKYfXTMxp46dt32z8963p4t41mzhj1sR9ElCW8dM0G18z86cduzQ3L1vPnaueZ8HsSZkLsCIezC86hzV7juQ11mDO1ey51sg4WePOkrvSrv+sMbVqLqg8G3b3412cddyRvQqwRue77v51LFn1PGfPntSrABtITFmOeZY+WY5lq/pA4/9/1ctfuX46Mg8uwswOPEV9OjIPzmFmB5ayfjrSzMzM7IDlIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzAqQaxEmaZ6ktZI6JF1aY/1hku6S9Jik1ZIuyDMeM7OsnL/MLG+5FWGShgPXAvOBWcBHJM3q0+0PgDURcTxwCvA3kg7KKyYzsyycv8xsMOR5J+xEoCMino6I14BbgAV9+gQwVpKAMcAvgD05xmRmloXzl5nlLs8i7GhgY9VyZ9JW7RrgWOA54HHgUxGxN8eYzMyycP4ys9zlWYSpRlv0WT4TWAkcBcwBrpF06D4DSQsltUtq37x5c6vjNDPrq2X5C5zDzKy2PIuwTmBK1fJkKq8Yq10A3BEVHcB64Nf6DhQR10dEW0S0TZgwIbeAzcwSLctf4BxmZrXlWYQtB2ZKmp48rHousLRPnw3AaQCSJgLHAE/nGJOZWRbOX2aWuxF5DRwReyRdDNwDDAcWR8RqSRcl6xcBXwJukPQ4ldv/l0TEi3nFZGaWhfOXmQ2G3IowgIj4AfCDPm2Lqr5/DjgjzxjMzAbC+cvM8ubfmG9mZmZWABdhZmZmZgVwEWZmZmZWABdhZmZmZgVwEWZmZmZWABdhZmZmZgVwEWZmZmZWABdhZmZmZgVwEWZmZmZWABdhZmZmZgVwEWZmZmZWABdhZmZmZgVwEWZmZmZWABdhZmZmZgXItQiTNE/SWkkdki7tp88pklZKWi3pwTzjMTPLyvnLzPI2Iq+BJQ0HrgVOBzqB5ZKWRsSaqj6HA98C5kXEBklvziseM7OsnL/MbDBkuhMm6a+ytPVxItAREU9HxGvALcCCPn1+F7gjIjYARMQLWeIxM8vK+cvMyirr25Gn12ibn7LN0cDGquXOpK3a24AjJD0gaYWk8zPGY2aWlfOXmZVS3bcjJf0+8L+At0paVbVqLPCvKWOrRlvUmP83gNOA0cDDkh6JiKf6xLEQWAgwderUlGnNzMqTv5JYnMPMbB9pz4R9D/hn4Aqg+sHUbRHxi5RtO4EpVcuTgedq9HkxIl4FXpX0EHA80CuJRcT1wPUAbW1tfROhmVktpchf4BxmZrWlvR0ZEfEM8AfAtqovJP1KyrbLgZmSpks6CDgXWNqnz53AyZJGSHoT8C7gycZ2wcysJucvMyu1LHfCzgJWULkVX32LPoC39rdhROyRdDFwDzAcWBwRqyVdlKxfFBFPSvohsArYC3w7Ip4Y8N6Ymb3B+cvMSk0RQ+vOeFtbW7S3txcdhpkNIkkrIqKt6DhawTnM7MBSL39l/j1hkmYD06q3iYg7mo7OzCxnzl9mVkaZijBJi4HZwGoqt92hcjvfSczMSs35y8zKKuudsJMiYlaukZiZ5cP5y8xKKesva31YkpOYmQ1Fzl9mVkpZ74TdSCWRdQG7qHzKKCJidm6RmZm1hvOXmZVS1iJsMfAx4HHeeKbCzGwocP4ys1LKWoRtiIi+v6jQzGwocP4ys1LKWoT9TNL3gLuo3M4H/BFvMxsSnL/MrJSyFmGjqSSvM6ra/BFvMxsKnL/MrJQyFWERcUHegZiZ5cH5y8zKqm4RJumbVF4x1hQR/7vlEZmZtYDzl5mVXdrvCWun8sdvRwEnAOuSrznA67lGZmbWHOcvMyu1unfCIuJGAEkfB06NiN3J8iLg3tyjMzMbIOcvMyu7rL8x/yhgbNXymKStLknzJK2V1CHp0jr93inpdUkfyhiPmVlWzl9mVkpZPx35VeA/JN2fLL8XuLzeBpKGA9cCpwOdwHJJSyNiTY1+fwXc00DcZmZZOX+ZWSlluhMWEf8AzAWepPKx7suA9SmbnQh0RMTTEfEacAuwoEa/PwRuB17IGrSZWVbOX2ZWVpnuhEm6EPgUMBlYCZwEPAy8r85mRwMbq5Y7gXf1Gfdo4LeTcd6ZNWgzs6ycv8ysrLI+E/YpKknm2Yg4FXgHsDllG9Vo6/tx8auBSyKi7ieVJC2U1C6pffPmtGnNzHopNH+Bc5iZ1Zb1mbCdEbFTEpIOjoifSTomZZtOYErV8mTguT592oBbJAGMB94vaU9ELKnuFBHXA9cDtLW19ft7f8zMaig0f4FzmJnVlrUI65R0OLAE+JGkl9g3IfW1HJgpaTrwc+Bc4HerO0TE9O7vJd0A3F0rgZmZNcH5y8xKKeufLfrt5NvLk08YHQb8MGWbPZIupvKpoeHA4ohYLemiZP2igYdtZpaN85eZlVXWO2E9IuLBBvr+APhBn7aaySsiPt5oLGZmjXD+MrMyyfpgvpmZmZm1kIswMzMzswK4CDMzMzMrgIswMzMzswK4CDMzMzMrgIswMzMzswK4CDMzMzMrgIswMzMzswK4CDMzMzMrgIswMzMzswK4CDMzMzMrgIswMzMzswK4CDMzMzMrgIswMzMzswLkWoRJmidpraQOSZfWWP9RSauSr2WSjs8zHjOzrJy/zCxvuRVhkoYD1wLzgVnARyTN6tNtPfDeiJgNfAm4Pq94zMyycv4ys8GQ552wE4GOiHg6Il4DbgEWVHeIiGUR8VKy+AgwOcd4zMyycv4ys9zlWYQdDWysWu5M2vrzP4F/rrVC0kJJ7ZLaN2/e3MIQzcxqaln+AucwM6stzyJMNdqiZkfpVCpJ7JJa6yPi+ohoi4i2CRMmtDBEM7OaWpa/wDnMzGobkePYncCUquXJwHN9O0maDXwbmB8RW3KMx8wsK+cvM8tdnnfClgMzJU2XdBBwLrC0uoOkqcAdwMci4qkcYzEza4Tzl5nlLrc7YRGxR9LFwD3AcGBxRKyWdFGyfhHwBWAc8C1JAHsioi2vmMzMsnD+MrPBoIiajzmUVltbW7S3txcdhpkNIkkr9pcCxznM7MBSL3/5N+abmZmZFcBFmJmZmVkBXISZmZmZFcBFmJmZmVkBXISZmZmZFcBFmJmZmVkBXISZmZmZFcBFmJmZmVkBXISZmZmZFcBFmJmZmVkBXISZmZmZFcBFmJmZmVkBXISZmZmZFSDXIkzSPElrJXVIurTGekn6RrJ+laQT8ozHzCwr5y8zy1tuRZik4cC1wHxgFvARSbP6dJsPzEy+FgJ/l1c8Q82W7bt4bONWtmzfNaD1zerYtI3b2jfSsWlbLvE1G3/a9vet6eKS2x7jvjVdA9q+ff0Wvn7vWtrXbxnQ9s3uX7PHv5nt07ZtVt7jt4LzV21Zzuslj27kwhuXs+TRjU2NA+nXYdb5bl62ng8vWsbNy9b32yfreZllvlbF9Ic3L+fXv/DP/OHNy5uaC+Cqe57klL++n6vuebLfPtfdv475f/sQ192/rt8+abm1kZg+c+ujHH/5D/nMrY/W7Vc2WX52WSkiWhBSjYGlucDlEXFmsnwZQERcUdXnOuCBiPh+srwWOCUinu9v3La2tmhvb88l5rK4c+XPueT2VYwcNozde/dy5Tmz+eCcozOvb9YXljzOTY9s6Fk+f+5U/mLBcS2Lr9n407Y/46oHeGrTqz3Lx0w8hHs+fUrm7c/79iP8tOONpH/yjHF898KTBm3/mj3+zWyftm2zBjq+pBUR0dayQNLnyyV/wdDNYVnO65P+8kd0vfJaz/KkQw/i4T89veFxIP06zDrf8Zf/kJd3vt6zfNio4Tx2+bxefbKel1nma1VM0y79p33mf+arv9XwXAAzL/sndlf9Vz9SsO6K3mMd+7kfsGPPG51GjxBPfvn9vfqk5dZGYsqyf2WU5WfXV738lefbkUcD1WVwZ9LWaJ8Dypbtu7jk9lXs3L2Xbbv2sHP3Xj57+6qeV4xp65vVsWlbr2QEcNPDG3peHTYbX7Pxp21/35quXkkCYO2mV3tetaVt375+S6/ED/CTji09r8Tz3r9mj38z26dt26y8x28x568qWc7rJY9u7PWfL8Dzr7zW625I1usj7TrMOt/Ny9b3+g8T4OWdr/e6g5H1vMwyX6ti6u/OV3V7lrmgcgdsd597LbuDXnfErrt/Xa8CDGDHnuh1RywttzYSU393vsp+RyzLz65ReRZhqtHW97Zblj5IWiipXVL75s2bWxJcWXW+tIORw3r/WEYOG0bnSzsyrW/Wyo1b67Y3G1+z8adtf++aTTW3625P2/6hdS/W3L67Pe/9a/b4N7N92rbNynv8FmtZ/oKhn8OynNd3P1777anq9qzXR9p1mHW+O1fVvilZ3Z71vMwyX6ti+vFTtfe/uj3LXJVxa/erbl/ST0zV7Wm5tZGYfvTkCzX79ddeFll+do3KswjrBKZULU8GnhtAHyLi+ohoi4i2CRMmtDzQMpl8xGh2793bq2333r1MPmJ0pvXNmjPl8LrtzcbXbPxp258xa2LN7brb07Z/z8zxNbfvbs97/5o9/s1sn7Zts/Iev8Valr9g6OewLOf1WccdWXPb6vas10fadZh1vgWzJ9XsU92e9bzMMl+rYnrf22rvf3V7lrkq49buV91+dj8xVben5dZGYjr92DfX7Ndfe1lk+dk1Ks8ibDkwU9J0SQcB5wJL+/RZCpyffMroJODltOcp9nfjxhzMlefMZtTIYYw9eASjRg7jynNmM27MwZnWN2vGxLGcP3dqr7bz505lxsSxLYmv2fjTtj9t1pEcM/GQXtscM/EQTpt1ZKbt26aP4+QZ43ptf/KMcbRNHzco+9fs8W9m+7Rtm5X3+C3m/FUly3l99glTmHToQb22m3ToQZx9wpSGxoH06zDrfOe9ezqHjRreq89ho4Zz3run9yxnPS+zzNeqmL553juppbo9y1wAnz7zWEb2uWc7UpX2bp88dSajR/TuNHqE+OSpM3uW03JrIzF97b/X/iBxf+1lkeVn16jcHswHkPR+4GpgOLA4Ir4i6SKAiFgkScA1wDzgl8AFEVH3idWh+lBro7Zs30XnSzuYfMTomv+Bp61vVsembazcuJU5Uw6v+Z9ks/E1G3/a9vet6eLeNZs4Y9bEXkki6/bt67fw0LoXec/M8b0S/2DtX7PHv5nt07Zt1kDGH+wH85M5W56/YGjnsCzn9ZJHN3L3412cddyR+/zn28g4kH4dZp3v5mXruXPV8yyYPanf/zCznpdZ5mtVTH9483J+/NSLvO9t4/stzLLMBZVnwO5c1cWC2Uf2KsCqXXf/Opasep6zZ0/qVYBVS8utjcT0mVsf5UdPvsDpx7659AVYtSw/u2r18leuRVgehnICM7OBKaIIy4tzmNmBpahPR5qZmZlZP4bcnTBJm4Fnq5rGA7U/SlIOZY6vzLGB42tWmeNrNLa3RMTQe6K9hho5rJ4y/wzrcdyDa6jGDUM39kbi7jd/DbkirC9J7WV+m6LM8ZU5NnB8zSpzfGWOrUyG6nFy3INrqMYNQzf2VsXttyPNzMzMCuAizMzMzKwA+0MRdn3RAaQoc3xljg0cX7PKHF+ZYyuToXqcHPfgGqpxw9CNvSVxD/lnwszMzMyGov3hTpiZmZnZkOMizMzMzKwALsIsM0kPSLqw6DiykjRV0nZJw9N7Zx5zkaTPt2o8Mxsczl/OX2XkImw/I+kZSTuSi7dL0g2SxhQQx82Snpf0iqSn6iU/SR+X9NMWzPmMpN/sXo6IDRExJiJeT9Y3lIRrxRURF0XEl5qN1cz2VZb8VRXPTEk7Jd1cp4/zlw2Yi7D90wciYgwwB3gHcFkBMVwBTIuIQ4EPAl+W9BsFxGFmQ0sZ8le3a4HlBc5v+zkXYfuxiOgC7qGSzACQdKmk/5S0TdIaSb9dte7jkn4q6WuSXpK0XtL8WmNLmiRplaTP9DP36ojY1b2YfP1qlriTV4SfScZ/WdKtkkYl68ZLulvSVkm/kPQTScMkfReYCtyVvIr+rKRpkkLSCElfAU4GrknWX1O9vmruByRdKOlYYBEwN+m/NVl/g6QvV/X/hKSOJJalko6qWheSLpK0Ljme10pSsm6GpAeT/XtR0q1Zjo3ZgaLI/JX0ORfYCtzXSNzOX9YIF2H7MUmTgflAR1Xzf1K5mA8D/hy4WdKkqvXvAtZS+btYVwLf6b7wqsadBjwIXBMRX6sz/7ck/RL4GfA88IMGwv8dYB4wHZgNfDxp/xOgE5gATAT+FIiI+BiwgeRVdERcWT1YRPwZ8BPg4mT9xfUmj4gngYuAh5P+h9fYv/dRueP3O8AkKn8P8JY+3c4C3gkcn/Q7M2n/EnAvcAQwGfhmvXjMDjRF5i9JhwJ/QSXfDITzl2XiImz/tETSNmAj8ALwxe4VEfGPEfFcROyNiFuBdcCJVds+GxF/nzyHcCOVi3Ni1fpZwAPAFyOi7i+ri4j/BYylkjTvAHbV69/HN5I4fwHcxRuvhncnMb0lInZHxE+iuF9291FgcUQ8mtz1u4zKK89pVX2+GhFbI2IDcD+99+MtwFERsTMimn6mxGw/UYb89SXgOxGxcYD74PxlmbgI2z+dHRFjgVOAX6PyqhAASedLWpncDt8KvL16PdDV/U1E/DL5tvrB2I8CPwduyxJIRLyeXKCTgd9vYB+6qr7/ZVUMf03llfG9kp6WdGkDY7baUVRePQIQEduBLcDRVX3624/PAgL+XdJqSb+Xc6xmQ0Wh+UvSHOA3gaua2AfnL8vERdh+LCIeBG4AvgYg6S3A3wMXA+OSW9RPULmYsroceBH4nhr76PQIMj4TVk9EbIuIP4mItwIfAP5Y0mndq9M277P8avLvm6rajqzTv6/nqLwaBEDSIcA4Kkm+fiARXRHxiYg4Cvgk8C1JM9K2MztQFJi/TgGmARskdQGfAc6R9Gij+9CX85f15SJs/3c1cHry6u4QKhfmZgBJF1B5JdmI3cCHk7G+K2mfc0jSmyWdK2mMpOGSzgQ+Avx4wHvxxthnJQ+FCngFeD35AtgEvLXO5r3WR8RmKgnnvCTO36N3obgJmCzpoH7G+x5wgaQ5kg4G/hL4t4h4JsN+fDh55gXgJSo/l9frbGJ2ILqaQc5fVP4m4K9SeettDpUH3P+JN56HGjDnL+vLRdh+LrlQbwI+HxFrgL8BHqZygR4H/OsAxnwN+G/Am4HFNRJZUHnrsZPKBfo14I8i4s6B7keVmcC/ANup7Me3IuKBZN0VwOeStypqferpb4EPJZ/0+UbS9gng/1C5Df/rwLKq/j8GVgNdkl7sO1hE3Ad8HridygcPfhU4N+N+vBP4N0nbgaXApyJifcZtzQ4IReSviPhlcqenK/mE5nZgZxJLs5y/rBf/AW8zMzOzAvhOmJmZmVkBXISZmZmZFcBFmJmZmVkBXISZmZmZFcBFmJmZmVkBRqR3KZfx48fHtGnTig7DzAbRihUrXoyICUXH0QrOYWYHlnr5a8gVYdOmTaO9vb3oMMxsEEl6Nr3X0OAcZnZgqZe/cns7UtJiSS9IeqKf9ZL0DUkdklZJOiGvWMzMGuUcZmZ5y/OZsBuAeXXWz6fy24NnAguBv8sxFhtk7eu38PV719K+fsuAtt+yfRePbdzKlu27BjR+2vYdm7ZxW/tGOjZty2X7Zvf/vjVdXHLbY9y3pqvm+jyPb9q+NzM2pB+7ErkB57CGNXv+5KGVMWU5f1s132AfyyzztapPI/3SlG2cRuT2dmREPCRpWp0uC4CbovIr+x+RdLikSRHxfF4x2eA479uP8NOOSnHwjR93cPKMcXz3wpMyb3/nyp9zye2rGDlsGLv37uXKc2bzwTlHZx4/bfsvLHmcmx7Z0LN8/typ/MWC41q2fbP7f8ZVD/DUpsrf5r21vZNjJh7CPZ8+pWXj19u/tH1vZmxIP3Zl4hzWuGbPn7LHlOX8bdV8g30ss8zXqj6t3L+yjdOoIj8deTSwsWq5M2mzIax9/ZaeAqHbTzq2ZL5js2X7Li65fRU7d+9l26497Ny9l8/evqrnlUna+Gnbd2za1iuJAtz08IaeV7XNbt/s/t+3pqunAOu2dtOrPXfE8jy+afvezNiQfuyGIOewKs2eP2WPKcv526r5BvtYZpmvVX1auX9lG2cgiizCVKOt5h+ylLRQUruk9s2bW/E3VC0vD63b5+/E1m3vq/OlHYwc1vu0HDlsGJ0v7cg0ftr2Kzdurbl9d3uz2ze7//eu2VS3Pc/jm7bvzYwN6cduCHIOq9Ls+ZOHVsaU5fxt1XyDfSyzzNeqPo30a0XcgznOQBRZhHUCU6qWJwPP1eoYEddHRFtEtE2YsF98Sn2/9Z6Z4xtq72vyEaPZvXdvr7bde/cy+YjRmcZP237OlMNrbt/d3uz2ze7/GbMm1m3P8/im7XszY0P6sRuCnMOqNHv+5KGVMWU5f1s132AfyyzztapPI/1aEfdgjjMQRRZhS4Hzk08YnQS8fCA/S7G/aJs+jpNnjOvVdvKMcbRNH9fPFr2NG3MwV54zm1EjhzH24BGMGjmMK8+ZzbgxB2caP237GRPHcv7cqb22P3/uVGZMHNuS7Zvd/9NmHckxEw/p1XbMxEM4bdaRLRm/3v6l7XszY0P6sRuCnMOqNHv+lD2mLOdvq+Yb7GOZZb5W9Wnl/pVtnIFQ5ZnSHAaWvg+cAowHNgFfBEYCRMQiSQKuofLpo18CF0RE6i/PaWtrC/+OnfJrX7+Fh9a9yHtmjs9cIFTbsn0XnS/tYPIRo2teCGnjp23fsWkbKzduZc6Uw2sWAc1u3+z+37emi3vXbOKMWRN7CrBWjl9v/9L2vZmxIf3Y1SJpRUS0NRxME5zDBqbZ8ycPrYwpy/nbqvkG+1hmma9VfRrp14q4B3Ocvurlr9yKsLzs7wnMzPZVRBGWF+cwswNLvfzlvx1pZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFyLUIkzRP0lpJHZIurbH+MEl3SXpM0mpJF+QZj5lZVs5fZpa33IowScOBa4H5wCzgI5Jm9en2B8CaiDgeOAX4G0kH5RWTmVkWzl9mNhjyvBN2ItAREU9HxGvALcCCPn0CGCtJwBjgF8CeHGMyM8vC+cvMcpdnEXY0sLFquTNpq3YNcCzwHPA48KmI2Nt3IEkLJbVLat+8eXNe8ZqZdWtZ/gLnMDOrLc8iTDXaos/ymcBK4ChgDnCNpEP32Sji+ohoi4i2CRMmtDpOM7O+Wpa/wDnMzGrLswjrBKZULU+m8oqx2gXAHVHRAawHfi3HmMzMsnD+MrPc5VmELQdmSpqePKx6LrC0T58NwGkAkiYCxwBP5xiTmVkWzl9mlrsReQ0cEXskXQzcAwwHFkfEakkXJesXAV8CbpD0OJXb/5dExIt5xWRmloXzl5kNhtyKMICI+AHwgz5ti6q+fw44I88YzMwGwvnLzPLm35hvZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVgAXYWZmZmYFcBFmZmZmVoBcizBJ8yStldQh6dJ++pwiaaWk1ZIezDMeM7OsnL/MLG8j8hpY0nDgWuB0oBNYLmlpRKyp6nM48C1gXkRskPTmvOIxM8vK+cvMBkOed8JOBDoi4umIeA24BVjQp8/vAndExAaAiHghx3jMzLJy/jKz3GUqwiT9VZa2Po4GNlYtdyZt1d4GHCHpAUkrJJ2fJR4zs6ycv8ysrLLeCTu9Rtv8lG1Uoy36LI8AfgP4LeBM4POS3rbPQNJCSe2S2jdv3pwlXjOzboXmL3AOM7Pa6hZhkn5f0uPAMZJWVX2tB1aljN0JTKlangw8V6PPDyPi1Yh4EXgIOL7vQBFxfUS0RUTbhAkT0vbJzKw0+Qucw8ystrQH878H/DNwBVD96aBtEfGLlG2XAzMlTQd+DpxL5RmKancC10gaARwEvAu4KmPsZmb1OH+ZWamlFWEREc9I+oO+KyT9Sr1EFhF7JF0M3AMMBxZHxGpJFyXrF0XEk5J+SOVV6V7g2xHxxID3xszsDc5fZlZqiuj7mEPVSunuiDgruX0f9H5OIiLirXkH2FdbW1u0t7cP9rRmViBJKyKircFtSpe/wDnM7EBTL3/VvRMWEWcl/07PIzAzs7w4f5lZ2WX+Za2SZgPTqreJiDtyiMnMrKWcv8ysjDIVYZIWA7OB1VSefYDK7X0nMTMrNecvMyurrHfCToqIWblGYmaWD+cvMyulrL+s9WFJTmJmNhQ5f5lZKWW9E3YjlUTWBeyi8imjiIjZuUVmZtYazl9mVkpZi7DFwMeAx3njmQozs6HA+cvMSilrEbYhIpbmGomZWT6cv8yslLIWYT+T9D3gLiq38wF/xNvMhgTnLzMrpaxF2GgqyeuMqjZ/xNvMhgLnLzMrpUxFWERckHcgZmZ5cP4ys7KqW4RJ+iaVV4w1RcT/bnlEZmYt4PxlZmWX9nvC2oEVwCjgBGBd8jUHeD3XyMzMmuP8ZWalVrcIi4gbI+JGYCZwakR8MyK+CZxGJZHVJWmepLWSOiRdWqffOyW9LulDDcZvZlaT85eZlV3W35h/FDC2anlM0tYvScOBa4H5wCzgI7V+a3XS76+AezLGYmbWCOcvMyulrJ+O/CrwH5LuT5bfC1yess2JQEdEPA0g6RZgAbCmT78/BG4H3pkxFjOzRjh/mVkpZboTFhH/AMwFnqTyse7LgPUpmx0NbKxa7kzaekg6GvhtYFHGeM3MGuL8ZWZllelOmKQLgU8Bk4GVwEnAw8D76m1Wo63vJ5WuBi6JiNelWt175l8ILASYOnVqlpDNzIDi81cSg3OYme0j6zNhn6Jyu/3ZiDgVeAewOWWbTmBK1fJk4Lk+fdqAWyQ9A3wI+Jaks/sOFBHXR0RbRLRNmDAhY8hmZkDB+Qucw8ystqzPhO2MiJ2SkHRwRPxM0jEp2ywHZkqaDvwcOBf43eoOETG9+3tJNwB3R8SSzNGbmaVz/jKzUspahHVKOhxYAvxI0kvs+6qwl4jYI+liKp8aGg4sjojVki5K1vs5CjMbDM5fZlZKiuj3F0rX3kB6L3AY8MOIeC2XqOpoa2uL9vb2wZ7WzAokaUVEtLVgnELzFziHmR1o6uWvrHfCekTEg82HZGY2+Jy/zKxMsj6Yb2ZmZmYt5CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwK4CLMzMzMrAAuwszMzMwKkGsRJmmepLWSOiRdWmP9RyWtSr6WSTo+z3jMzLJy/jKzvOVWhEkaDlwLzAdmAR+RNKtPt/XAeyNiNvAl4Pq84jEzy8r5y8wGQ553wk4EOiLi6Yh4DbgFWFDdISKWRcRLyeIjwOQc4zEzy8r5y8xyl2cRdjSwsWq5M2nrz/8E/jnHeMzMsnL+MrPcjchxbNVoi5odpVOpJLH/2s/6hcBCgKlTp7YqPjOz/rQsfyV9nMPMbB953gnrBKZULU8GnuvbSdJs4NvAgojYUmugiLg+Itoiom3ChAm5BGtmVqVl+Qucw8ystjyLsOXATEnTJR0EnAssre4gaSpwB/CxiHgqx1jMzBrh/GVmucvt7ciI2CPpYuAeYDiwOCJWS7ooWb8I+AIwDviWJIA9EdGWV0xmZlk4f5nZYFBEzcccSqutrS3a29uLDsPMBpGkFftLgeMcZnZgqZe//BvzzczMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzArgIszMzMysAC7CzMzMzAqQaxEmaZ6ktZI6JF1aY70kfSNZv0rSCXnGY2aWlfOXmeUttyJM0nDgWmA+MAv4iKRZfbrNB2YmXwuBv2tlDFu27+KxjVvZsn1XK4cdlPk7Nm3jtvaNdGzaVnN9+/otfP3etbSv31Jz/X1rurjktse4b03XgNanxZ62Pi2+tP276p4nOeWv7+eqe56suf7mZev58KJl3Lxsfc31Sx7dyIU3LmfJoxtrrr/u/nXM/9uHuO7+dTXXpx2ftPHT4kvbv7T5045v2vp68TX7s0+Ttm9l4PxVW9p51epxsvTLcpyy9PnKXU8w94p/4St3PVE3prTcBdnO8Vb1GexjmWX/s/TJOl+WPq3KKVmvuaz7l4UioulBag4szQUuj4gzk+XLACLiiqo+1wEPRMT3k+W1wCkR8Xx/47a1tUV7e3vq/Heu/DmX3L6KkcOGsXvvXq48ZzYfnHN0czvVgGbm/8KSx7npkQ09y+fPncpfLDiuZ/m8bz/CTzveuJBOnjGO7154Us/yGVc9wFObXu1ZPmbiIdzz6VMyr0+LPW19Wnxp+zfzsn9id9VpOVKw7orf6lk+/vIf8vLO13uWDxs1nMcun9ezfNJf/oiuV17rWZ506EE8/Ken9ywf+7kfsGPPGxOMHiGe/PL7Mx+ftPHT4kvbv7T5045v2vp68TX7s0+Ttm/9kbQiItoyT9SkvPIXZMthReevWtLOq1aPk6VfluOUpc9bL/0n9lYtDwOe/upv0Vda7oJs53ir+gz2scyy/1n6ZJ0vS5+B5pSBxNPI/lWrl7/yfDvyaKD6NkFn0tZon4Zt2b6LS25fxc7de9m2aw87d+/ls7evGrRXlM3M37FpW68fMMBND2/oqbjb12/pdTEB/KRjS8+rm/vWdPU6IQHWbnq15xVC2vq02NPWp8WXtn9X3fNkrwIFYHfQc8fo5mXrexUQAC/vfL3njs6SRzf2KpAAnn/ltZ47Vtfdv65XAQawY0/03BFLOz5p46fFl7Z/afOnHd+09fXia/ZnnyZt30rmgM1ftaSdV60eJ0u/LMcpS5+v3PVErwIMYG/SXi0td0G2c7xVfQb7WGbZ/yx9ss6XpU+rckrWay7r/jUizyJMNdr63nbL0gdJCyW1S2rfvHlz6sSdL+1g5LDeuzZy2DA6X9qRum0rNDP/yo1b67Y/tO7Fmuu72+9ds6nm+u72tPVpsaetT4svbf/uXFX74uluv3NV7ZsM3e13P157++72Jf1s392ednzSxk+LL23/0uZPO75p6+vF1+zPPk3avpVMy/IXNJbDis5ftaSdV60eJ0u/LMcpS5+7n+jnmu7Tnpa7INs53qo+g30ss+x/lj5Z58vSp1U5Jes1l3X/GpFnEdYJTKlangw8N4A+RMT1EdEWEW0TJkxInXjyEaPZvbf3a5vde/cy+YjRGUNvTjPzz5lyeN3298wcX3N9d/sZsybWXN/dnrY+Lfa09Wnxpe3fgtlH1lzf3b5g9qR+1lfazzqu9vbd7Wf3s313e9rxSRs/Lb60/UubP+34pq2vF1+zP/s0aftWMi3LX9BYDis6f9WSdl61epws/bIcpyx9znp7P9d0n/a03AXZzvFW9RnsY5ll/7P0yTpflj6tyilZr7ms+9eIPIuw5cBMSdMlHQScCyzt02cpcH7yKaOTgJfTnqfIYtyYg7nynNmMGjmMsQePYNTIYVx5zmzGjTm42aFzn3/GxLGcP3dqr7bz505lxsSxALRNH8fJM8b1Wn/yjHG0Ta+0nTbrSI6ZeEiv9cdMPITTZh2ZaX1a7Gnr0+JL279Pn3ksI/vcXxipSjvAee+ezmGjhvdaf9io4Zz37ukAnH3CFCYdelCv9ZMOPYizT6j8X/nJU2cyekTvCUaPEJ88dWam45M2flp8afuXNn/a8U1bXy++Zn/2adL2rWQO2PxVS9p51epxsvTLcpyy9PmzD7x9n/8IhyXt1dJyF2Q7x1vVZ7CPZZb9z9In63xZ+rQqp2S95rLuXyNyezAfQNL7gauB4cDiiPiKpIsAImKRJAHXAPOAXwIXRETdJ1azPpgPlfd5O1/aweQjRheSwJqZv2PTNlZu3MqcKYfX/AG3r9/CQ+te5D0zx9dMhPet6eLeNZs4Y9bEmidk2vq02NPWp8WXtn9X3fMkd67qYsHsI3sKlGo3L1vPnaueZ8HsST0FTrUlj27k7se7OOu4I3sKpGrX3b+OJaue5+zZk3oKsGppxydt/LT40vYvbf6045u2vl58zf7s06TtWy2D/WB+MmfL8xdkz2FF569a0s6rVo+TpV+W45Slz1fueoK7n+jirLcfuU8BVi0td0G2c7xVfQb7WGbZ/yx9ss6Xpc9AcspA54Ls+9etXv7KtQjLQyNFmJntH4oowvLiHGZ2YCnq05FmZmZm1o8hdydM0mbg2aqm8UBjH9EZXGWOr8yxgeNrVpnjazS2t0RE+qdyhoAaOayeMv8M63Hcg2uoxg1DN/ZG4u43fw25IqwvSe1lfpuizPGVOTZwfM0qc3xljq1MhupxctyDa6jGDUM39lbF7bcjzczMzArgIszMzMysAPtDEXZ90QGkKHN8ZY4NHF+zyhxfmWMrk6F6nBz34BqqccPQjb0lcQ/5Z8LMzMzMhqL94U6YmZmZ2ZBT6iJM0hRJ90t6UtJqSZ9K2n9F0o8krUv+PaJqm8skdUhaK+nMnOMbJenfJT2WxPfnZYovmW+4pP+QdHcJY3tG0uOSVkpqL2F8h0u6TdLPknNwblnik3RMcty6v16R9Ecliu/TyTXxhKTvJ9dKKWIri6GQP+opc26pp+x5p07cpc1HdWIudZ5KiX1wclhElPYLmASckHw/FngKmAVcCVyatF8K/FXy/SzgMeBgYDrwn8DwHOMTMCb5fiTwb8BJZYkvmfOPge8BdyfLZYrtGWB8n7YyxXcjcGHy/UHA4WWKryrO4UAX8JYyxAccDawHRifL/w/4eBliK9PXUMgfKfGXNrekxF3qvFMn7iGRj+rEX6o8lRLroOWwwn4gAzwwdwKnA2uBSUnbJGBt8v1lwGVV/e8B5g5SbG8CHgXeVZb4gMnAfcD7qhJlKWJL5qiVDEsRH3BochGqjPH1iekM4F/LEl+SwDYCvwKMAO5OYiw8trJ+lTF/pMRb6tySEntp806dmIdMPqqzD6XKUymxDloOK/XbkdUkTQPeQeXV4sSIeB4g+ffNSbfuA9etM2nLM67hklYCLwA/iogyxXc18Flgb1VbWWIDCOBeSSskLSxZfG8FNgP/kLzl8m1Jh5QovmrnAt9Pvi88voj4OfA1YAPwPPByRNxbhtjKpuT5o56rKXduqafMeac/Qykf9adUeaqewcxhQ6IIkzQGuB34o4h4pV7XGm25fvwzIl6PiDlUXhmeKOntdboPWnySzgJeiIgVWTep0Zb3R2f/S0ScAMwH/kDSe+r0Hez4RgAnAH8XEe8AXqVy+7k/RRw/JB0EfBD4x7SuNdryOveOABZQuS1/FHCIpPPKEFvZlDV/1DNEcks9Zc47/RkS+ag/ZcxTdYMYxBxW+iJM0kgqBdj/jYg7kuZNkiYl6ydReRUJlepzStXmk4HnBiPOiNgKPADMK0l8/wX4oKRngFuA90m6uSSxARARzyX/vgD8f8CJJYqvE+hM7kwA3EYlCZYlvm7zgUcjYlOyXIb4fhNYHxGbI2I3cAfw7pLEVkolzB/1lD631FPyvNOfoZKP+lPGPFXPoOWwUhdhkgR8B3gyIr5etWop8D+S7/8HlWfFutvPlXSwpOnATODfc4xvgqTDk+9HU/nB/awM8UXEZRExOSKmUbkN/OOIOK8MsQFIOkTS2O7vqbzf/kRZ4ouILmCjpGOSptOANWWJr8pHeOMWf3ccRce3AThJ0puSa/g04MmSxFYaZc4f9ZQ9t9RT9rzTnyGUj/pTxjxVz+DlsMF+4K3Bh+P+K5VbequAlcnX+4FxVB4KXZf8+ytV2/wZlU8mrAXm5xzfbOA/kvieAL6QtJcivqo5T+GNh2dLERuVZxweS75WA39WpviS+eYA7cnPdwlwRMniexOwBTisqq0U8QF/TqWgeAL4LpVPDZUitrJ8DZX8kbIPpcstKfGWPu/Uib3U+ahO3KXNUylxD0oO82/MNzMzMytAqd+ONDMzM9tfuQgzMzMzK4CLMDMzM7MCuAgzMzMzK4CLMDMzM7MCuAgzMzMzK4CLMBtSJI0oOgYzs4FyDrNq/j1hViqSPg98lMofQ30RWAGcBSyj8udSllL58y5fB8YkfT4eyR9VNTMrknOYNcIVuZWGpDbgHOAdVM7NR6kkMIDDI+K9yd8SfRBYEBGbJf134CvA7xURs5lZN+cwa5SLMCuT/wrcGRE7ACTdVbXu1uTfY4C3Az+q/EkvhgN+BWlmZeAcZg1xEWZlojrrXq3qszoi5g5CPGZmjXAOs4b4wXwrk58CH5A0StIY4Ldq9FkLTJA0F0DSSEm/PphBmpn1wznMGuI7YVYaEbFc0lLgMeBZoB14uU+f1yR9CPiGpMOonMNXA6sHOVwzs16cw6xR/nSklYqkMRGxXdKbgIeAhRHxaNFxmZll4RxmjfCdMCub6yXNAkYBNzp5mdkQ4xxmmflOmJmZmVkB/GC+mZmZWQFchJmZmZkVwEWYmZmZWQFchJmZmZkVwEWYmZmZWQFchJmZmZkV4P8HnKf+13N2iWUAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "df1 = df[df['rank']==1]\n", "df2 = df[df['rank']==2]\n", "df3 = df[df['rank']==3]\n", "df4 = df[df['rank']==4]\n", "#\n", "fig = plt.figure(figsize = (10, 5))\n", "ax1 = fig.add_subplot(221)\n", "df1.plot.scatter('gre','admit', ax = ax1)\n", "plt.title('Rank 1 Institutions')\n", "ax2 = fig.add_subplot(222)\n", "df2.plot.scatter('gre','admit', ax = ax2)\n", "plt.title('Rank 2 Institutions')\n", "ax3 = fig.add_subplot(223, sharex = ax1)\n", "df3.plot.scatter('gre','admit', ax = ax3)\n", "plt.title('Rank 3 Institutions')\n", "ax4 = fig.add_subplot(224, sharex = ax2)\n", "plt.title('Rank 4 Institutions')\n", "df4.plot.scatter('gre','admit', ax = ax4);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Logistic Regression" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Logistic regression is concerned with estimating a __probability.__\n", "\n", "However, all that is available are categorical observations, which we will code as 0/1.\n", "\n", "That is, these could be pass/fail, admit/reject, Democrat/Republican, etc." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now, a linear function like $\\alpha + \\beta x$ cannot be used to predict probability directly, because the linear function takes on all values (from -$\\infty$ to +$\\infty$), and probability only ranges over $(0, 1)$.\n", "\n", "However, there is a transformation of probability that works: it is called __log-odds__." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "For any probabilty $p$, the __odds__ is defined as $p/(1-p)$. Notice that odds vary from 0 to $\\infty$, and odds < 1 indicates that $p < 1/2$.\n", "\n", "Now, there is a good argument that to fit a linear function, instead of using odds, we should use log-odds. That is simply $\\log p/(1-p)$." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "hide_input": true, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAEhCAYAAACUW2yNAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAAt7UlEQVR4nO3deXhU5d3/8fcXAoQtbFnYd8K+iIi4gLKoqHWp1bZal9Zard0XH7v92tra1W7P01bb2qpYt1ZbtS61FUXEXUB2DGGHBMhCSCD7dv/+OCc6JgFmyMycyeTzuq65kjlz5pzvPZPMZ859n8Wcc4iIiITqFHQBIiKSeBQOIiLSgsJBRERaUDiIiEgLCgcREWlB4SAiIi0oHEREpAWFg4iItKBwaMfM7JNm5sxsbJzWd5uZuWbTLjWzr4X5/KZ6W7stik3VYdV11Da01uagxKsWM/udmT3dhucPMrNGMzvDvz/UX+YbZlbpv98jo1ZwG5nZV81svZnp8zCEXgyJxF+A05pNuxQIKxxCXOEvJ/T2dluLa4NLOXobWmtz0jKzMcBNwA/asJhLgSLgDf/+WOCjwCHglbbUFyN/BDKB64IuJJGkBF2AtB/OuTwgLwqLWuuc2xaF5cRcFNvcXnwFWOecW9WGZVwKPOWca/Tvr3DOZQGY2Q3AuW2qMMqcc1Vm9lfgFuC+oOtJFNpySHJmttjfnK8yszIze9LMxrcy35VmlmNm1Wa2wcwuNrPlZrY8ZJ4PdGuY2RK8b1tDQrqHdrWx3iWtLaN5LaH1mNk4M3vWzMrNbLeZfa95F4GZTTezJ8zsoP9abDGzbx2vDUfpSjvuaxpJbW0R5fe3G3A18HArz3/bzB41sx+a2XZ/OevNbGGz+dKAs4Enm6aFhETchVs38DdgkpmdHkSdiUjhkMTMbDHwLFAOfAy4GZgCvGpmQ0LmOwd4CMgBPgL8EvhfIPs4q7gd+DdeF0JT99CHwyits5mlhNw6R9KuVjwBLMP7xvokXpfIe10EZjYbr4tjDPBV4ELg18DQSNsQ7msaQW0j/RC5LbImx+T9nQP0pVnXj5mlAFPxXrcz8V7DK/F6Hh43s/SQ2S8EaoEXIm1PtEVY91rgMLA4zmUmLuecbu30BnwScMDYozy+CtgKpIRMGwXUAb8OmfY6sBGwkGkz/WUvD5l2m/cn84F1LAHyIqy3+e3VZsvb1cpzl4fWEloP8Klm0zcAz4fcXwHsBXocpa6jtqF5myN4TcOtbQRQD3wvjNfvRGsJ9/39BtAIdG223mn+vC8DnUOmn+VP/3DItL8Djx2jDTf4zxkZh/+PsOv2p78S+t509Ju2HJKUmfXE+wD4u3Ouvmm6c24n8BrePwj+t/ZZwD+d/x/iz/cOsDNG5X0YOCXk9uk2Lu/ZZvc3AsMBzKwHcAbwkHOusi0rCfc1Dbc2/7m7nXMpzrkfxqKWCN/fwcBh51xts+kn+z+/7ZxrCJme4/8c4K+rK9437ycjaUtrzGyRHX3PttDb8mMsJqy6QxThvQaCBqSTWT/AgP2tPHYA7xsrQDrQBShsZb6C2JTGRhfdAemSZvdrgFT/93543afRGFQO9zUNt7Z41BLJ+5vq19fcTGCfc+61ZtObPkibXtuFQHdaBuKJeB2YGMZ8xwr8cOtuUoVXv6BwSGaH8DadB7by2EDgoP97MV43RGYr82UBe2JS3dFVA11bmT6A92uOxCG8rpLWxgNOZFnhvKbxEIv39yBe6DQ3E8hvZfrH8D6cm8YoLgVeds6VHrv04/O38nKOO+OxhVt3k/54r5egAemk5ZyrAFYDV4QO+JrZCOB0vH5Y/M3tVcBHzMxC5jsZr//6eGqI7ret3UBW6GChefvet9gDJxz+h8yrwNVmdrQ6w2pDuK9pPMTo/c0BupjZ0JD5OgHTgRH+AG/T9MHA54DfO+cq/GVfRBS6lKIh3LqbPW0UsCV+VSY2hUNyWGxmlze7nQN8FxgHPGNmF5nZlcBSoAz4Vcjzvw9MBp4wswvM7FrgMbzuiePthrgZ6G9mN5vZKWY2tY1teQzvG/FDZnaemX0C+Bdt+0Z3C96Wxxtmdo2ZzTezT5vZ7/zHI2lDuK9pWMxshJnVm9n3In1uBLWE+/6u8H/ODpk2AeiJF6BLzGyhmV2H9607x182eHs6DcJ7r1pr5+VmdjnvjwOc709rbZwmGsKtu6m+vnh7b61APEGPiOt24jeOvvePw+vXB2+A8A28/tQyvH/e8a0s6yq8b001wCa8QeM1wBMh89xGy72VegKP8H43x64w6m1176qQ+S7FG7itAtbhHTS1nKPvrZTSbPqS5nUAJwFPA6X+cnOAbxyvDUdp83Ff03BrA0b6890Wxvt9QrWE+/76870F3Bdy/2q/vinAM3jdMQXA74DeIfP9HFh5jNqP9ne6/HjtPsH/jbDqDpn/E3hdmgNi+T/bnm7mvzAiH+B3LWwDfuycuz3oeiS6jvb+mtkngf8DBjnnKs3sN8Dlzrlhx1leDvCAc+7HMSw7bOHWHTL/c0Cxc+6a2FbWfigcBL8v/td4By4VA6OBW/EGLCc751rbI0baiUjeX3/8YgNwr3Pul2b2MnDIOXdp3Atvg0jqNrMZwJvAFNdOTusSD9pbSQAa8PZw+T1e33wFXt/sFQqGpBD2++ucazCz64GZ/iDzDLwjqtuNE6h7IN7BigqGENpyEBGRFrS3koiItJA03Urp6elu5MiRQZchItKurF69utg5l9F8etKEw8iRI1m1qi2noBcR6XjMbHdr09WtJCIiLSgcRESkBYWDiIi0oHAQEZEWFA4iItKCwkFERFpQOIiISAsKBxGRdmp7UTm/XppL4eHqqC9b4SAi0k69vv0gv31xK7UNx7smV+QUDiIi7dT6vaUM6NmVIX2jeaVej8JBRKSd2pBfxtShfQi5PHjUKBxERNqhytp6cguOMG1o35gsX+EgItIObd53mEYH04b0icnyFQ4iIu3QurwyAKYNVTiIiIhvQ14pA9NSyUxLjcnyFQ4iIu3Qen8wOlYUDiIi7czh6jp2FFUwXeEgIiJNNuZ74w1TY7SnEiR4OJjZODOrNrMHg65FRCRRrG8ajI7RnkqQ4OEA3AmsDLoIEZFEsiGvjGH9u9OvZ9eYrSNhw8HMPg6UAi8GXIqISEJZn18as4PfmiRkOJhZGvBD4OvHme9GM1tlZquKioriU5yISIBKKmrZW1IV0y4lSNBwAG4H7nHO7T3WTM65u51zs5xzszIyMuJUmohIcDbkNx381jem60mJ6dJPgJnNABYBJwVciohIwnltWzFdOhtThqTFdD0JFw7A2cBIYI9/psFeQGczm+ScmxlgXSIigWpsdDy9bh/zxmXQO7VLTNeViN1KdwNjgBn+7Y/As8B5wZUkIhK81XsOsb+smotnDI75uhJuy8E5VwlUNt03s3Kg2jmnEWcR6dCeWruP1C6dWDQxK+brSrhwaM45d1vQNYiIBK2+oZF/b9jPwolZ9OwW+4/uROxWEhGRZl7ffpCDFbVcNC32XUqgcBARaReeWreP3t1SOHt8fHbbVziIiCS4mvoG/rvxAOdOHkhql85xWafCQUQkwS3fUsSRmnoumj4obutUOIiIJLglr+0is3c3zhibHrd1KhxERBLY6t2HeGPHQW6cN5ouneP3ka1wEBFJYHe+tI1+Pbpw1anD47pehYOISILamF/GspxCrj9jFD26xvewNIWDiEiCumv5Nnp3S+Ha00fGfd0KBxGRBLSt8AjPbTzANaeNoE/32J5krzUKBxGRBPSr53PpltKJ688cFcj6FQ4iIglm+ZZCntt4gM+fPZb0Xt0CqUHhICKSQKrrGvjevzYxOqMnN541OrA6Ev6srCIiHcldL21jT0klD99wKt1S4nOqjNZoy0FEJEHsKCrnjy/v4JIZgzk9jkdDt0bhICKSAOobGrn1H+vp1qUT37lwYtDlqFtJRCQR/OaFXFbtPsT/fXwGmb1Tgy5HWw4iIkFbkVvEXcu38/FThnHJjCFBlwMoHEREAlV4uJqv/n0t4zJ78f2LJgddznvUrSQiEpDqugY+//A7VNTW87er5tC9a3B7JzWncBARCUBjo+N//rGelbsO8dsrT2JcVu+gS/oAdSuJiATgl89v4el1+7h18Xgunj446HJaUDiIiMTZw2/t4a7l27ly9jBuPmtM0OW0SuEgIhJH/1ydx3ee3MBZ2RncfskUzCzoklqlcBARiZMn1uRxyz/WcfqYAfzx6pNJieNlPyOVuJWJiCSRJ9fk8/VH13Ha6AH85dpTEmrPpNZobyURkRhb8tpOfvDMZuaMGsA91yV+MIDCQUQkZpxz3PHfLfxh+XbOm5zF/338JFK7JH4wgMJBRCQmauob+NbjG3j8nXyuOnU4t18yhc6dEnPwuTUKBxGRKCs8XM1ND65mzZ5SvnZONl9cMDZh90o6GoWDiEgUrd1byk0PrOJwVT13fWImF0wdFHRJJ0ThICISBc45HnhzNz965l0y07rxz5tPZ9LgtKDLOmEKBxGRNiqrquOb/1zPcxsPcPb4DH790Rn079k16LLaJOHCwcy6AXcBi4D+wDbg28655wItTESkFW/vLOFrj67lQFk1375gAjecOZpO7Wjg+WgSLhzwatoLnAXsAS4AHjWzqc65XUEWJiLSpLqugV8vzeXPr+xgWL8ePPrZ05g5vF/QZUVNwoWDc64CuC1k0jNmthM4GdgVRE0iIqHW7i3l1n+sI7egnE+cOpxvXzCRnt0S7uO0TRK+NWaWBWQDm1p57EbgRoDhw4fHuTIR6Wgqaur55fNbWPL6LrJ6p3Lfp05h/vjMoMuKiYQOBzPrAjwE3O+cy2n+uHPubuBugFmzZrk4lyciHYRzjqWbC/jB05vZV1bF1aeO4NbF4+md2iXo0mImYcPBzDoBDwC1wBcCLkdEOqhdxRXc9vQmlm8pIjurF4/ddBqzRvYPuqyYS8hwMO9QwnuALOAC51xdwCWJSAdzuLqOO1/axn2v7qJrSie++6FJXHvaCLok8Gm2oykhwwH4AzARWOScqwq6GBHpOOobGvnbyr38ZmkuBytquWzmEL65eAKZaalBlxZXCRcOZjYCuAmoAQ6EnI/kJufcQ4EVJiJJzTnHcxsP8Mv/bmFHcQWnjurPkgsnMXVon6BLC0TChYNzbjfQ/o8gEZF2wTnHK1uL+eXzW1ifV8a4zF7cfc3JnDMpq92dLC+aEi4cRETiwTnH69sP8uuluazefYghfbvzi8uncdnMoe3q1NqxonAQkQ7FOcfLuUXc+dI2Vu46xMC0VG6/dAofnTWUbint40I88aBwEJEOoaHRsXTzAe58aTsb8ssY1CeVH1w8mY+dMqzdXJ0tnhQOIpLUqusaeGJNPn9esYMdxRWMGNCDn39kKh8+aShdUzrGbqknQuEgIknpYHkND721h7++sZvi8hqmDEnj91edxPlTBmlMIQwKBxFJKjkHDnP/67t4/J18auobOXt8Bp+ZO5rTxwzo0HsfRUrhICLtXn1DIy+8W8CS13fx5o4SUrt04rKZQ/j0maMYm9k76PLapYjCwcwyAJxzRf79qcDHgE3OuUeiX56IyNEVHK7mkbf38Mjbeyg4XMOQvt351vkT+Ngpw+jbo31fiS1okW45PIp3Mrx7zSwdWAHsA75oZoOdc7+KdoEiIqEaGh0rthbxyFt7eDGnkIZGx1nZGfzo0hEsmJCp8YQoiTQcpgFv+r9fDmxzzp1iZpcAvwAUDiISE/mlVTy2ai+Prcojv7SKAT27csPcUVx5ynBGpvcMurykE2k4dAfK/d8XAU/5v78DDItWUSIi4O2GunRzAY+tzuOVrUUAnDk2nW9dMIFzJw3UrqgxFGk4bAUuM7N/AufibS2Ad2rt0ijWJSIdlHOONXtLefydPJ5au4/D1fUM6dudLy4YxxUnD2VY/x5Bl9ghRBoOPwAewes+etE595Y//TxgTTQLE5GOZW9JJU+uyefxNfnsLK6gW0onzp8ykCtmDeO00QPopLGEuIooHJxzj5vZcGAwsC7koReAf0azMBFJfiUVtTy7YT9Prsln9e5DAMwZ3Z+bzx7D+VMGJvVlOBNdxMc5OOcKgIJm0946yuwiIh9QXlPP0s0HeGrtPl7ZWkx9oyM7qxe3Lh7PxdMHM7Sfuo0SwXHDwczuDXdhzrnr21aOiCSjqtoGXtpSyNPr9rEsp5Ca+kaG9O3ODXNHc/H0wUwc1FtHLyeYcLYcMprdnwc0Ahv8+1OATnjHPIiIAF4gLN9SyLMb9vPiu4VU1TWQ3qsbHz9lGB+aPpiTh/fTOEICO244OOcuavrdzL4FVAGfcs5V+NN6AvfwfliISAdVUVPP8i1F/HvDfpbleIEwoGdXLps5hAunDuLU0QN0kFo7EemYw5eAhU3BAOCcqzCz24EXgR9HszgRSXxlVXW8+G4Bz208wIrcImrqG0nv1Y2PnDyE86cM4tRR/UnprOMR2ptIw6EX3p5Km5tNHwRoFEmkgyg8XM1/Nxfw/KYDvLH9IPWNjoFpqVw5eziLpwzklJH9tYXQzkUaDv8E7jOz/+H902jMAX4OPB7NwkQksWwrLGfp5gL+u+kAa/eWAjA6vSc3zB3NeZOzmD60r8YQkkik4XAz3gFwS4CmHZDr8cYcboleWSIStIZGx5o9h1i6uYClmwvYUez1Jk8b2odbzs3m3MkDGZfZS3sZJalID4KrAj7nbzmMAQzv5HsVx36miLQH5TX1vLq1iKWbC3lpSyElFbV06WzMGT2AT54xkkUTsxjct3vQZUocnNDFfvwwWB/lWkQkAHtLKlmWU8gL7xbw1o4Sahsa6dO9C/PHZ7BoUhbzsjNI05HKHU44B8G9BLhwFuacW9DmikQkpuobGnlnTynLcgpZllNAboF3ouXR6T257vQRLJyYxawR/bSHUQcXzpbDxpDfOwOfAA4ATafMmI23t9KD0S1NRKKlpKKWl3MLWZZTxIrcIsqq6kjpZMwe1Z+PzhrGggmZjM7oFXSZkkDCOQjui02/m9lvgPuBLzvnXMj0/8UbfxCRBNDY6Ni07zAvbfHGDtbuLcU5SO/VlUUTs1g4MZMzx6Wru0iOKtIxh2uB00KDwXcX3q6tX45KVSISsbLKOlZsLWL5liJezi2iuLwGM5g2pA9fXjiO+eMzmTqkj3Y3lbBEGg4GTAVym02fGp1yRCRcTVsHy7cU8nJuEe/sOUSjg749ujB3XAbzx2cwLzuD9F7dgi5V2qFIw+Fe4C9mNo4PHgR3K3BfNAsTkZZKKmp5ZWsRL28pYsXWIorLawHv2IPPzx/L2eMzmTGsr45OljaLNBxuBQrxuo9+4k/bD/wM7+A4EYmi+oZG1uWV8vKWIl7eWsz6PG/soF+PLszLzuCsbG0dSGxEehBcI3AHcIeZpfnTDseiMJGOan9ZFStyvXGDV7cWc7i6nk4GJw3vx1cXZTMvO4OpQ/po60BiKuKD4MxsKjAe79iHXHSqbpE2qa5r4O2dJbyc6+1murXQO+5gYFoqi6cM5KzsTM4cm06fHtqzSOIn7HAws5PxxhUm8/5uq87MNuJd3+GdaBVlZv3xztd0LlAMfMs593C0li8SJOcc2wrLvTDYWsxbOw5SU99I15ROzB7pHXcwLzuD7Cydt0iCE1Y4mNl44CVgK3AN3im7DZgEfB14ycxmO+e2RKmuO4FaIAuYATxrZuucc5uitHyRuCqtrOW1bQdZkesNJO8vqwZgTEZPrpw9nLPGZzBn1AC6d+0ccKUiHmt5yEIrM5k9AvQELml+jIN5X23+BVQ4565sc0HeleUOAVOcc7n+tAeAfOfcN4/2vFmzZrlVq1a1dfUiUfHeQHJuMStyi1ifV0qjg96pKZw5Np152RnMHZfO0H66DIoEy8xWO+dmNZ8ebrfSAuCiVg5+wznnzOwneAERDdlAQ1Mw+NYBZzWf0cxuBG4EGD58eJRWL3Ji9pVWvbdl0DSQbAbTh/blCwvGcVZ2OtOH9tU5i6RdCDcc+gL7jvF4HtCnzdV4egFlzaaVAb2bz+icuxu4G7wthyitXyQsVbUNvLXzICtyi1mxtYhtzQaS52VncObYdPr26BpwpSKRCzcc8oBp/s/WzADyo1EQUA6kNZuWBhyJ0vJFTohzjq2F5e8dgPbWzhJq/YHkU0f15+OneAPJugCOJINww+EJ4Bd+31RB6ANmNhDvILgnolRTLpBiZuOcc1v9adMBDUZL3JVV1vHa9uL3AqFpIHlsZi+umTOCedkZnDqqP6ldNJAsySXccLgduBDYZmYPAjl4xzlMBq7C22r4UTQKcs5VmNnjwA/N7Aa8rZJLgNOjsXyRY2lsdGzIL3vvmIM1e0tpaHTvDSR/eaF3RLKuhibJLqxwcM6VmdlpeKfM+BjQz3+oFHgA+I5zrjSKdX0O7zxOhcBB4GbtxiqxUlxewyv+2Uxf2VpMSUXte2cz/dzZYzh7fIYGkqXDCfsgOP/D/3Nm9nkgw59c1NoeTG3lnCsBLo32ckUAGhoda/ceYvkWLxA25Hv7Pwzo2ZWz/XMVzR2XzgCdr0g6sIhPn+GHQaGZDcU7EE57CUnCKy6v4eUtRSzPff9KaJ0MZg7vx9fPyeas8RlMGaxrHYg0iTgcQmzGGw/YEZ1SRKKnsdGxPr+Ml3IKWb6lkPX5Zf6V0LqxaGIW8ydkMHdshs5XJHIUbQkHfcWShFJWVccrW4tYllPIy1uKOOiPHcwY1pevLcpm/oRMJg1K09aBSBjaEg4igXLOsaO4gmXvFvJiTgErdx2iodHRt0cX5o3LYMGETOZlZ9C/pw5CE4lUW8LhJ0BJtAoRCUddQyMrd5bwwruFLMspYNfBSgAmDOzNjfNGs2BCJicN055FIm11wuHgnPtpNAsROZqyqjqWbynkhXe98YMj1fV0TenE6WMG8OkzRzF/QqZOYCcSZRGFg5nde5SHHFANbAP+7pw71nmYRI5rb0klL7xbwNLNBby9s4T6Rkd6r64snjyQRZOyOHNsOj27qVdUJFYi/e/KAOYCjcBGf9oUvMHp1cBleEc2z3XOrY1WkZL8nHO8u/8Iz28+wPObCti837v67LjMXnxm3mjOmZTFjKF9NZgsEieRhsNreCfG+7RzrhLAzHoAf8Y7rfYFwF+BXwELo1inJKGGRsc7ew7x340H+O/mA+wtqcIMZo3ox7cvmMA5kwYyKr1n0GWKdEiRhsOXgQVNwQDgnKs0sx8DLzrn7jCznwMvRLNISR51DY28taOE5zbu5/nNBRQdqaFr506cMXYAnz97LAsnZpHRW0cmiwQt0nDoBQwC3m02faD/GMDhE1iuJLHa+kZe217Mcxu8QCitrKNH187MH5/JeVMGMn98Br1TdTCaSCKJ9EP8CeAeM7sVWIk3ED0buAN43J9nNt5pt6UDq2to5LVtxTy7fj//3XSAw9X19O6WwqJJWSyeMpCzsjN0mmuRBBZpOHwW+DXwYMhz6/HOoHqLf/9d4DNRqU7alfqGRt7cUcIz6/fxn00HKK2so3dqCudMyuLCqYM4c1w63VIUCCLtQUTh4I81fNbMvg6MwdtLaZtzriJknrVRrVASmnOONXtLeWrtPp5Zv4/i8lp6du3MOZOy+NC0wczNViCItEcnOjbQgLc7q/N/lw5mW2E5/1qbz7/W7mNPSSVdUzqxcEImF00fzIIJmeoyEmnnIj0ILgX4KfAFoCvelkONmf0O74I/ddEvURLFwfIanl63j8fX5LM+r4xOBmeMTeeLC8Zy3pSBpGlQWSRpRLrlcAdwJd7Yw6v+tLl4gdGJ98cdJEnU1jeyLKeQf6zOY/mWQuobHZMGpfH/LpzIRdMHk5WWGnSJIhIDkYbDVcD1zrl/h0zbbmZFwF9QOCSNnAOHeXRlHk+uzaekopaM3t24/sxRXDZzCBMGpgVdnojEWKTh0AfY3sr07UDfNlcjgSqvqeeptfv4+6q9rNtbSpfOxjmTsrji5GHMHZeuM52KdCCRhsM64EvA55tN/7L/mLRDG/LKePjtPTy1Np+K2gbGZ/Xmux+axIdPGqJrIYh0UJGGw63Av83sHOANvL2VTgMGA+dHuTaJoeq6Bp5et48H39zNurwyUrt04kPTBnPl7OHMHN4XM53gTqQji/Q4hxVmlo235TABb2+lx4B/A1/h/UFqSVB7Syp58M3d/G3lXsqq6hib2YvbLprEh2cOpU937W0kIp6Ij3Pwr9XwndBpZjYd+Ei0ipLocs7x9s4S7n1tJ0s3F2BmnDspi2tPG8mc0f21lSAiLegEeUmsrqGRf2/Yz19e2cmG/DL69ujCZ88aw9VzRjC4b/egyxORBKZwSEIVNfX8beVe7nllB/vKqhmd0ZMff3gKl500lO5ddeSyiByfwiGJlFbWsuT1Xdz32i7KquqYPbI/t186hfnjM3UFNRGJSFjhYGZPHWcWHRUVoOLyGv7yyk4efHM35TX1nDMpi8+eNYaTR/QLujQRaafC3XI4GMbjO9tYi0SopKKWu1fs4P7Xd1FT38CF0wbz+fljdASziLRZWOHgnPtUrAuR8B2uruPPK3Zw76s7qaxr4OLpg/nSwnGMyeh1/CeLiIRBYw7tSHVdAw++uZs7X9rGoco6Lpw6iK8sGse4rN5BlyYiSUbh0A4453h6/X5+/lwO+aVVzB2XzjcWT2DKkD5BlyYiSUrhkODW7DnED5/ZzJo9pUwalMYdl0/jjLHpQZclIklO4ZCgDpbX8PP/5PDoqjwye3fjjsun8ZGZQ+msXVJFJA4SJhzMrBtwF7AI6A9sA77tnHsu0MLirLHR8dDbe/jFf3KorG3gpnmj+eLCcfTqljBvlYh0AIn0iZMC7AXOAvYAFwCPmtlU59yuIAuLl60FR/jm4xtYvfsQp48ZwA8vmczYTA02i0j8JUw4OOcqgNtCJj1jZjuBk4FdQdQUL3UNjdz50jbufGkbPbul8KsrpnPZzCE6IZ6IBCZhwqE5M8sCsoFNx5jnRuBGgOHDh8epsujaWnCErz66lo35h7l4+mC+d9Ek0nt1C7osEengEjIczKwL8BBwv3Mu52jzOefuBu4GmDVrlotTeVHR2Oi47/Vd/Pw/OfTqlsIfr57J4imDgi5LRASIYziY2XK88YTWvOacO9OfrxPwAFALfCE+1cVXSUUttzy2jmU5hSyamMlPL5tGRm9tLYhI4ohbODjnzj7ePOZ1st8DZAEXOOfqYl1XvL29s4QvPbKGkopafnjJZK6ZM0JjCyKScBKtW+kPwERgkXOuKuhiosk5x/2v7+L2Z99lWL/uPP6503WEs4gkrIQJBzMbAdwE1AAHQr5N3+SceyiwwqKgpr6B7z65kUdX5bFoYha/+dh0eqfqes0ikrgSJhycc7uBpOtfOVhew2f+uop39pTypQVj+cqibF14R0QSXsKEQzLaW1LJtfe+zb7SKu68aiYXTtPeSCLSPigcYmRjfhmfWrKS2vpGHv7MqZw8on/QJYmIhE3hEAOrdpXwyftWkpaawiM3n6ZTYIhIu6NwiLLVu0u47t63yUpL5aHPnMqgPt2DLklEJGIKhyh6Z88hrrt3JZlpqTxy4xyy0lKDLklE5IR0CrqAZLExv4zr7nmb9F5deeQzCgYRad8UDlGQX1rF9UtW0js1hUdunMPAPgoGEWnf1K3URoer67j+vpVU1Tbwj5tP1xiDiCQFhUMb1DU08rkH32F7UTn3Xz+b8QO1V5KIJAeFQxv87LkcXt1WzC8un8YZY9ODLkdEJGo05nCClm4u4J5Xd/LJ00dyxaxhQZcjIhJVCocTkF9axS2PrWPKkDS+dcGEoMsREYk6hUOE6hoa+dIja2hodPz+ypl0S+kcdEkiIlGnMYcI/enl7azefYjfXnkSI9N7Bl2OiEhMaMshAnsOVvK7Zdu4cOogLp4+OOhyRERiRuEQJucc33tqIymdjO9+aFLQ5YiIxJTCIUz/2XiA5VuK+Nq543UEtIgkPYVDGMpr6vnB05uZNCiN604bEXQ5IiIxpwHpMPzp5e0cOFzNXVfPJKWz8lREkp8+6Y6jrKqOJa/t4oKpA5k5vF/Q5YiIxIXC4TgeeGMXR2rq+dzZY4MuRUQkbhQOx1BZW889r+5k/vgMpgzpE3Q5IiJxo3A4hoff2sOhyjq+sGBc0KWIiMSVwuEoqusauHvFDk4bPYCTR2isQUQ6FoXDUTz+Tj6FR2r4wgKNNYhIx6NwOIrHVu9lwsDenD5mQNCliIjEncKhFXtLKlmzp5RLZgzBzIIuR0Qk7hQOrXhm/X4APjRtUMCViIgEQ+HQiqfW7WPm8L4M698j6FJERAKhcGhmW+ER3t1/mIt0Sm4R6cAUDs08tW4/nQwunKouJRHpuBQOIZxzPLNuH3NGDyAzTaflFpGOS+EQYtO+w+worlCXkoh0eAkZDmY2zsyqzezBeK73mfX7SelknD9lYDxXKyKScBIyHIA7gZXxXunbOw9y0vC+9O3RNd6rFhFJKAkXDmb2caAUeDGe661vaGTTvsNMG9o3nqsVEUlICRUOZpYG/BD4epjz32hmq8xsVVFRUZvWnVtQTk19I9OG6tTcIiIJFQ7A7cA9zrm94czsnLvbOTfLOTcrIyOjTSvekF8KoC0HERHiGA5mttzM3FFur5rZDGAR8Jt41RRqXV4ZvVNTGKGjokVESInXipxzZx/rcTP7CjAS2OOf7K4X0NnMJjnnZsa6vg15ZUwd0odOnXSiPRGRROpWuhsYA8zwb38EngXOi/WKa+obyDmgwWgRkSZx23I4HudcJVDZdN/MyoFq51zbRprDkLP/CHUNToPRIiK+hAmH5pxzt8VrXevzSgEUDiIivkTqVgrM+rwy+vfsypC+3YMuRUQkISgcgA353mC0rvomIuLp8OFQWVtPbsERpqtLSUTkPR0+HDbvO0yjg6naU0lE5D0dPhzW5ZUBGowWEQnV4cNhQ14pWWndyNLFfURE3pOwu7LGy7is3gzSXkoiIh/Q4cPh8/PHBl2CiEjC6fDdSiIi0pLCQUREWlA4iIhICwoHERFpQeEgIiItKBxERKQFhYOIiLSgcBARkRbMORd0DVFhZkXA7giekg4Ux6icRKZ2dyxqd8cTadtHOOcymk9MmnCIlJmtcs7NCrqOeFO7Oxa1u+OJVtvVrSQiIi0oHEREpIWOHA53B11AQNTujkXt7nii0vYOO+YgIiJH15G3HERE5CgUDiIi0oLCQUREWkjacDCz/mb2hJlVmNluM7vqGPN+1cwOmFmZmd1rZt3iWWs0hdtuM7vOzFab2WEzyzOzO8ys3V4ZMJL3O+Q5y8zMted2Q8R/66PN7BkzO2JmxWZ2RzxrjaYI/tbNzH5kZvn+//hyM5sc73qjwcy+YGarzKzGzJYcZ942fa4lbTgAdwK1QBbwCeAPrf1BmNl5wDeBhcBIYDTwg/iVGXVhtRvoAXwF72jKU/Haf0ucaoyFcNsNgJl9guS5TG64f+tdgaXAMmAgMBR4MI51Rlu47/kVwPXAXKA/8AbwQLyKjLJ9wI+Ae481U1Q+15xzSXcDeuL90WSHTHsA+Fkr8z4M/CTk/kLgQNBtiHW7W3nu14Cng25DPNoN9AFygTmAA1KCbkM82g7cCLwSdM0BtPsbwKMh9ycD1UG3oY3t/xGw5BiPt/lzLVm3HLKBBudcbsi0dXh/FM1N9h8LnS/LzAbEsL5YiaTdzc0DNsWkqtiLtN0/Af4AHIh1YXEQSdvnALvM7Dm/S2m5mU2NS5XRF0m7/waMNbNsM+sCXAf8Jw41BqnNn2vJGg69gLJm08qA3mHM2/R7a/Mmukja/R4z+xQwC/hljOqKtbDbbWazgDOA38WhrniI5D0fCnwc+C0wGHgW+Jff3dTeRNLu/cArwBagCq+b6asxrS54bf5cS9ZwKAfSmk1LA46EMW/T763Nm+giaTcAZnYp8DPgfOdcez2LZVjtNrNOwF3Al51z9XGqLdYiec+rgFedc88552rxvgwMACbGtsSYiKTd3wdOAYYBqXh978vMrEdMKwxWmz/XkjUccoEUMxsXMm06rXebbPIfC52vwDl3MIb1xUok7cbMFgN/Bi5yzm2IQ32xEm670/C2kP5uZgeAlf70PDObG/syYyKS93w93hhLMoik3dOBvzvn8pxz9c65JUA/YFLsywxM2z/Xgh5YieGAzd+AR/AGrs7A26ya3Mp8i/H6nifh/cEsI4wB3ES9RdDuBcBBYF7QNcer3YDh7aXTdDsF78NyCNA16DbE4T0fD1QCi4DOeF0r29tr2yNo9/eBV/H2auoEXANUAH2DbsMJtDkFb+vnp3gD8Km0skNFND7XAm9sDF/E/sCT/h/BHuAqf/pwvE2u4SHzfg0oAA4D9wHdgq4/1u0GXgLq/WlNt+eCrj8e73fIc0bSzvdWirTtwGXANv9vfXlrH6bt5RbB33oq3m6v+/12vwMsDrr+E2zzbf7fbOjttlh8runEeyIi0kKyjjmIiEgbKBxERKQFhYOIiLSgcBARkRYUDiIi0oLCQUREWlA4iITBzG4zs41RWI4zs8sjmed490ViQeEgScfMlvgfoM7M6sxsh5n90sx6Bl1bmAYBT4fzuJmN9Ns5Ky6VSYeRLBc7EWnuBbzTJHTBu8jLX/BOs3Bz6Ez+VeAaXAIdDeqcO+apxI/3uEg0aMtBklWNc+6Ac26vc+5h4CHg0qbuITP7pJltB2qAnmY23L/k5BH/9riZDW2+UDO7wcz2mFmVmT1pZukhj51iZs/710o4bGavmtlprdQ20MyeNbNK//KWVzdbxzG7jZo9vtP/udKfvtzM5vlbTAObPe/HZrY+rFdPOjyFg3QUVXhbEQCjgKvwzus/HS8gnsQ7MdsCYD7e9Q6eNDMLWcZI4GrgEryT143jg5dr7I13MrS5wGxgLfDv0ADx/QB4CpgB3A38tQ3dQrP9n4vxupsuc86twDuh3rVNM/mnK78WuOcE1yMdjLqVJOmZ2Wy8MHjRn9QVuMY5V+A/fg5eSIxxzu3yp12Fd4K6hXhdVADdgWudc3v8eW4CXjGzcc65rc65Zc3W+0XgI3gf3KHXan7cOfcn//cfm9l8vOt5f2ALIkxF/s+Dzbqb/gJ8GrjDv38ekEn7vma0xJG2HCRZLTazcjOrxrug/Argi/5jeU3B4JsI7GsKBgDn3A68i7mHnvM/vykYfG8Bjf7zMbNMM/uTmeWaWRnehVUy8c6YGeqNVu5H+9oC9wOjzex0//71wJOufV6nRAKgLQdJViuAG4E6vA/+OgC/l6ii2bzG0S+CE8lA9f14XVNfBXbhdVe9iLelElfOuSIzewq43sy2ABcDF8W7Dmm/tOUgyarSObfNObe7KRiOYTMwxMxGNk0ws9F44w6bQ+YbYmbDQu7Pxvsfete/fybwO+fcs865TXhbDoNaWd+cVu6/28p84aj1f3Zu5bE/Ax8FbsI7r/8Lrcwj0iptOYh4H5rrgIfM7Et4WxK/w7soTOg4QhVwv5l9DW/84Y/As865rf7jucDVZvYW3m6zd/D+h3eoy8xsJd7Fdi7HG9c49QRrL/TrOs/MdgHVzrmmi8kvxbva3/fxrgLWeILrkA5IWw7S4fnHOFyKN7i7HO8qeQeAS5sd/7AL79KUT+OFxg7gUyGPXw/0Alb7893rP6e52/AGqtfjHXfxKefcylbmC6f2euBLwA14YyT/atau+/D20rrvRJYvHZeuBCeSxMzsD8BY59w5Qdci7Yu6lUSSkJn1AU7GO7bhowGXI+2QwkEkOf0Lb8D8Hufcs0EXI+2PupVERKQFDUiLiEgLCgcREWlB4SAiIi0oHEREpAWFg4iItPD/AY3+JEXuynppAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "pvec = np.linspace(0.01, 0.99, 100)\n", "ax = plt.figure(figsize = (6, 4)).add_subplot()\n", "ax.plot(pvec, np.log(pvec / (1-pvec)))\n", "ax.tick_params(labelsize=12)\n", "ax.set_xlabel('Probability', fontsize = 14)\n", "ax.set_ylabel('Log-Odds', fontsize = 14)\n", "ax.set_title('Logit Function: $\\log (p/1-p)$', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "So, logistic regression does the following: it does a linear regression of $\\alpha + \\beta x$ against $\\log p/(1-p)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "That is, it fits:\n", "\n", "$$\\alpha + \\beta x = \\log \\frac{p(x)}{1-p(x)}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$e^{\\alpha + \\beta x} = \\frac{p(x)}{1-p(x)}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$e^{\\alpha + \\beta x} (1-p(x)) = p(x)$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$e^{\\alpha + \\beta x} = p(x) + p(x)e^{\\alpha + \\beta x}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$\\frac{e^{\\alpha + \\beta x}}{1 +e^{\\alpha + \\beta x}} = p(x)$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "So, logistic regression fits a probability of the following form:\n", " $$p(x) = P(y=1\\mid x) = \\frac{e^{\\alpha+\\beta x}}{1+e^{\\alpha+\\beta x}}$$\n", " \n", "This is a sigmoid function; when $\\beta > 0$, $x\\rightarrow \\infty$, then $p(x)\\rightarrow 1$ and when $x\\rightarrow -\\infty$, then $p(x)\\rightarrow 0$." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAtkAAAGMCAYAAAAP5r5HAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAACH6ElEQVR4nOzdeVzVVf748de5l8u+C4ggiAvuG4qa2m6pmaVWU9M6k+3bTPWbmqZypqmZ5pvNOM40rWPZZJtW5pKWlWamViYg7ogKiqCyys693HvP748LhnCR7cJFeD8f8bjwuedzPu/7uQZvDue8j9JaI4QQQgghhHAdg7sDEEIIIYQQoquRJFsIIYQQQggXkyRbCCGEEEIIF5MkWwghhBBCCBeTJFsIIYQQQggXkyRbCCGEEEIIF5MkW4g2UEr9WimllVIDOvCamUqpt1vQPk4p9YxSql9b+zrLNWrvg7OPy9rafxviekYpdamT428rpTLdEJIQQohuwsPdAQghWmwOUNKC9nHAn4DNwOE29tWUXwDH6h3b68L+W+pPwF+BDfWOPwf8q+PDEUII0V1Iki3EOUZrndIZ+6qxQ2t90MV9upzW+pC7YxBCCNG1yXQRIdqZUsqklPpLzdQMS83jX5RSpnrt+iml1iqlKpRSuUqpfyil7q6ZchFXp90ZUzyUUpFKqf8ppXKUUmal1HGl1GdKqQil1MXANzVNv6ozheNiZ33VHOurlFqilDpR099hpVSbRn2VUhfXvW6d479u5PW9q5T6pVJqn1KqXCm1XSl1vpN+L1JKfaWUKq5pl6qUuqPmudrtbJ+q87qfqXmuwXQRpVQvpdQ7Sqn8mte9Uyl1SyPxnqeUek8pVVJz3/+tlPKu085DKfWcUuqQUqqqps/Nzl6DEEKIrklGsoVof/8DrgeexzFlYyLwNNAPuAlAKeUJfAV4A/cDucCdwHXN6H8J0Ad4DMgCegJTAF8gGXgAeBn4DfBTzTlOp3AopfoC24AKHFMt0oEYYGozX6tRKVX3+4rWWtuaeW5dFwCDgHlAFY7pHZ8ppeK01qdqYp0FfAJsAe4B8oFhOO4FOO7z98DbwOs1x+pPZaGmLz/gWyAEeBLHfbwFWKKU8tVav1HvlCXAB8A1Ndd5BijCcc8Afg88AjwF7AACgUQgtGW3QQghxLlKkmwh2pFSajhwI/BnrfUzNYe/VErZgOeUUv+ntd4J/BpH0j1Ba72t5tzPcSRosU1cZiLwpNb6vTrHPqoTQ21CvU9r/UMTff0Z8AFGaa1z6hz/XxPn1dpf7+stQGtGbwOB0VrrIgCl1AkcvyDMAN5XSikcc6p3AJdore01531d24HW+gdHM7Kb8bpvB+Jr+tpYc+xzpVRP4C9KqTfr/bLwvta6NqH+Wik1Acf7XHtsIvCl1rruXwBWN++lCyGE6ApkuogQ7evCmsd36x2v/fqimsfzgKO1CTY4hoBxjNQ25SfgMaXUb5VSI2oS0NaaCnxWL8FuiTnAuDofd7Syn+9rE+wau2oea3/hGIRjxHpRnQS7LS7EkYxvrHf8XSAcGFrv+Jp6X+/izF+GfgJmKKX+qpQ6v+YvFUIIIboRSbKFaF+10wOO1zt+ot7zvXBMEanvZDOucQOwCngc2AlkK6X+qJRqzf/fPWhkSkUz7dZab6/zkdbKfgrrfqG1Ntd8WjvvuUfNY1tirSuUhu8RNHyfahXW+9oMeNX5+nkco9pXA98BBUqpxUqpMBfEKoQQ4hwgSbYQ7as2GYusd7z264Kax+NAhJPzezZ1Aa11rtb6Aa11NDAYxxzkP+OYp9xS+UB0K85rSlXNY/0R3R71GzZTfs2jq2ItpOF7BA3fp2bRWldrrV/QWo/A8QvUI8C1OObGCyGE6AYkyRaifX1b8/jLesdvrnncVPP4AxCrlBpf26Bm2se1LbmY1jpNa/0kjkV4w2sO144C+zSjiy+BmUqpXi25bjMcqXkcXu/4jFb2dwDIBO5sYnqMhea97m+B3kqpyfWO34TjLwz7WhMkgNb6hNZ6EY754vVfvxBCiC5KFj4K4RrTaxbn1VWstf5KKfUB8ExN1Y2tOBbFzQM+qFn0CI7R598Dy5VSTwF5OKqLhNQ873TesVIqCEfy9h6ORYfVwKya876saXYAsAJzlVKFOJLuNK11qZMu/wRcCWxVSj0PHMQxWjxda32Lk/bNorU+rpT6FviDUiofR+J6C9C/lf1ppdTDwHJgg1LqNRz3bAgQUWdR4l7gSqXUFzh+8chpZL7528Bv+fn+H8Pxi9DlwD0trZCilFoJpOKo7lIEJADT+bnKiRBCiC5OkmwhXOMlJ8f24Bi5/BWOnRbn4ijdlwO8gGNKBwBaa4tSampNP68BZcD7wI/A/wHFjVy3CkcidxeOhYB2IA24WWu9sqbvAqXUgziS+G8BI3AJsLF+Z1rrzJpKGX8B/gYEANnAyubdhrO6BXgV+HdN3G/VXOe/relMa71SKXU5jl9Y3qw5fAhYWKfZgzXXW41jzvSfcZTbq99XuVLqImA+jvsdgOM+3qq1rr9otTk24dj98gEcpRSP1vT911b0JYQQ4hykHAUMhBCdkVLqM2CI1rpVI75CCCGEcA8ZyRaik1BKPYpjBDsdx0jqL3BM3bjPnXEJIYQQouUkyRai8zDjqEIRi2NKRxpwp9b6zbOeJYQQQohOR6aLCCGEEEII4WJSwk8IIYQQQggXkyRbCCGEEEIIF+vSc7LDwsJ0XFycu8MQQgghOkxSUlK+1jrc3XEI0d116SQ7Li6O7du3uzsMIYQQosMopY403UoI0d5kuogQQgghhBAuJkm2EEIIIYQQLiZJthBCCCGEEC4mSbYQQgghhBAuJkm2EEIIIYQQLiZJthBCCCGEEC4mSbYQQgghhBAuJkm2EEIIIYQQLiZJthBCCCGEEC7m1iRbKfWgUmq7UsqslHq7ibaPKKVOKKWKlVJvKaW8OihMIYQQQgghWsTdI9k5wF+At87WSCk1DXgCmALEAf2AP7d3cEIIIYQQQrSGhzsvrrVeDqCUSgR6n6Xpr4A3tdZ7ato/B7yHI/EWQoguQVutNR82sFmxW63oaivW6mps1Y6v7VYbtmor2mbFbgdtt2G3a7TdjrZr7HY7drsN7KDtdux2OxrQWqPtGtBorR3Xs4PG7njUGl03GLtGo9EaNJqa/xznnW54xhnYtUbjuKYNO3abtaYPO/bTj6C1HY3Gru2O6+vamPTPsdb0ran3HPY6168bQ91znMVY7/Wd5XU0dkzrRtppjUI7bmjN1zVRoHTtjbMDONpBTVtQWjN97uP4+QU66VsIcS5za5LdAsOAlXW+TgV6KqV6aK0L6jZUSt0N3A0QGxvbcREKIc5JNrum3GKl3Fz7YcNstVNVbXN81Hxurq573PFYbbNjsWmqbfbTH1ZzNT5FefgX5+FXVEBAcT4+lSV4WMx4Wsx4VpsxWc14VTs+97Ka8ay24G2z4GG3ueUeqJoP4R6nZt6EX9+h7g5DCOFi50qS7Q8U1/m69vMA4IwkW2v9BvAGQGJiorNhByFEF2O22jhVUU1huYWicgtFFdUUVlg4VW5xPFZUU1pVTWmVtSahtlFWk1RXWFqe2HrZq0k4dYTelQVEVBQRUV5EWEUhPcoKCawowVBnFFSjqPL2pdrTG6unF1ZPb6zeXlgDA6jy8qbc0wu7lw82L2+0lxfawwOMHmAwgocRZfQAowE8TKjarw0GlNGADStVuoxKXU6VvZRKXUalvZQKWwnl9lIq7aVU2kqxYkWrM9NorWrjAxR4YMJoNOGhTBiVCQ+DR82jCaPywGhwfO5hMGHEA6PBiFIGjBgwKA8MyoBRGTEoAwaMGAyOzxUGDGiMNgtGmxkPuxmj1YyHrQqj1YzJVonRasZoq8Jor8Zgt2CwOT6MNgsGuwWFPv2LQO2rUD/f4DOOqdrXZDCBMqINRlAe2JURlNFxXw1GwIi9zucoAxiMaAxoZXB8rQyOc5TBEUGd446vVU3b2ivXfF7nmMZQE6A6fY7j/JqIlSIuPKrF/waFEJ3fuZJklwF1/5ZW+3mpG2IRQnQQu11TUG7heHElOaeqOF5cyfHiKnJOOR5PllRRVG6h/CyJcoCXB8F+JgK8TPh7eRAR4I1fmAf+Xkb8PD3w8/LA38vx6FdzzNtkxNtkOP3o5WHEs7oK/cNWqr/ZQMWmb7FXVDguYDJh6tULU78oTL1GY4qKcnxEOx49IiMxeHq26T6UWEpIK0xjf+F+9hfuJ60wjZyyHEqrG34L9DP5EeEbQYRvNBE+EYT5hBHgGYCfyY8AzwD8Tf74e/qffgwwBeDn6YfJYGp5YFpDRQEUH4OSbCjOhpJjNY/ZUJwDFYVgOcu3ak9/8AkFnyDwDAYvf8cxL3/wDGj4tacfmHzAwxtM3uDh0/DRaKpJcoUQwn3OlSR7DzAKWFbz9SjgZP2pIkKIc4/WmuPFVRw4WUr6yTLSc0s5UlDB8eIqThRXYbHZz2jv6WEgKsibXkE+jIsLJdTPk1A/T4J9TYT6ehLs6/g6xNdEsK8nnh6tX99tKy6m9Jv1lH75FUWbN6MtFoyhoQReeSUBl03Ba/AQPMLDUAbXrCHXWnOi/AT7CvedTqrTitLILss+3SbMJ4xBoYMY23Ms4b7h9PTtWZNUOz78TH4uiaVOUFB6HHL3QV4a5O2DwoyaxDoHbOYz2xs9ITAKAntDzATwCwPfUEci7dvD8blvj5qvQ8FDCkUJIbomtybZSimPmhiMgFEp5Q1YtdbWek3fAd5WSr0HHAeeBt7uyFiFEG3jLJk+cLKMg7lllJl//l8+zN+LvmG+jI4JptcIb6KCfOgV5E1UsOMx1M8T1Y6jlNb8fEq/Xk/pV19R/uOPYLXiERlJ8A03EHD5ZfiOHYsyGl12vWpbNd8f/551mevYdGwTp8ynAFAo+gT2YUTYCK4beB1DQocwKHQQYT5hLrv2GZwl07n7HZ+b68zW8w2DHv0hegwMmelIpoOiITAagno7nnfRLx1CCHEuc/dI9tPAn+p8fQvwZ6XUW8BeYKjW+qjW+gul1HzgG8AH+KTeeUKITqbaZmd3djE/ZhTy4+ECth8porSqbjLtSXxEANeOiSa+ZwDxEf4M7BlAiF/bpla0lrZaOfnCfIrefRe0xtQnlh63/5qAyy/He8QIlyb21fZqfjz+I19kfMGGrA2UWkoJ8AzgkphLGBk2kkGhgxgYMhBfk6/LrtmAzQondsKRLZC5BY5+D1Wnfn7etweED4GRv4DwwY6PiCGOkWkhhBBNUs5LEnUNiYmJevv27e4OQ4huwWy1sfNYMT8eLuDHjEKSjhSdXlTYP9yP8X1DGRoVxMAIf+J7BhDqpmTaGVtJCdkPP0L51q0E//IGQm68Ca+B8S5NrK12K9uOb2PdkXWsP7qeYnMx/iZ/Lo29lGlx05jYayImYyvmRTeXrRpydsCRzTVJ9Q8/z5UO7Qd9JkGv0RA+yJFc+4e3XyyiXSmlkrTWie6OQ4juzt0j2UKIc5TWmt3ZJazff5IfDxeSfLQIs9Uxf3pQzwCuG9ubCX17ML5vKOEBnXfereXIEbLuux/L0aP0+stzBF93nUv735O/h4/TP+brI19zynwKXw9fLom9hOlx05kUNQlPYzv+snFiN6R97kiss7ZBdc1izbBBjhHqPpMdH4G92i8GIYTopiTJFkK0SFZhBStSslmxI5tDeeUoBUN7BXLzhD5M6BfK+LhQt035aKnybdvIfug3AMS+9SZ+48e7rO+CygL+lfwvPj34KT4ePlwcczHT4qYxOWoy3h7eLrtOA8XHYNdHsPMjyN3jONZzOCTc6hit7jNZRqmFEKIDSJIthGhSUbmFz3YdZ2VKNtuPFAEwvm8od17QjyuGRxLse24k1XWd+uQTjj/zZzxjYoh59RU8+/RxSb9Wu5WlaUt5OeVlKq2V/HrYr7ln5D34e/q7pH+nKk/BvlWwcxlkbgY09B4PM/4OQ2dLUi2EEG4gSbYQwqmqahtf7zvJipQcvj2QS7VNEx/hz+PTB3H1qCh6h7Tjorx2pG02cv+xgMK33sJv8mSi/7kAY6BrtrTefmI7z297nvSidM7rdR5/GP8H+gX3c0nfDVjNkP6lI7E+sM5RSq/HALj4D46pIKHtdF0hhBDNIkm2EOIMWYUVvLLxEKtTcygzW+kZ6MWvJ8UxOyGaob0C27V8XnuzlZWT89hjlH3zDSE33UTPJ/+A8mj7t8Hcilz+sf0frM1YSy+/Xvzz4n8yJXZK+9yrkhzY/E/YuRSqih0l8xJvh5HXQ9QY2YRFCCE6CUmyhRAAnCyp4j8bDvLhT0dRSnHVyCiuGRPNef16YDSc+4lbdXY2Wffdj/nQIXrOe5rQm29ue5+2at7d9y6vpb6G1W7lnpH3cMeIO/Dx8HFBxPWU5cGWhfDTIrDbYNhsGPlL6HexYxt2IYQQnYp8ZxaimysoM/Pat4d45/sj2OyaG8bF8NCl8UQGtePivA5WkZLCsQcfQlssxLz+Ov7nT25zn1tztvK3H/9GZkkmF8dczOPjHicmIMYF0dZTWQRbX4IfXgNrJYy6ES56HELiXH8tIYQQLiNJthDdVHFlNf/ddJi3tmRQVW1jTkJvfjslntge5+Zc68bYiovJuvsejCEhxLzzP7z6929zn8vSlvHcD88RGxDLy1Ne5sLeF7og0nrMpY7EeutLjh0Xh10DlzwJYfGuv5YQQgiXkyRbiG6m3Gxl8ZYM3th0mJIqK1eO7MUjlw1kQEQ7Vr9wo8Il72IvLaXPkndckmAvT1/Ocz88x4W9L2TBxQvwMrq4Bnh1pWNKyOZ/QkUBDJoBlzwFkcNdex0hhBDtSpJsIboJi9XOO99n8urGQxSUW7hsSASPXj6IoVGuqazRGdnKyih85x38p0zBe/DgNve38uBKntn6DJOjJ7s+wbZZIWkxbPo7lJ2A/pfCJU9D77Guu4YQQogOI0m2EN1AZn45D32Qwq7sYi6ID+PRyweSEBvi7rDaXdF772MvKSHsvvva3Ndnhz9j3pZ5TOg1gYUXL3Rtgn0qCz65E7J+gNiJcN1bENf2eeNCCCHcR5JsIbq4lTuyeerT3RgNitdvHcu0YZHuDqlD2CsqKHz7bfwuvACf4cPa1NcXGV/w1OanGBc5jn9f+m/X7ti47zNY+QDYrXDNf2HEL6QMnxBCdAGSZAvRRVVYrDyzag/Lth8jsU8I/7oxgejgdigt10kVfbgUW1FRm0exvzryFU989wSjw0fz0qUvua48n9UMX86Dba9Dr1Fw3WLo0fY540IIIToHSbKF6IL2nyjhwfdTOJRXxgOX9OeRywbiYTS4O6wOY6+qouCtt/CdeB6+CQmt7mfD0Q08/u3jjAgbwSuXvYKvyUWVV/IPwse3w4mdcN79cNkz4OHiBZRCCCHcSpJsIboQrTXvbzvKs6v3EuBtYsncCZwfH+busDrcqWUfYcvPJ/yfC1rdx7dZ3/L/vv1/DO0xlFcvexU/k59rgktdCp89Ah6ecOOHMOgK1/QrhBCiU5EkW4guoriymieX72LNruNcEB/GgutHEx7Q/UZH7RYLBW++iW9iIr7jxrWqj83Zm3lk4yMMChnEq5e/ir+nC8obmstg7WOQ+j7EToJrF0FQdNv7FUII0SlJki1EF5BytIiHPkjheHEVv58+mHsu7IehC2yF3hrFy5djPXmSqL8936rzv8/5nt9u+C39g/vz+uWvE+jpghKHJ3bBR7dDwUG48HG46PeyFboQQnRx8l1eiHPc/7Zm8txne+kZ6M2yeyYytk/XL83XGG2xkP/GG/iMGoXvxIktPj8lN4XfbPgNfYL68N/L/0uQV1Dbg0p5zzE9xCcEfrUK+rbD7pBCCCE6HUmyhTiHvbk5g+c+28tlQyL4xy9GE+RrcndIblW8ahXWnOP0+tOfUC0sg2exWZi3ZR5hPmH89/L/Euwd3PaAkpfAqgeh38VwzSLwD297n0IIIc4JkmQLcY5a8r1jBHv6sEheuikBUzeqHuKMtlrJf/0NvIcNw+/Clo8Wv7P3HY6UHOHVy16lh0+PtgeUuhRWPQT9p8Av3weTC2trCyGE6PS6909lIc5RH247yryVe7hsSAT/vlESbICSNWuozsoi7L57WzyKfbzsOG/sfIMpsVM4P/r8tgez+xNYcS/0vQB++Z4k2EII0Q3JT2YhzjGfJB3jD5/u4qKB4bx88xg8PeR/Y22zkf/a63gNGoT/pZe2+PwXt7+I1prHxz3e9mD2rYZP7oKY8xwl+kzdZwMgIYQQP5OfzkKcQ1al5vDYx6lM6t+D128di5eH0d0hdQql69ZhychwjGIbWvZtbWvOVr468hV3jriTKP+otgWS9oWjikj0WLh5GXi6qLa2EEKIc44k2UKcIz7fdZxHlu4gsU8o/70tEW+TJNgA2m4n/9XX8Ozfn4CpU1t0brWtmr/9+DdiAmL49fBfty2Qg1/Dslshcjjc8jF4BbStPyGEEOc0SbKFOAd8vfckD32QwqjeQbx1+zh8PWXNcq3Sr7/GnJ5O2L33tHgU+52975BZkskT45/Ay9iGjXsOb4QPb4bwQXDLcvB2Qek/IYQQ5zRJsoXo5Dam5XL/e8kMiwrk7bnj8feSBLuW1pr8117D1CeWwCtatj35ifITvL7zdS6OuZgLe7ehdvWRrfDBjRDaD25dCb6hre9LCCFElyFJthCd2JaD+dy9JIkBEf68M3cCgd7duw52fWUbN2Leu4+wu+9BebTsl4+/b/87dm3n9+N+3/oAsrbBe7+AoN5w20rwc0HpPyGEEF2CJNlCdFI/Hi7gjv/9RL8wP969c0K332imPq01+a++hik6mqCrr2rRuT8c/4F1meu4Y8Qd9A7o3boAspPg3WvBPwJuW+V4FEIIIWpIki1EJ3TgZClz3/6J6GAf3r1zAqF+nu4OqdOp+OknqnbupMfdd6NMzf8FpHaxY2//3swdPrd1Fy/KhCXX1GyVvhoCe7WuHyGEEF2WTO4UopOpqrbxmw9S8PE08t6d5xHm34YFeV1Y+Zat4OFB0FUzW3Tee/ve43DxYf5z6X9at9jRZoVP7gStHVNEglo5Ei6EEKJLkyRbiE7m/z7fz/4TpSz+9Tgig2SnwMZUJiXhPXQoBl/fZp+TW5HLq6mvclHvi7go5qLWXfjb/4NjP8F1iyG0b+v6EEII0eXJdBEhOpEN+0/y9tZMbp8cxyWDZY5vY+wWC5W7duE7ZkyLzvv79r9jtVv5/fhWLnbM3Ayb/g6jb4Hh17SuDyGEEN2CJNlCdBK5JVX87qOdDI4M4PfTB7s7nE6tas8etNmMz9jmJ9nbjm/j84zPmTtiLjEBMS2/aGURLL/bUarvihdafr4QQohuRZJsIToBu13z/z5Kpdxs5aUbE2Q3xyZUJicDNHsku9pezfM/Pk+0fzR3DL+j5RfUGlb/FspOwrWLwMu/5X0IIYToViTJFqITeGtLBt+l5zNv5lDie8p23E2pSErGMy4Ojx7Nq0v9/r73OVR8iMfHPY63Ryvmuacsgb0r4dJ5EN2yKSpCCCG6J0myhXCz3dnFvPDFfqYO7cnNE2LdHU6np+12KpOTmz1VpNJayeupr3N+9PlcEnNJyy+YdwA+/z30vQgm/abl5wshhOiWJMkWwo0qLFZ+80EKoX6evHDtSJRS7g6p07NkZGA7dQrfMWOb1f7LzC8prS7ljuF3tPz+Ws3wyR3g4Q1zXgeDfMsUQgjRPFLCTwg3enb1XjIKynnvjgmEyIYzzVKRlASAbzNHspenL6dPYB/G9mxeUn6G9c/CiZ3wyw9kwxkhhBAtIsMyQrjJ2l3H+fCnLO69qD+TBoS5O5xzRmVSMsYePTD16dNk28PFh0nOTeaa+GtaPop9cD18/x8YdycMntHKaIUQQnRXkmQL4QY5pyp54pOdjOodxKOXD3R3OOeUiuRkfMeMaVbS/Gn6p3goD67uf3XLLlKWB5/eC+FDYOpfWhmpEEKI7kySbCE6mM2ueXjpDmx2zb9+mYDJKP8bNlf1yVyqs7Kateix2lbNqkOruDjmYsJ8WvCXAq1h5QNQVQzXvQkmnzZELIQQoruSOdlCdLBXvjnItoxC/vGLUcSF+bk7nHNKZUpNfeyxTc+v/ibrGwqrCrkmvoU7M257A9LXwRUvQs9hrQlTCCGEkJFsITpS8tEiFq5P5+pRUVwzJtrd4ZxzKpKSUT4+eA9uekfM5enLifSLZFLUpOZf4OQe+HIexE+D8Xe1IVIhhBDdnSTZQnQQm13z1Ke76RngxV/mDJdyfa1QmZSEz6hRKJPprO1yynLYmrOVOQPmYDQ0c/dMrWHN78ArAGa/AvL+CCGEaANJsoXoIJ+mZLPveAm/v2Iwgd5nTxJFQ7aycqr272/WVuqfHvwUgNkDZjf/AvvXwNGtcOlT4CfVXoQQQrSNJNlCdIBKi41/fJnGyN5BXDUyyt3hnJMqU3eA3d7kokeb3can6Z8yKWoSUf7NvNe2avj6TxA2CBJua3uwQgghuj1JsoXoAG9tyeB4cRVPzhiCwSDTEFqjMikZDAZ8Ro0+a7utOVs5WXGyZQsek96GgoNw+bNglPXgQggh2k6SbCHaWX6ZmVc3HuLyoT05r18Pd4dzzqpITsZ78GCM/mevyLI8fTmh3qFcEnNJ8zquKoaNf4O4C2DgNBdEKoQQQkiSLUS7+/f6dCqrbTxxRdMVMYRzurqaytRUfJoo3Zdfmc/GrI1c3f9qTMZmznvfvBAqCmDqc7LYUQghhMu4NclWSoUqpT5VSpUrpY4opW5qpJ1SSv1FKZWtlCpWSm1USkkBW9HpHcor470fj3LT+Fj6h/u7O5xzVtX+/ejKSnybmI+96tAqrNrKnPg5zeu4+Bj88AqMuB6iElwQqRBCCOHg7pHslwEL0BO4GXi1keT5F8Bc4AIgFPgeWNJRQQrRWi98vh8fk5HfXhbv7lDOaRVJSQD4JDSeZGutWZ6+nDERY+gX1K95HW/4i6N035R5rghTCCGEOM1tSbZSyg+4FpintS7TWm8GVgG3OmneF9istT6stbYB7wJDOy5aIVpuW0YhX+49yX0X9yfM38vd4ZzTKpOSMcXEYOoZ0WibpJNJHCk5wrUDr21ep8dTIfVDOO9eCI51UaRCCCGEgztHsgcCNq31gTrHUgFnI9kfAgOUUgOVUibgV8AXHRCjEK1it2v+umYvkYHezJ3c193hnNO01lQkJzdZH/uT9E/wN/lzeZ/Lm9OpY2dHnxA4/1EXRSqEEEL8zJ21qvyB4nrHioEAJ22PA98BaYANyAIuddapUupu4G6A2FgZnRLu8dmu46QeK+bvvxiFj2czdxwUTlUfOYKtoOCs9bGLzcV8deQrZg+YjY+HT9OdHvwaMr6F6S+AT7DrghVCCCFquHMkuwwIrHcsECh10vZPwDggBvAG/gxsUEr51m+otX5Da52otU4MDw93cchCNM1stTH/i/0M6RXInIRod4dzzqtISgbA9yyVRdZmrMVsMzevNrbN6hjFDu0HiXNdFaYQQghxBncm2QcAD6VU3RVho4A9TtqOApZqrY9pra1a67eBEGRetuiE3tl6hGNFlTw1YwhG2XimzSqSkzAGB+PZz/liRq01nxz4hCGhQxjaoxnfEna8B3n74LJnwMPTtcEKIYQQNdyWZGuty4HlwLNKKT+l1GRgFs6rhvwE/EIp1VMpZVBK3QqYgIMdF7EQTTtVYeGlDelcNDCc8+PD3B1Ol1CZlIzPmDGoRmpY7y3cS1pRGtfGN2PBo7kMvvkrxEyAIVe7OFIhhBDiZ+4u4Xc/4APkAh8A92mt9yilYpVSZUqp2knVL+BYFLkDOAU8AlyrtT7V4RELcRb/2XCQMrOVJ2cMcXcoXYK1oABLZuZZ62N/cuATvI3eXNHviqY7/P4/UHYSpv5FNp4RQgjRrty58BGtdSEw28nxozgWRtZ+XQU8UPMhRKd0tKCC/32fyfWJMQyKdLZ+V7RURbJjPrZPI5VFKqorWJuxlqlxUwn0rL/Eo57SE7DlXzB0NsSMd3GkQgghxJncPZItRJcxf91+PAwGHr18oLtD6TIqk5JRXl54D3O+weuXR76kvLq8eVNFvnkebNVw2Z9cHKUQQgjRkCTZQrhAytEiPtt5nLsv7EdEoLe7w+kyKpKT8RkxAoOn8wWKy9OXExcYR0JEE1ui5+6DlCUw/i5HVREhhBCinUmSLUQbaa3529r9hAd4cfeFksC5ir2igqq9exudKnL41GFSclO4Nv7aRhdFnvbVn8AzAC58rB0iFUIIIRqSJFuINvops4htmYX85tIB+Hm5dZlDl1K5cxdYrY0uevzqyFcAzOw/8+wdHd8J6evg/N+Cb6irwxRCCCGckiRbiDZa9N1hQnxNXDc2xt2hdCkVyUmgFD6jRzt9fnP2Zob1GEaYTxOlEn94BUx+svGMEEKIDiVJthBtkJFfzlf7TnLreX1k+3QXq0xKxis+HmNQUIPnis3F7MzfyfnR55+9k5LjsOtjGHMr+IS0U6RCCCFEQ5JkC9EGi7dkYDIYuGViH3eH0qVoq5XKlBR8GpkqsjVnK3ZtbzrJ3vYG2K0w4d52iFIIIYRonCTZQrTSqQoLH20/xqzRUUQESEURVzIfOIC9ogLfMWOdPr85ezNBXkGMCBvReCeWctj+FgyZCaF92ylSIYQQwjlJsoVopfd+PEpltY07L5CKIq5WkeTYhMbZoke7trM5ezOTek3CaDjLFJ0d70PVKZj4UDtFKYQQQjROkmwhWsFitfO/rZlcEB8muzu2g4rkJDx69cIUFdXguX2F+yisKuT83meZKmK3ORY8RifK7o5CCCHcQpJsIVphdWoOuaVmGcVuB1prKpOS8W2kPvbmY5sBmBw1ufFODnwBhYdh0oPQVA1tIYQQoh1Iki1EC2mtWbQ5g4E9/bkwvonycaLFqrOzsebmNrrosbZ0Xw+fHo13svU/EBQLg69qpyiFEEKIs5MkW4gW+v5QAfuOl3Dn+f2a3mlQtFjF9u0A+I5tuOixWaX7spPg6FY4714wyuZAQggh3EOSbCFa6L/fHSbM35OrRzecLyzarjIpGUNAAF4DBjR47vuc75su3ff9K+AVCAm3tmOUQgghxNlJki1ECxzMLeWbtDxumxiHt0k2n2kPVXv24DNiOMrY8P5+l/3d2Uv3ncqCPZ/CmNvAO7CdIxVCCCEaJ0m2EC3w5uYMvDwM3Dwh1t2hdElaayyZmXj269/guWaV7tv2uuNRNp8RQgjhZpJkC9FMBWVmPknO5poxvenh7+XucLoka24u9ooKPPvGNXiuydJ9VSWQ9D8YNhuCY9o1TiGEEKIpkmQL0UxLfjiCxWrnjvNl98D2YsnIBMAzLq7Bc7Wl+yZFTXJ+csq7YC6BiQ+0U3RCCCFE80mSLUQzVFXbWPL9ES4dHMGACH93h9NlWTIzAPDq2/AXmc3ZmxnaYyhhPk7KJtqs8OOrEDsJop1vxS6EEEJ0JEmyhWiGlTuyKSi3cKeMYrcrS0YGytsbj8jIM47Xlu67IPoC5yfuXw2njsoothBCiE5DkmwhmqC1ZtF3GQztFcjE/mfZAEW0mTkjA8+4OJThzG9NTZbu+/5lCOkLg67ogCiFEEKIpkmSLUQTvj2QR3puGXde0Fc2n2lnloxMp4sez1q6L2sbHPvJMYrdWNURIYQQooNJki1EExZ9l0HPQC9mjpTNZ9qT3WKhOju7wXzsJkv3bX0JvINh9E0dE6gQQgjRDJJkC3EW+46XsPlgPr+aFIenh/zv0p6qjxwBux3Pekn2WUv3FWbA/s8gcS54+nVQpEIIIUTTJGsQ4ize3JyBj8nITeNl85n2Zs5wVBbxjDszyT5r6b4fXwNlhPF3t3t8QgghREtIki1EI3JLqli5I5tfJPYm2NfT3eF0eadrZNebk91o6b7KU5C8BIZfC4G9OiRGIYQQork83B2AEJ3VB9uyqLZp5k6Wsn0dwZKZiTE8DKP/z3XIa0v33TnizoYnpH4A1eUw8f4OjFKIriEpKekKk8n0uNY6DpAV3UK0jFZKZVZXV88fO3bs5401kiRbCCfsds1HSVlMHtCDuDCZ69sRLBkZeNWbKlJbuq9BfWytHaPYUWOg16gOjFKIc19SUlK8l5fXv+Li4qx+fn4FUjVJiJbRWlNeXt4zMzPzX0lJSQfHjh2b7qydTBcRwonvDxdwrKiS6xNj3B1Kt2HJyGiw6LHR0n05KZC7BxJu6cAIhegaPDw8noyMjFT+/v4VkmAL0XJKKfz9/SsiIyMNHh4ef2isnSTZQjixbHsWgd4eTBsW2XRj0WbWoiJsxcVnJNl2bWdL9hbnpftS3gUPbxhxXQdHKsS5Tyk1KjAwsNzdcQhxrgsMDCxTSjX651RJsoWop7iims93n2DW6Gi8TbK5SUew1FYWqbPocV/hPgqqChqW7quuhF0fw9BZ4B3UgVEK0TVorYNNJpPV3XEIca4zmUxWrXVIY89Lki1EPatSs7FY7dwwTqaKdJTaJLvuRjSNlu7btxrMxZBwa4fFJ0QXY5BpIkK0Xc3/R43m0pJkC1HPsu3HGNIrkGFRge4OpduwZGSAyYQpOvr0sUZL96UsgZA46DO5Y4MUQgghWkCSbCHq2JtTwq7sYm5I7I2M9HQcc0YmnrGxKA9HwaPa0n3nR9ebKlKYARmbHAseDfLtSwghROclP6WEqGPZ9iw8jQZmjY5uurFwGUtm5hnzsRst3bfjfUDBqJs6ND4hhBCipSTJFqKG2WpjxY5sLh/WkxA/2eGxo2irFcvRo3jFxZ0+9l32dwR6Bp5Zus9ugx3vwYApECS/BAkhurYLLrggXik19je/+U2Uu2OplZOT43HLLbfERkdHj/Dx8UmIi4sbvmDBgrCmz2y9gwcPmqZPn94vICBgtL+/f8LUqVP7p6ent/iHtDvupyTZQtT4au9JTlVUc4PUxu5Q1dnZUF19unzf6dJ9UfVK9x3+BkqyZcGjEKLLe/3110P379/v4+446qqsrFRTp06N37hxY9ATTzyRs3Tp0oMjR44sf+yxx/ocPHjQ1B7XLC0tNUyZMmXQoUOHfF555ZXM1157LSMzM9Pr0ksvHVhSUtLsHNZd91N2fBSixrLtx4gK8mbygHb9pVzUYz5dvs+RZO8v3E9BVQEX9K43VSR5CfiEwqArOjpEIYToMPn5+cannnoq5q9//WvWvffe27fpMzrG22+/HbJ3717fbdu27UlMTKwC8PLy0qtXrw4tLS01AtWuvubChQvDjh075pWamrp7+PDhZoDExMSK4cOHj1iwYEH4M888c7KpPtx5P2UkWwgg+1Ql36XncV1iDEaDLHjsSJaMTODnJPu7Y98B9Ur3lRfA/jUw6pfg4dXRIQohzgFms1k9/vjjvXr37j3C29t7zOjRowenpqZ6bdq0ydfHxychMzOzXUZbXe2hhx7qHR8fX3nPPfcUujuWulauXBk8bNiwitoEG2DZsmUhwcHB1hEjRlSd7dzWWrt2bfCoUaPKaxNsgMGDB1sSEhLK1qxZE9ycPtx5P2UkWwjgk6RjaA2/GNvb3aF0O5aMDIxBQXiEOOr5b83ZypDQIWeW7tv1EdirZRt1IYRTZrNZXXLJJfH79+/3mTdvXnZkZGT1o48+GvvEE09Em81mw2233ZYXFxd3xkir3W7HZrM12bdSCg+PjkmX1q1b5798+fIe27Zt29MhF2yBlJQU/xkzZhRVVVWpgwcPer7++uthixcvjnjxxRePOLs/rri/6enpPlOnTj1V//igQYMq16xZ0+gmMLXcfT8lyRbdnt2u+Sgpi0n9exAT6uvucLodS0bG6VFss83Mrvxd3DS4TvUQrR21saMSoOcwN0UpRNf22MepMQdOlLr1G+DAyICKF68bldWac+fPnx/+ww8/BKxbt27/5ZdfXg6wbdu2gkWLFkUAvP/++xn1z1m7dm3AVVddNbCpvseNG1e2bdu2tNbE1RJms1k98MADfe65554To0aNMjd9RsfJysryyM3NNSUmJpZfe+21fdeuXRsCMGPGjKKHH34439k5rri/xcXFxuDg4Aa7k4aGhlpLS0vPmsN2hvspSbbo9n44XEBWYSW/mzrI3aF0S+bMDPzPd8y/3pW3i2p7NWN7jv25wfEdcHI3XLnAPQEKITq9xYsXh0+ePLmkNsEGCA4OtpaVlRkfffTRnMjIyAZDqpMnTy7/9ttv9zXVd1BQUNPDscCKFSsC5syZ0+qkct68eZFVVVWG559//nhzrteRtmzZ4gcwadKkivHjx1fcdNNNBWvWrAn+8MMPw+66666Yt956q8EvR666v872rNBaNzmvszPcT0myRbe3bHsWAd4eTBsW6e5Quh1bWRm2vPzTI9lJJ5MAGNNzzM+NkpeAhzcMv9YdIQrRLbR2BLkzOHr0qEdGRob33Llz8+oet1gshqCgINvTTz/tdHFcUFCQfeLEiRVN9d/cjcmmTJlSnpyc3OS0BH9/f3v9Y+np6Z7//ve/e/3zn//MrKqqMlRV/TzF2Ww2G/Lz843BwcG2jpq2Ut9PP/3k6+/vbxs1alSVwWBg3LhxVTfffHNxWVmZYfXq1SFAg38/rri/gYGBtqKiogYvuqioyBgQENBghLtWZ7mfkmSLbq24sprPd5/g+sQYvE3Gpk8QLvXzosc4AJJzkxkQPIAgryBHg+pK2PUxDJ0FPsFuiVEI0bnt27fPG6Bfv36npwRYrVaWLl3aIyYmxhwSEtIgqQXXTxcJCAiwJyQktGoBYFpampfZbFb3339/3/vvv/+M5954442eb7zxRs8tW7bsnTRpUmVr+m+rlJQUv6FDh1YY6u20q5QiLCzMabLrivsbHx9fmZaW5l3/+IEDB3wGDBjQ6L3uLPdTkmzRra1KzcFstXO91MZ2C0umY5qkV1wcVruVlNwUru5/9c8N9q0Gc7EseBRCNMpgMGiAgoKC0znN/Pnzww8dOuQ9dOjQRkdSXT1dpC3OO++8itWrVx+of/yqq64aOGvWrMI777wzf9iwYW6bp717927fCRMmlNY9lpWV5bFhw4ag+++//4Szc1xxf2fMmHHq2Wefjdm7d6/n0KFDLQBpaWmeycnJfk899VR2Y+d1lvspSbbo1j7ansXgyACGRwe6O5RuyZKRAQYDpj592Fu4n0prJYk9E39ukLIEgvtAn/PdF6QQolObMGFCpb+/v23+/Pm9goODbVlZWabnnnuu97Rp04o2bNgQvGzZssCZM2eW+vr66rrnhYSE2C+88MImpzN0hLCwMNvMmTNLnT0XGxtrrv9cWlqa5+DBg0c88sgjxxcsWJDTnrFlZGSY8vLyTGvXrg198MEHLdOnTy/JysoyLViwoFdkZGT1k08+mevsPFfc34cffjh/0aJFEbNnzx7wxz/+MUcppZ999tnomuoxp6cHrVmzxn/WrFmDFi5cmPnggw8WtPR+thepky26rX3HS9h5rJgbxsU0e86dcC1zRgam6GgMnp4N52MXZULGJscOjwb5ViWEcC4wMND+zjvvHPb29tZz587tt3Dhwl4LFiw4snjx4qODBg2qvPHGG+OtVmuX+iZfWlpqAIiMjHT5BjD11S56nDNnTsH7778fds0118S/8MILURdddFHxpk2b0oKCgpxOx3GFwMBA+/r16w/07dvXfO+99/a9++67+8XExJjXr19/xnW11spms2G3t1sorSIj2aLbWrY9C0+jgdmjo90dSrdlycg8PR876WQSMQExRPhGOJ5MeQ9QMPpGt8UnhDg3zJkzp2TOnDkNFh3u2rWryekKnZnWOsnZ8Y0bN/oHBwdb77vvvoL2jqF20eOyZcsy68/J7gjx8fGWdevWHTpbm5kzZ5Y2dq/qak4bV5LhIdEtma02VqRkc/mwnoT4ebo7nG5J2+1YMjPx6tsXu7aTnJv8c+k+uw12vA8DpkCQbBAkhBB1bdq0KeCee+45GRAQ0O5DtykpKX7Dhw9vsOhRNE1GskW39PXeXIoqqmXBoxtZT5xAV1Xh2bcvh08dpthczJiImqkih7+BkmMw7S/uDVIIITqhVatWNdhcp73s3r3b94YbbnC64Yw4O7cm2UqpUOBNYCqQD/xBa/1+I237Af8GLgLMwFta68c7KlbRtSzbnkVUkDfnDwhrurFoF+YMx88Iz7i+p+djn170mPIu+ITCoBnuCk8IIQRQWFiY6u4YzlXuHvt/GbAAPYGbgVeVUg32TVZKeQJfARuASKA38G4Hxim6kJxTlWxKz+O6sb0xGrrUWphziiUzEwDPvn1Jyk0iwieC3gG9oaIQ9q+BkTeAh5d7gxRCCCFayW1JtlLKD7gWmKe1LtNabwZWAbc6af5rIEdrvUBrXa61rtJa7+zAcEUX8knSMbSG68bKVBF3smRkYvD1xRgeRtLJJMb0HOOo8rJzGdgsUhtbCCHEOc2dI9kDAZvWum6x8FSgwUg2cB6QqZT6XCmVr5TaqJQa4axTpdTdSqntSqnteXl5zpqIbkxrzSfJx5jYrwexPXzdHU63ZsnIwDMujuzybHIrcn9e9LjjPeg1GiKHuzU+IYQQoi3cmWT7A8X1jhUDAU7a9gZ+iWNOdhSwBlhZM43kDFrrN7TWiVrrxPDwcBeHLM51O7JOkVlQwZwxUrbP3SwZGXj27UvyyWQAR5KdlwYndsKoX7o5OiGEEKJt3JlklwH1t9kLBJztwlMJbNZaf661tgB/B3oAQ9o3RNHVrNyRg6eHgenDI90dSrdmr6qi+vhxx3zsk0kEeQXRP7i/Y6qIMsCwa9wdohBCCNEm7kyyDwAeSqn4OsdGAQ2KyQM7Ae3kuBDNVm2zszo1h8uGRBDobXJ3ON2a5cgR0BrPvnEknUwiISIBAwp2LYN+F0NAT3eHKIQQQrSJ25JsrXU5sBx4Vinlp5SaDMwCljhp/i5wnlLqMqWUEXgYR8m/c3onJ9GxNh/Mp6DcwizZ4dHtLDXl+yp6BXO09KijdF/Wj3DqKIy43s3RCSGEEG3n7hJ+9wM+QC7wAXCf1nqPUipWKVWmlIoF0FqnAbcArwFFOJLxq2umjgjRLCtTsgn09uDiQTJX391qk+ydvo79Dcb2HOuYKuLhA0NmujM0IYQQwiXcuhmN1roQmO3k+FEcCyPrHluOY+RbiBarsFj5cu9JZo2OwsvD6O5wuj1zRgYekZFsP7UbHw8fBgf1hz2fwqArwMvZ2mchhBDi3OLukWwhOsRXe09SYbHJVJFOwpJ5BM++cSTnJjM6fDQeh7+FykIYKVNFhBBCdA2SZItuYUVKNlFB3oyPC3V3KN2e1toxXSQ2mvSidMdUkV3LwCcE+k9xd3hCCCGES0iSLbq8gjIzm9LzuWp0FAbZRt3tbAUF2EtLORFqQKMZEzoE9q+FYXPAo0HpeyGE6Da+/PJLv8mTJ8eHhoaO8vf3Txg6dOiQhQsX9nB3XLVycnI8brnlltjo6OgRPj4+CXFxccMXLFgQ1p7XPHjwoGn69On9AgICRvv7+ydMnTq1f3p6eot/WFxwwQXxSqmxv/nNb6LaI05nJMkWXd6aXcex2TWzZapIp1C76DHNvxSTwcSI/CNgrZSqIkKIbu3HH3/0ufrqqwdZrVb173//+8iSJUsOjR49uuKRRx6Je+GFF9y+Yr+yslJNnTo1fuPGjUFPPPFEztKlSw+OHDmy/LHHHutz8ODBdqmLW1paapgyZcqgQ4cO+bzyyiuZr732WkZmZqbXpZdeOrCkpKTZOezrr78eun//fp/2iPFs3LrwUYiOsCIlm0E9AxjSq/7eR8IdzDVJ9o+mLEaEjcB796cQFAsxE9wcmRBCuM+SJUtCbTYbX3755cGgoCA7wJw5c0r27Nnj88EHH/T4/e9/n+fO+N5+++2QvXv3+m7btm1PYmJiFYCXl5devXp1aGlpqRGodvU1Fy5cGHbs2DGv1NTU3cOHDzcDJCYmVgwfPnzEggULwp955pmTTfWRn59vfOqpp2L++te/Zt177719XR3j2chItujSjhZUkHz0FLMSOuyvQ6IJloxM8PTke/tBxoQMgsPfwIjrwCDfjoQQrWc2m9Xjjz/eq3fv3iO8vb3HjB49enBqaqrXpk2bfH18fBIyMzM79S5kFotFeXh4aD8/P3vd44GBgTa73d7YaR1m5cqVwcOGDauoTbABli1bFhIcHGwdMWJE1dnOba21a9cGjxo1qrw2wQYYPHiwJSEhoWzNmjXBzenjoYce6h0fH195zz33FLZHjGcjI9miS1u5IxuAq0dJkt1ZWDIysEWHU61OMra8FLRdqooIIdrEbDarSy65JH7//v0+8+bNy46MjKx+9NFHY5944olos9lsuO222/Li4uLOGGm12+3YbLYm+1ZK4eHR/unSXXfdlb9kyZLw22+/Pfa555477u/vb//f//4X8v333we88sorGe0eQBNSUlL8Z8yYUVRVVaUOHjzo+frrr4ctXrw44sUXXzzi7P644v6mp6f7TJ069VT944MGDapcs2ZNSFN9r1u3zn/58uU9tm3b5mw38XYnSbbosrTWrNiRzfi+ofQO8XV3OKKGJSODgp7eGJSB0Ye/h8gREDHE3WEJ0b2teCCG3L3u/UYZMbSC2S9ntebU+fPnh//www8B69at23/55ZeXA2zbtq1g0aJFEQDvv/9+gyR17dq1AVddddXApvoeN25c2bZt29JaE1dLjBs3ruqLL75Iu/766we8++674QAeHh76xRdfPHr33XcXtff1zyYrK8sjNzfXlJiYWH7ttdf2Xbt2bQjAjBkzih5++OF8Z+e44v4WFxcbg4ODrfWPh4aGWktLS8+aw5rNZvXAAw/0ueeee06MGjXKfLa27UWSbNFl7ckp4VBeOXec38/doYgauroay7FjHBoYyaDAOPx3bITLn3N3WEKIc9zixYvDJ0+eXFKbYAMEBwdby8rKjI8++mhOZGRkgyHVyZMnl3/77bf7muo7KCio6eFYYMWKFQFz5sxpdVK5a9cur1/+8pf94+PjKxcuXHjE19fX/umnnwY/9thjsd7e3vb77ruvw6c71NqyZYsfwKRJkyrGjx9fcdNNNxWsWbMm+MMPPwy76667Yt56660Gvxy56v4q1bAqmNa6yVJh8+bNi6yqqjI8//zzx5tq214kyRZd1oqUbExGxYwRke4ORdSwZB0Dm41UnzzG2kMA5ZiPLYRwr1aOIHcGR48e9cjIyPCeO3fuGQsDLRaLISgoyPb00087XRwXFBRknzhxYkVT/TtL8pyZMmVKeXJycpPTEvz9/Z1OsH788cejPTw89Pr16w96eXlpgFmzZpUWFhZ6PPnkkzF33313odHonh2Lf/rpJ19/f3/bqFGjqgwGA+PGjau6+eabi8vKygyrV68OARr8+3HF/Q0MDLQVFRU1yFWLioqMAQEBDUa4a6Wnp3v++9//7vXPf/4zs6qqylBV9fOUcbPZbMjPzzcGBwfb2nsakCTZokuy2TWrUnO4eFAEwb5Se7mzsGQ6/mJ7NNjG1SfSIe58CJT58kKI1tu3b583QL9+/U5PCbBarSxdurRHTEyMOSQkxGlS6+rpIgEBAfaEhIRWLwDcv3+/z5AhQyprE+w61y9fvXp1aHZ2tkdsbGyjiWV7SklJ8Rs6dGiFod4CdaUUYWFhTmNyxf2Nj4+vTEtL865//MCBAz4DBgxo9F6npaV5mc1mdf/99/e9//77z3jujTfe6PnGG2/03LJly95JkyZVNhVfW7Q4yVZKeQFRgA+Qp7V2a0kZIZz54XABuaVmqY3dydTWyD4eCgm5R2Dmo26OSAhxrjMYDBqgoKDgdE4zf/788EOHDnkPHTq00ZFUV08Xaavw8HDr3r17fauqqpS3t/fpRHvbtm1+Xl5eOiIiokPicGb37t2+EyZMKK17LCsry2PDhg1B999//wln57ji/s6YMePUs88+G7N3717PoUOHWgDS0tI8k5OT/Z566qnsxs4777zzKlavXn2g/vGrrrpq4KxZswrvvPPO/GHDhrX7PO1mJdlKqQDgFuBGYDxgAhSglVI5wBfAG1rrn9orUCFaYkVKNv5eHkwZEuHuUEQd5owMKvxN9PT3IzTPA4Zc7e6QhBDnuAkTJlT6+/vb5s+f3ys4ONiWlZVleu6553pPmzataMOGDcHLli0LnDlzZqmvr+8ZI8QhISH2Cy+8sMnpDB3lvvvuy507d26/yy67bMC9996b5+vra1+xYkXwZ599FnrHHXecrJt4p6WleQ4ePHjEI488cnzBggU57RlXRkaGKS8vz7R27drQBx980DJ9+vSSrKws04IFC3pFRkZWP/nkk7nOznPF/X344YfzFy1aFDF79uwBf/zjH3OUUvrZZ5+Nrqkec3qQd82aNf6zZs0atHDhwswHH3ywICwszDZz5sxSZ33GxsaaG3vO1ZosTKuUegTIBOYCXwGzgNHAQGAi8CccyfpXSqkvlFLx7RWsEM1RVW3ji90nmD48Em+Te+avCecshzM4FmJnbNkpGDgNfILdHZIQ4hwXGBhof+eddw57e3vruXPn9lu4cGGvBQsWHFm8ePHRQYMGVd54443xVqu1eROr3ej2228vWrp0abrFYjE89NBDfW699db+27Zt8//b3/529LXXXjtWt21paakBIDIy0uUbwNRXu+hxzpw5Be+//37YNddcE//CCy9EXXTRRcWbNm1Kq904pz0EBgba169ff6Bv377me++9t+/dd9/dLyYmxrx+/fozrqu1Vjabjc5QT7yu5oxkTwIu0lrvbuT5bcBbSql7gTuAi4B0F8UnRItt2J9LqdkqU0U6ocrDB8nqY2ds6Sm4UGpjCyFcY86cOSVz5sxpsOhw165dTU5X6Eyuv/76kuuvv76kqXYbN270Dw4Ott53330F7R1T7aLHZcuWZdafk90R4uPjLevWrTt0tjYzZ84s1VonNdVXc9q4UpNJttb6F7WfK6XCG5uDrbU2A6+4MDYhWmVFSjYRAV5M7N/D3aGIOmzFxXCqhJwEA9fZPSF+qrtDEkKIc9KmTZsC7rnnnpMBAQHtPnSbkpLiN3z48AaLHkXTWrrwcatSaprW+nC7RCNEG52qsPBNWi63TYzDaOj0fx3sVmoXPZqD7UQOvgpMDRaMCyGEaIZVq1Z12A6Qu3fv9r3hhhucbjgjzq6lSfZaHIn2DK11cu1BpdSFwN+01pNdGp0QLbR21wmqbVqminRC5oxMACJ8zbKNuhBCnCMKCwtT3R3DuapFY/9a698Cfwe+UUpNVUqNVkp9AXwDHG2PAIVoiRU7sukX7sfw6EB3hyLqyU3bgU3BgEAv6HO+u8MRQggh2lWL62Rrrf+ulDICn+Eo47cCGKm1bnKXIyHaU/apSrZlFPLo5QObvUOX6DiF+3ZQHgxj46eBzO0TQgjRxbXoJ51SKkYp9TrwLPATYAbWSIItOoNVOxylQmeNlh0EOyN7Zib5odBn9O3uDkUIIYRody0dTkoHEoCZNfOvrwb+qZR6yuWRCdFCK3dkkxAbTJ8efu4ORdSjbTb8880QYkT1GunucIQQQoh219Ik+xat9Xit9VcAWusNwMXAfUopKd8n3Gb/iRL2nyiVBY+dVHbKOkw2CIqLA5nKI4QQohto6cLHj50cSwUm40i2hXCLFSk5GA2KK0f2cncowom0b98GIG6CbKMuhBCie3DJ6iOt9REcibYQHc5u16zakc0F8WGE+Xu5OxxRn9acPOjYdK3vhFluDkYIIYToGE0m2Uqpvs3pSGtdpBxi2h6WEM33U2YhOcVVMlWkszqxi8rCaszeBjzDI9wdjRBCCNEhmjOS/b1S6k2l1MTGGiilQpRS9wF7ARmqEh1qxY4cfExGLh/a092hCCcKdizBv9iAJTpMSisKIYToNppTJ3sw8BSwRillA5KA40AVEAIMBYYA24CHtdbr2ilWIRqwWO2s3XWcqcN64ufV4rLvor3ZbaQcXENUgcZ30iB3RyOEEEJ0mCZHsrXWp7TWjwHRwH3AfiAY6AtYgf8BCVrryZJgi462MS2X4spqmSrSWR3Zwg5LOWGlED5wlLujEUIIITpMsxc+aq0ra6qL/B54pubxTq31P7TWu9spPiHOauWOHEL9PDk/PszdoQhndi7jaKUvAD79+7s5GCGE6LwOHTpk+tWvfhUzevTowT4+PglKqbFpaWmeztouXrw4ZNq0af2joqJGeHt7j4mLixv+wAMPRBcVFXWK7XRzcnI8brnlltjo6OgRPj4+CXFxccMXLFjQrj+oDx48aJo+fXq/gICA0f7+/glTp07tn56e7vT+ObN06dKgxMTEQb6+vgn+/v4Jw4cPH7Jq1aqAtsTU0h0fLweygOSajwKl1CKllKxmEh2utKqar/edZObIXpiMneL7iqiruorSfauwlDreG8++zVpDLYQQ3dK+ffu8P/vss9CgoCDr2LFjy87WduHChT2NRqOeN29e9ieffHJg7ty5ue+88074xRdfPNBms3VUyE5VVlaqqVOnxm/cuDHoiSeeyFm6dOnBkSNHlj/22GN9Dh48aGqPa5aWlhqmTJky6NChQz6vvPJK5muvvZaRmZnpdemllw4sKSlpMkF48cUXw26++eb+o0aNqnjvvfcO/e9//zs0a9asovLy8jYlFy2dxPof4Fsco9gWYDzwWyBZKTVOa328LcEI0RJf7D6B2WpnlkwV6ZzSv2SHMtOrIACtFJ59+rg7IiGE6LSuuOKK0oKCglSABQsWhG3ZsiWwsbaff/75waioKGvt11deeWVZaGio7aGHHopbs2ZNwNVXX13aETE78/bbb4fs3bvXd9u2bXsSExOrALy8vPTq1atDS0tLjUC1q6+5cOHCsGPHjnmlpqbuHj58uBkgMTGxYvjw4SMWLFgQ/swzz5xs7Ny0tDTPefPmxf7xj3889sc//jG39vi1115b0ta4WpqhxwJ/0Fof1lof01ov11pfBHyDIwEXosOs3JFDbKgvY2KD3R2KcGbXMpICQoguBI9ekRi8vd0dkRCiCzObzerxxx/v1bt37xHe3t5jRo8ePTg1NdVr06ZNvj4+PgmZmZntMorqKkajsdlt6ybYtSZNmlQOkJWV5dbXuXLlyuBhw4ZV1CbYAMuWLQsJDg62jhgxoups57bW2rVrg0eNGlVem2ADDB482JKQkFC2Zs2a4LOd++qrr4YppfTvfve7PFfH1dIkexfQ28nxvwDT2h6OEM2TW1LF1kP5zB4dJWXhOqPKU3BgHcnBEfQr8ca7bz93RySE6MLMZrO65JJL4hctWhTx//7f/zu+ePHiQydPnjQ98cQT0c8880zUbbfdlhcXF3fGCKrdbqe6urrJD6u1QT7bKX399dcBAO2VyDZXSkqKf2JiYllVVZXavXu310MPPRS9ePHiiKeffjrbw8P5BIq2vhfp6ek+gwcPrqx/fNCgQZUHDx486wjPDz/84N+vX7+qRYsWhcbExAz38PAYGxsbO/xvf/tbeGtef10tnS7yPvBfpdQVWuuDdY6HA0VtDUaI5lqVmoNdw6wEmSrSKe1bRZW9ml3VxYTnazwvlvnYQnRm87bMizlYdNDXnTEMCBlQ8dzk57Jac+78+fPDf/jhh4B169btv/zyy8sBtm3bVrBo0aIIgPfffz+j/jlr164NuOqqqwY21fe4cePKtm3bltaauDpKRkaG6f/+7/+iJk6cWHLhhRdWuCuOrKwsj9zcXFNiYmL5tdde23ft2rUhADNmzCh6+OGH8xs7r63vRXFxsTE4OLhBBh4aGmotLS09a6578uRJU15enuef/vSn3k8//XR2fHy8eenSpSFPPvlkrNVqVfPmzcs92/ln09Ike0HN416l1GogBcdo+I3A/2ttEEK01ModOYyIDqJ/uL+7QxHO7FzGrrA+BJTa8Kiy4dk3zt0RCSG6sMWLF4dPnjy5pDbBBggODraWlZUZH3300ZzIyMgGqwEnT55c/u233+5rqu+goKBmrSRcsWJFwJw5czo8aS8uLjZcddVVAzw8PPSSJUsyXdVva2zZssUPYNKkSRXjx4+vuOmmmwrWrFkT/OGHH4bdddddMW+99ZbTX6Jc8V44+6u21rrJP3VrrVV5ebnh7bffzvjVr351CuDqq68uzcrK8vrXv/7V66mnnso1GFq3/rGlSXY4kACMrvn4JVC7w8SflFLXADuBnVrrz1oVkRBNOJRXxq7sYp6+coi7QxHOlORA5ma2j55B9M6dAHjGxbk3JiHEWbV2BLkzOHr0qEdGRob33Llzz5hTa7FYDEFBQbann37a6aK3oKAg+8SJE5sc9W3ulMQpU6aUJycn72mqnb+/v71ZHTZDRUWFmjZt2oCsrCyvr776Kq1///4uX1TYEj/99JOvv7+/bdSoUVUGg4Fx48ZV3XzzzcVlZWWG1atXh+CoUNdAW9+LwMBAW1FRUYOctqioyBgQEHDW+T7BwcHWI0eOeF199dVnLHScMmVK8XfffRd49OhRU/2pRs3VoiRba10AfF3zAYBSygsYwc+J9wzgcRwb1gjhcitTsjEouHpUlLtDEc7s+hjQJJsMjK6MAI7jJeX7hBDtZN++fd4A/fr1O73ozWq1snTp0h4xMTHmkJAQp0mtq6eLBAQE2BMSEjpsPrTZbFYzZszov3PnTr/Vq1cfGD9+fIM5yR0tJSXFb+jQoRX1R36VUoSFhTWa7Lb1vYiPj69MS0trMPf6wIEDPgMGDDjrezJo0KDK1NRUv/rHa0fBDQaDbiquxrR5H2qttRnYXvMhRLvSWrNiRw6T+ocRESjVKjqlXcuojkog9dQBri7vjfIuwiMy0t1RCSG6qNokqKCg4HROM3/+/PBDhw55Dx06tNHRUVdPF+lINpuNOXPm9P3+++8Dly1blj5lypTyps9qf7t37/adMGHCGeUDs7KyPDZs2BB0//33n2jsvLa+FzNmzDj17LPPxuzdu9dz6NChFnCU5ktOTvZ76qmnss/W55w5c04tW7YsbMWKFUG333776fWFX3/9dWDPnj2rY2NjW73ytc1JthAdKSXrFEcLK3jo0gHuDkU4k7sfTuxi30WPUHn0E6KLHFNFVCvnswkhRFMmTJhQ6e/vb5s/f36v4OBgW1ZWlum5557rPW3atKINGzYEL1u2LHDmzJmlvr6+Z4xIhoSE2N25SNCZxYsXhwAkJSX5AqxYsSIoIiLCGhERUX3llVee3qDmtttui/38889DHnrooeP+/v729evXnx6JjYuLs9ROG0lLS/McPHjwiEceeeT4ggULctoz9oyMDFNeXp5p7dq1oQ8++KBl+vTpJVlZWaYFCxb0ioyMrH7yyScbXUDY1vfi4Ycfzl+0aFHE7NmzB/zxj3/MUUrpZ599NjoyMrL60UcfPT2NaM2aNf6zZs0atHDhwswHH3ywAOD6668vXrhwYekjjzzSJy8vz2PAgAHmjz76KGTLli2B//rXvzJbGxNIki3OMStTsvHyMDB9uIyMdkq7loEykBzYAwC/EyV4Dh/h5qCEEF1ZYGCg/Z133jn8+OOPx8ydO7dfSEiIdcGCBUdmz55dMnXqVK8bb7wxvqioKAVo9Z/9O8rcuXPPqHf6xBNPxIJjmsSVV155eprExo0bgwBeeumlXi+99FKvuufUTahLSx1b7kZGRrb7XO3aRY9z5swpeP/998PeeOONnlFRUZbLLrvs1HPPPXciKCjIZXPR6wsMDLSvX7/+wIMPPhhz77339tVaM3HixJKXX345q+51tdbKZrNht/8cisFgYO3atQd/+9vf9n7hhReiSkpKjH379q169dVXM+69997CtsQlSbY4Z1Tb7Hy28ziXDelJgHen3lOge9Iadn0E/S4m6dQB+vv2wZ6dgddVV7s7MiFEFzdnzpySOXPmNFh0uGvXrianIHQmWuuk5rTLzs7e1Zx2Gzdu9A8ODrbed999BW2LrGm1ix6XLVuW2dpqHG0RHx9vWbdu3aGztZk5c2aps3scGhpqX7JkyVHgqCtjkr/hinPG5oP5FJRbmDVaFjx2Slk/wqmj2If/guTcZC4kHux2PGXRoxBCuMWmTZsC7rnnnpMBAQHtNopcKyUlxW/48OENFj12ZzKSLc4ZK1OyCfIxcfGgCHeHIpzZuQw8fDgYNZSSnSWMsjo2y/KMkyRbCCHcYdWqVQ024Wkvu3fv9r3hhhsa3XCmO5IkW5wTys1W1u05yeyEaDw95LfkTsdqgT3LYdAVJBU5/jrbt9gTM8hGNEII0Q0UFhamujuGzkayFXFO+GrvSSqrbcyWqSKd06H1UFkEI68n6WQSkX6ReGcXYAwPw+gvu3IKIYTofiTJFueEFTuyiQryZlxcqLtDEc7sXAY+Ieh+l5J8MpkxEWOwZGTiJVNFhBBCdFOSZItOL7/MzHfp+Vw9OhqDoXnb24oOZC6FtM9h2ByyKk+SV5nH2J5jsWRkyKJHIYQQ3ZYk2aLTW7PzODa7ZnaCTBXplPZ9BtZKGOGYKgIw1nsgtuJiSbKFEEJ0W25NspVSoUqpT5VS5UqpI0qpm5pxzgallFZKyaLNbmLFjmwGRwYwODLQ3aEIZ3Ytg6BYiJlA0skkQrxCiCxwVIuSRY9CCCG6K3ePZL8MWICewM3Aq0qpYY01VkrdjFRE6VaOFJSTcvQUs0ZHuzsU4UzpSTi8EUZcBwYDSSeTGNNzDNUZmQB4yUi2EEKIbsptSbZSyg+4FpintS7TWm8GVgG3NtI+CPgT8HjHRSncbeWOHACulqoindOe5aDtMPJ6Tpaf5FjZMcd87MwMMJkwRcsvR0IIIbond45kDwRsWusDdY6lAo2NZD8PvAqcOFunSqm7lVLblVLb8/LyXBOpcAu7XfNx0jHO6xdKdLCPu8MRzux4DyJHQsQQknOTARjbcyzmjAw8Y2NRHvKHJyGEEN2TO5Nsf6C43rFiIKB+Q6VUIjAZeKmpTrXWb2itE7XWieHh4S4JVLjHjxmFHC2s4IZxMe4ORTiTswNO7IIxtwGQdDIJP5Mfg0IGYcnIxDMuzq3hCSGEEO7kziS7DKi/ki0QKK17QCllAF4Bfqu1tnZQbKIT+Gh7FgFeHkwf1svdoQhnUt4Fo5djPjaOJHt0xGgMdo3l6FG8ZNGjEEKIbsydSfYBwEMpFV/n2ChgT712gUAisFQpdQL4qeb4MaXUBe0fpnCHkqpq1u4+ztWjo/DxNLo7HFFfdZWjqsiQq8AnhFNVpzh46iCJPROpzs6G6mop3yeEEKJbc1uSrbUuB5YDzyql/JRSk4FZwJJ6TYuBKGB0zceMmuNjgR87JFjR4Van5lBVbef6RJkq0int/wyqiiHhFoDT87HHRIzBkpkJIEm2EEK0wOLFi0OmTZvWPyoqaoS3t/eYuLi44Q888EB0UVGR01zt4MGDpunTp/cLCAgY7e/vnzB16tT+6enpnh0dtzM5OTket9xyS2x0dPQIHx+fhLi4uOELFiwIa6/rHTp0yPSrX/0qZvTo0YN9fHwSlFJj09LSmn0v2uteuruE3/2AD5ALfADcp7Xeo5SKVUqVKaVitcOJ2g+gdjXjSa21xV2Bi/a1bPsxBkcGMLJ3kLtDEc6kLHHUxu57EeCYKuJp8GR42HDMGRmAJNlCCNESCxcu7Gk0GvW8efOyP/nkkwNz587Nfeedd8IvvvjigTab7Yy2paWlhilTpgw6dOiQzyuvvJL52muvZWRmZnpdeumlA0tKStya21VWVqqpU6fGb9y4MeiJJ57IWbp06cGRI0eWP/bYY30OHjxoao9r7tu3z/uzzz4LDQoKso4dO7asJee2571069J/rXUhMNvJ8aM4FkY6OycTkL21u7C0E6WkZp1i3syhKCVvdadTdMRRG/viP4DB8f0n+WQyI8NH4mn0xJKRiTEoCI+QEPfGKYQQ55DPP//8YFRU1Om1Z1deeWVZaGio7aGHHopbs2ZNwNVXX316zdrChQvDjh075pWamrp7+PDhZoDExMSK4cOHj1iwYEH4M888c9IdrwHg7bffDtm7d6/vtm3b9iQmJlYBeHl56dWrV4eWlpYagWpXX/OKK64oLSgoSAVYsGBB2JYtW5q9e1173kt3j2QL0cCy7VmYjIo5CVJjuVPa8T6gYLRjg9by6nL2Fe5jTM8xAFgyMmQUWwjR4cxms3r88cd79e7de4S3t/eY0aNHD05NTfXatGmTr4+PT0JmZma7jKK6St0Eu9akSZPKAbKyss6Ife3atcGjRo0qr00KAQYPHmxJSEgoW7NmTXC7B3sWK1euDB42bFhFbYINsGzZspDg4GDriBEjqs52bmsZja1fu9We91KK2IpOxWK182lKNpcP7UmoX6eYWibqstsctbH7XQzBsQCk5qZi0zbG9hwLOJJsv/PPd2OQQojuxmw2q0suuSR+//79PvPmzcuOjIysfvTRR2OfeOKJaLPZbLjtttvy4uLizhhBtdvt1J+G4YxSCg831fz/+uuvAwDqJ6fp6ek+U6dOPVW//aBBgyrXrFnj1j8jpqSk+M+YMaOoqqpKHTx40PP1118PW7x4ccSLL754pLH76M73oj3vpSTZolNZv+8kheUWfiELHjunjG+hOAsu//PpQ0m5SRiVkdHho7GVlWHNy5Ma2UKcY3KefCrGnJ7u684YvOLjK6Ke/2tWa86dP39++A8//BCwbt26/Zdffnk5wLZt2woWLVoUAfD+++9n1D9n7dq1AVddddXApvoeN25c2bZt29JaE1dbZGRkmP7v//4vauLEiSUXXnhhRd3niouLjcHBwQ1GvkNDQ62lpaVuy+2ysrI8cnNzTYmJieXXXntt37Vr14YAzJgxo+jhhx/Ob+w8d74X7XkvJckWncqy7VlEBnpzYbxsJNQppbwL3sEw6MrTh5JOJjEkdAi+Jl8q9+8GwFNqZAshOtDixYvDJ0+eXFKbYAMEBwdby8rKjI8++mhOZGRkg2HSyZMnl3/77bf7muo7KCio6SFWYMWKFQFz5sxxSaJYXFxsuOqqqwZ4eHjoJUuWZDpr42zNktbarQuZtmzZ4gcwadKkivHjx1fcdNNNBWvWrAn+8MMPw+66666Yt956y+kvUa5+L1qqve6lJNmi0zhRXMW3B/K4/+IBGA2y4LHTqSiEfZ/B2F+ByRsAi83Crrxd3Dj4RsfXmY7BIi+Zky3EOaW1I8idwdGjRz0yMjK8586dm1f3uMViMQQFBdmefvpppwvXgoKC7BMnTqxw9lxdzV2AP2XKlPLk5OT6e3004O/vbz/b8xUVFWratGkDsrKyvL766qu0/v37N1goGBgYaCsqKmqQwxUVFRkDAgLctnHfTz/95Ovv728bNWpUlcFgYNy4cVU333xzcVlZmWH16tUhgNN/Z65+L1qiPe+lJNmi0/gk+Rh2Db9I7O3uUIQzuz4GmxkSbj19aHf+bix2S5352JlgMGDq08dNQQohupt9+/Z5A/Tr1+/0wjWr1crSpUt7xMTEmENCQpwmta6eohAQEGBPSEho08I+s9msZsyY0X/nzp1+q1evPjB+/PhKZ+3i4+Mr09LSvOsfP3DggM+AAQPaZXFhc6SkpPgNHTq0wmA4s66GUoqwsLBGE1Z3Thdpz3spSbboFOx2zbLtWZzXL5Q+PfzcHY5wJuUdiBwJvUaePrT95HYAEiISAMdItik6GoOnLFoVQnQMg8GgAQoKCk7nNPPnzw8/dOiQ99ChQxsdHXX3FIX6bDYbc+bM6fv9998HLlu2LH3KlCnljbWdMWPGqWeffTZm7969nkOHDrUApKWleSYnJ/s99dRT2R0RrzO7d+/2nTBhQmndY1lZWR4bNmwIuv/++080dp4734v2vJeSZItOYVtmIUcKKvjtlHh3hyKcOZ4KJ3bBjL+fcXhrzlYGhw4m2DsYAHNGpszHFkJ0qAkTJlT6+/vb5s+f3ys4ONiWlZVleu6553pPmzataMOGDcHLli0LnDlzZqmvr6+ue15ISIi9/oJCd7rttttiP//885CHHnrouL+/v339+vWnR5zi4uIsdaeNPPzww/mLFi2KmD179oA//vGPOUop/eyzz0bXVFU5PW0mLS3Nc/DgwSMeeeSR4wsWLMhpz/gzMjJMeXl5prVr14Y++OCDlunTp5dkZWWZFixY0CsyMrL6ySefzG3sXFe8F4sXLw4BSEpK8gVYsWJFUEREhDUiIqL6yiuvLANYs2aN/6xZswYtXLgw88EHHyyA5t/L1pAkW3QKy7ZnEeDlwRXDe7k7FOFMyrtg9IIR150+VGopZUfuDuYOnwuAttuxZGbiN36cu6IUQnRDgYGB9nfeeefw448/HjN37tx+ISEh1gULFhyZPXt2ydSpU71uvPHG+KKiohRAN9mZG23cuDEI4KWXXur10ksvnfHDsH6SHBgYaF+/fv2BBx98MObee+/tq7Vm4sSJJS+//HJWUFDQ6ekxpaWlBoDIyEiXbwBTX+2ixzlz5hS8//77YW+88UbPqKgoy2WXXXbqueeeO1E3rvYwd+7cfnW/fuKJJ2LBMcXkyiuvTAPHYkabzYbd/nMozb2XrSFJtnC7kqpq1u46zjVjeuPj2fqC8qKdVFfBzmUw5Crw+blk6A/Hf8CmbZwf7aiJbT15El1ZKRvRCCE63Jw5c0rmzJnTYNHhrl27mpyC0FlkZ2fvakn7+Ph4y7p16w6drc3GjRv9g4ODrffdd19B26JrWu2ix2XLlmXWn5PdEbTWSU21mTlzZqmzds25l60hOz4Kt/ss9ThV1Xaul9rYndP+z6DqFCTccsbhzdmbCfAMYGS4Y462JcNRWcQzTpJsIYToDDZt2hRwzz33nAwICGjXUWRwLHocPnx4g0WP3ZmMZAu3W7o9i0E9AxjVO8jdoQhnUpZAUCz0vej0Ia01m49tZmKviXgYHN9GzLVJtszJFkKITmHVqlUNNuFpL7t37/a94YYbGt1wpjuSJFu4VdqJUlKzTvH0lUPapf6laKOiI3D4W7j4CagzOnGg6AC5lbmnp4oAWDKPYPD1xSMiwh2RCiGEcKPCwsJUd8fQ2ciYvnCrj7ZnYTIq5iREuzsU4UzqB47H0Tedcfi77O8AzkyyMzLwjIuTX5aEEEIIJMkWbmSx2lmeks1lQ3rSw9/L3eGI+ux2SHkP+l0MwbFnPLU5ezODQwcT7ht++pglI0MWPQohhBA1JMkWbrNh/0kKyy2y4LGzyvgWio82WPBYW7qv7ii2vaqK6pwcSbKFEEKIGpJkC7dZ+lMWkYHeXDgwvOnGouOlLAHvYBg884zDtaX7Loi+4PQxy5GjoLUsehRCCCFqSJIt3OJEcRXfHsjj2rHRGA0yh7fTqSiEfZ/ByOvB5H3GU/VL98HP5fu8ZCRbiHOB3W63yzdeIdqo5v+jRssjSpIt3OKT5GPYNfxirEwV6ZR2fQw2MyTcesZhrTWbs88s3Qdgyawp39enT4eGKYRoOaXUicrKSu+mWwohzqaystJbKXWiseclyRYdzm7XfLQ9iwl9Q4kL83N3OKI+rSHlHYgcCb1GnvHUgaID5FacWboPHCPZHj17YvCT91OIzs5qtf45MzPTs7y83EdGtIVoObvdrsrLy30yMzM9rVbrnxtrJ3WyRYf79kAemQUVPHzZQHeHIpw5+gOc2AVX/qPBU85K9wGYMzNl0aMQ54gxY8asS05OfvDQoUN/0lpHIgNuQrSUXSl1wmq1/nnMmDHrGmskSbbocIs2HyYy0JsrR/ZydyjCme//Az4hMOqmBk85K92ntcaSkUnglTM6MkohRBvUJAaNJgdCiLaT315Fh9qTU8yWgwX8enIcJqP88+t0Cg7B/jWQeAd4+p7xlLPSfQC2wkLsJSWy6FEIIYSoQ7Ic0aHe3JyBr6eRG8fFNt1YdLwfXwODB4y/q8FTtaX7nM3HBmS6iBBCCFGHJNmiw5wsqWJ1ag7XJ8YQ5GtydziivopCSHkXRvwCAiIbPL05ezMBpgBGhY8647hZkmwhhBCiAUmyRYf539ZMrHbN3MmSjHVKSW9DdQVMfKDBU6dL90WdWboPwJKRifL0xNRL5tgLIYQQtSTJFh2iwmLlvR+PMm1oJLE9fJs+QXQsqwW2vQH9LobI4Q2ebqx0Hzimi3j26YMyGjsgUCGEEOLcIEm26BAfJx2juLKauy6UUexOac9yKD0OEx9y+vTm7M1Aw9J9UJNky1QRIYQQ4gySZIt2Z7Nr3tqcweiYYMbEhrg7HFGf1o6yfeGDYcAUp02cle4D0NXVWI4dwzMurgMCFUIIIc4dkmSLdrd+30kyCyq464J+KCWbi3U6md85Np85735w8v6UWkpJyU1xPop97BhYrTKSLYQQQtQjSbZod4u+yyA62Idpw3q6OxThzNb/gG8YjLzB6dONle4Dx6JHAK++ce0YoBBCCHHukSRbtKvUrFNsyyzk9slxeMjmM51P3gFIX+eoi23ydtqksdJ9IDWyhRBCiMZI1iPa1ZubMwjw8uCGcTHuDkU488MrYPRy7PDoRG3pvvOizmtQug+gKm0/HuHhGIOC2jtSIYQQ4pwiSbZoN9mnKlmz6zi/HB9DgLdsPtPplOdD6gcw6pfgH+60SW3pvguiL3D6fGVSMj5jxrRnlEIIIcQ5SZJs0W7+tzUTgF/L5jOd0/a3wFrlWPDYiNrSfZOjJzd4rvrECaqzs/EdK0m2EEIIUZ8k2aJdlFZV88GPR5kxohfRwT7uDkfUV13l2HxmwOUQMbjRZrWl+yJ8Ixo8V5mcDIDPmLHtFqYQQghxrpIkW7SLZduPUWq2cuf5MordKe36CMrzYNKDjTYps5SxI3eH06oiABVJyShfX7wHD2qvKIUQQohzliTZwuWsNjuLt2QwPi6UUTHB7g5H1Kc1fP8y9BwOfS9qtNkPx3/Aqq2NJ9nJyfiOHoXyaLggUgghhOjuJMkWLrduz0mOFVVyxwUyit0pHVoPeftg4gNON5+p9V32d42W7rOVlmJOS5OpIkIIIUQjJMkWLrdo82Hievhy2RDZfKZT+v5l8I+E4dc12qSp0n2VO1LBbpdFj0IIIUQjJMkWLpV0pIiUo6eYe35fjAbZQr3TObkXDm1wbD7j4dlos6ZK91UkJ4HRiM/Ike0VqRBCCHFOkyRbuNSi7w4T5GPiurG93R2KcOb7l8HkC4lzz9rsbKX7wFEf23vIEAx+fi4PUQghhOgKJMkWLnO0oIJ1e05w84RYfD1lMVynU3oSdi2D0TeBb+hZm56tdJ+2WKjcuVOmigghhBBnIUm2cJmXNqTjYTBw28Q4d4cinNn8T7Bbz7r5DEBeRR4puSmNThWp2rcPXVUlix6FEEKIs5AkW7jEvuMlfJx8jF9PjiMyyNvd4Yj6Cg7BT4sg4Vbo0f+sTVceWolN25g1YJbT5yuSHJvQ+I5JcHmYQgghRFchSbZwiefX7iPQ28QDFw9wdyjCmfV/BqMnXPLkWZtprVmevpzEnon0CezjtE1FchKmPrF4hIe3R6RCCCFElyBJtmizbw/k8V16Pr+ZEk+Qr8nd4Yj6srbB3pUw+TcQEHnWpttPbierNItrB17r9HmtNZVJyfjKVBEhhBDirCTJFm1is2v+tnYfsaG+3Hqe85FP4UZaw7qnwL8nTGx8C/VaHx/4mADPAC6Lvczp85aMTGxFRbLoUQghhGiCJNmiTT5JOsb+E6X8fvpgPD3kn1Ons3clHNsGlzwFXv5nbVpsLubrI18zs99MvD2cz6uvTE4CkEWPQgghRBPcmhUppUKVUp8qpcqVUkeUUjc10u5XSqkkpVSJUuqYUmq+UkpqxLlZhcXKP75KIyE2mBkjzj4NQbiB1QJfPwMRQyHhliabf3b4Myx2C9fGO58qAo5Fj8aQEDz7xrkuTiGEEKILcvfQ48uABegJ3Ay8qpQa5qSdL/AwEAZMAKYAv+ugGEUjFn2XwckSM0/NGIJSsrtjp7P9TSjKgMufBYPxrE211nyS/gnDewxnUOigRttVJCfhM3aMvN9CCCFEE9yWZCul/IBrgXla6zKt9WZgFXBr/bZa61e11t9prS1a62zgPcD5VnSiQ+SWVvHat4eYPiySxLizb2wi3KDyFHz7AvS7GAY4n19d1+783aQXpXPNwGsabWPNy6P6yFFZ9CiEEEI0gztHsgcCNq31gTrHUgFnI9n1XQjsaZeoRLMs/Dodi9XO768Y7O5QhDPf/cORaF/+HDRj1PmT9E/w8fDhirgrGm1TkZwCIIsehRBCiGZwZ5LtDxTXO1YMBJztJKXU7UAi8PdGnr9bKbVdKbU9Ly/PJYGKM6WfLGXpT1nccl4f+ob5uTscUV/REfjxdRh1I/Qa2WTziuoKPs/4nGlx0/D3bHxxZGVyEsrbG+8hQ1wZrRBCCNEluTPJLgMC6x0LBEobO0EpNRv4P+AKrXW+szZa6ze01ola68Rw2SyjXfzf5/vxNRn5zZR4d4cinNlQM3p96dPNar4ucx0V1oqzLngEx6JHn5EjUZ6erohSCCGE6NLcmWQfADyUUnUztVE0Mg1EKTUd+C9wldZ6VwfEJ5zYeiif9ftzuf+SAYT6SbLV6WQnw66PYOIDEBTdrFM+Tv+Y/kH9GRU+qtE29vJyqvbtw0emigghhBDN4rYkW2tdDiwHnlVK+SmlJgOzgCX12yqlLsWx2PFarfW2jo1U1LLbNc+v3Ud0sA+3T45zdziiPq3hy3ngGwaTH27WKelF6ezM28k18dectWJI5c6dYLPJokchhBCimdxdwu9+wAfIBT4A7tNa71FKxSqlypRSsTXt5gFBwNqa42VKqc/dFHO3tSo1h93ZJfxu2kC8TWcvCSfc4MAXcGQzXPwEeNefieXc8vTleBg8uKr/VWdtV5GUDAYDPgmjXRCoEEII0fW5dUMXrXUhMNvJ8aM4FkbWfn1JB4YlnKiqtvHiujSGRwcya1TzpiGIDmSzwld/hB4DYOyvm3WK2WZm9eHVTImdQoh3yFnbViYn4TVoEEb/s+8aKYQQQggHd49ki3PE21szyT5VyZNXDMFgkI1IOp3k/0H+AcfGM0ZTs07ZcHQDxeZirolvvDY2gLZaqdiRiu8YmY8thBBCNJck2aJJheUWXt5wkEsHRzBpQJi7wxH1mUth498gdhIMmtHs0z5J/4Ro/2jO63XeWdtV7U9DV1RIfWwhhBCiBSTJFk369/p0yi1W/iAbz3ROmxdCeR5M/UuzNp4ByCrN4sfjPzJnwBwM6uzfBiqTkwDwkZFsIYQQotkkyRZntfVQPv/7PpObJ/QhvudZ9wkS7nAsCbYshJE3QO/mV/74NP1TDMrArAGzmmxbkZSMKToaU2RkGwIVQgghuhdJskWjisotPLo0lb49/HhCRrE7H3MpfHIH+EfCFS80+zSr3cqKgys4P/p8Iv3OnjhrralITpL62EIIIUQLSZItnNJa88TynRSUm/n3jQn4ebm1EI1wZu3jcOoIXPtf8Dl7dZC6NmdvJq8yr8kFjwDVWVnY8vKlPrYQQgjRQpJkC6fe33aUdXtO8vi0wQyPDnJ3OKK+XR9D6vtw4WPQZ1KLTv0k/RPCfMK4sPeFTbatSEoGkEWPQgghRAtJki0aSD9ZynOf7eWC+DDuOL+vu8MR9RUdgc8egd7j4cLHW3RqbkUu3x37jln9Z2EyNF3qrzI5CUNQEJ79+7c2WiGEEKJbkiRbnKGq2sZvPtyBr6cH//jFKKmJ3dnYrPDJnY7Pr/0vGFs2jWflwZXYtI058XOa1b4iKRnfhASUQb5VCCGEEC0hPznFGeZ/kca+4yW8eN1IIgK93R2OqG/TfDi2DWb+E0LiWnSqXdtZnr6ccZHj6BPYp8n21sJCLIcPy6JHIYQQohUkyRanfZOWy1tbMvj1pDimDOnp7nBEfUe2wqYXYdRNMOK6Fp/+fc73HCs7xrXx1zarfWVKCgC+Y2XRoxBCCNFSkmQLAPJKzTz2USqDegZIub7OqLIIPrkLgvvAjPktPr3aXs3ft/+dKL8oLutzWbPOqUhKRnl64j18eIuvJ4QQQnR3UpdNYLdrfvdRKqVVVt678zy8TUZ3hyTq0tqx0LHsBMz9ErxavinQB/s+4OCpgyy8ZCFeRq9mnVOZlIT3iBEYPD1bfD0hhBCiu5ORbMHirZl8eyCPp68cwqBI2dWx09nxHuz5FC55qkW7OtbKq8jjldRXmBw9mUtjLm3WOfbKSir37sV3TEKLryeEEEIISbK7vT05xbzw+X4uG9KTW85rejGc6GD5Bx2bzsRdAJN/26ouFiQtwGKz8Ifxf0Cp5lWLqdy1C6qr8Rkjix6FEEKI1pAkuxursFj5zQcpBPuamH/dyGYnYKKDWC3wyVzw8IRr3gBDy6fxJJ1M4rPDn/HrYb9uVkWRWpXJNZvQJMhIthBCCNEaMie7G3vus30czi/n3TsmEOon8247nQ3PwfFUuOE9CIxq8elWu5W//vhXIv0iuXPEnS06tyIpGa/4ARiDg1t8XSGEEELISHa3teT7TD7YdpS7L+zH5AFh7g5H1Je6FLb+GxLnwpCZrepiadpS0ovSeXzc4/iafJt9nq2sjMqkJHzGSOk+IYQQorUkye6GPtx2lHkr93DZkAh+N3WQu8MR9e3+BFbcC30vhGnPt6qL/Mp8/pPyHyb2mshlsc0r2Ver6L33sVdUEHxdy2txCyGEEMJBkuxu5pOkY/zh011cNDCcl28eg8ko/wQ6lX2rHfWwY86DGz8Ek0+ruvln0j+pslXxhwnNX+wIYK+ooPDtt/G78AJ8Rkh9bCGEEKK1JMPqRlal5vDYx6lM6t+D128di5eH1MPuVNK+gI9uh+ixcPMy8PRrVTcpuSmsOrSKXw39FX2D+rbo3KIPl2IrKiLsvvtadW0hhBBCOEiS3U18vus4jyzdQWJcKP+9LVE2nOlsDn4Ny26FyOFwy8et2nAGahY7/vBXevr25O6Rd7foXHtVFQVvvYXvxPOkqogQQgjRRpJkdwNf7z3JQx+kMKp3EG/9ehy+nlJUplM5/C18eDOED4JbloN3UKu7Wpa2jLSiNB4b91iLFjsCnProY2z5+TKKLYQQQriAJNld3Ma0XO5/L5lhUYG8PXc8/l6SYHcqR7bCB7+E0H5w60rwDW11VwWVBfwn5T9M6DWBqX2mtuhcu8VCwaJF+CSOxW/8+FbHIIQQQggHSbK7sC0H87l7SRIDIvx5Z+4EAr1N7g5J1JW1Dd77BQT1httWgl+PNnW3MHkhldZKnhz/ZIs3FipevhzryZOE339/m2IQQgghhIMk2V3Uj4cLuON/P9G3hx/v3jmBIF9JsDuV7GR491rwj4DbVjke22BH7g5WHFzBrUNvpV9wvxadq6urKXjjv/iMGoXvxIltikMIIYQQDpJkd0FJR4qY+/ZPRAf78N5dsptjp3N8JyyZAz4h8KvVENirTd3Z7Dae//F5InwiuGfUPS0+v3jVKqpzcgi7/74Wj4ALIYQQwjlJsruY5KNF/PqtbYQHePH+XecR5u/l7pBEXSd2wZLZ4OnvSLCDere5y48OfMS+wn38btzv8DO1rOyftlrJf/0NvIcNw+/CC9scixBCCCEcJMnuIrTWvLk5gxte/55gPxPv33UePQO93R2WqKU1JL0Niy4Hoyf8ahWE9Glzt98d+475P81nQq8JTI+b3uLzS9aupfroUcLuu1dGsYUQQggXklITXUBRuYXHPk7l6325XDakJy9eN5IQmSLSeVQVw+qHYc9y6HcxzHkDAnq2udut2Vt5+JuHGRA8gH9c9I8WJ8naZiP/1dfwGjQI/0svbXM8QgghhPiZJNnnuG0ZhfzmgxQKys38ceZQbp8cJyOSnUl2Enw8F05lwZQ/wuRHwND2PyD9ePxHfvPNb+gb1Jc3Ln+DIK+W19YuXbcOS0YG0Qv/iXJBTEIIIYT4mSTZ5yibXfPyNwdZ+PUBYkN9WX7fZEb0bv0mJsLF7Hb44RX4+hkIiITbP4fYCS7p+qcTP/Hg+geJCYjhv1P/S7B3cIv70HY7+a++hmf//gRMbVlNbSGEEEI0TZLsc9DJkioe/nAH3x8uYNboKP46Z4RsMtOZlBfAinsh/UsYPBOufqlNm8zUlXwymQfWP0CUfxSLpi4ixDukVf2Url+POT2dqBfnyyi2EEII0Q4kMzvHfJOWy++WpVJhsTH/upH8YmxvmR7SmWRuhk/uhIoCmPF3GHcnuOj92ZG7g/u+vo+evj15c9qb9PBp3eY1WmvyX30VU59YAq+4wiWxCSGEEOJMkmSfIyxWO3//Mo03Nh1mcGQA/7kpgQERAe4OS9Sy2+Db+bBpvmOL9JuWQa+RLut+V94u7vv6PsJ8wnhz2puE+YS1uq+yjRsx791Hr7/+FeUh3wKEEEKI9iA/Yc8BPxwu4Pm1+9h5rJhbzovl6SuH4m0yujssUSvrJ/jyacj6AUbd6BjB9vJ3Wfd7C/Zyz9f3EOQVxJvT3iTCt/W7QzpGsV/DFB1N0NVXuSxGIYQQQpxJkuxOLOVoEQu+OsB36fn0DPTilZvHMGNE23YHFC50fCd881c48AX4hsGc12HUL116if2F+7nry7sIMAXw1rS3iPSLbFN/5Vu2UrVzJ5F//jPKZHJRlEIIIYSoT5LsTmhvTgkLvkrj6325hPp58vSVQ7jlvD4yet1Z5KXBN8/D3hXgHQSXzoMJ97p09BrgQNEB7vryLnxNvrw57U2i/KPa1F/tXGyPyEiC5sx2TZBCCCGEcEqS7E7kYG4Z//z6AGt2HifA24PfTR3Iryf3lcohnUVhBnz7AuxcCiZfuPAxmPgg+AS79DJaa74++jV/+eEveBo9eXPqm/QOaPv26yWrV1OZlETPp5/G4CmbFQkhhBDtSbK3TiCrsIJ/rU9nefIxvE1GHrxkAHdd0I8gX/lzfqdQnA2bXoSUJWDwgIkPwOSHwa/1iw8bc/jUYf627W/8cPwHBoYM5B8X/YPYwNg29Vk7gp3/75fwGTOG4F9c56JohRBCCNEYSbLd6FBeGW9tzmDpT1kYDIq5k/ty38X96eHv5e7QBDhGrre9AT+9CdoOY2+HC/4fBLp+XnyZpYzXUl/jvX3v4WPy4Q/j/8D1g67Hw9C2/0XtZjPHn3qaks8+I2jW1UQ+95yMYgshhBAdQJLsDpZXamZ1ag4rdmSz81gxJqPil+NjePCSeCKDvN0dnigvgD3LYecyOLYNlBFG3wgXPg4hfVx+Oa01azLWsGD7AvIr85kTP4ffJPym1TWw67Lm5ZH14INUpe4k/JFH6HH3XVJTXQghhOggkmR3gHKzlS/3nuDTlBy2HMzHZtcMjw7k6SuHcPWoKCICJbl2K0sFHPjckVgf/BrsVogYBpf9GUZcB0Ftnw/tzP7C/fztx7+RnJvM8B7D+dcl/2JE+AiX9F21fz9Z992P7dQpov/9LwJl63QhhBCiQ0mS3U6sNjvfHcxnZUo26/acpLLaRu8QH+67qD+zE6JkIxl3s9sgYxPs+gj2rgJLKQREOeZbj7geIoe326WLzcX8J+U/LDuwjCDPIP486c/MHjAbg3LN9ualGzaQ/bvHMAYEEPfeu3gPHeqSfoUQQgjRfJJku1BuSRU/ZBTyw+ECvtxzgvwyC0E+Jq4ZE82chGjG9gmRP9e7U1kuHNnq2Pp832ooOwFegTBsNoy8HvpMBkP7lUk8UnKELzK+4L1971FsKeaGQTfwwOgHCPIKckn/WmsK33qL3L//A+9hw+j98suYerZ+4xohhBBCtJ4k2W2QfaqSHw8X8OPhQrZlFpKRXw6Av5cHFw4MY05Cby4aGI6nh2tGKEULleT8nFQf2QL5BxzHTX7Q72JHYj1wOpjab7pOVkkW646s48vML9lXuA+ACb0m8FjiYwwKHeSy62iLhePP/Jni5csJuGI6Uc8/j8HHx2X9CyGEEKJlJMluJq01Rwsr+DGjkB8PF/JjRgHHiioBCPIxMS4ulJsnxDK+byhDewXiYZTEukNpDaeOwJHv4chmyNwCRRmO57wCIfY8GH0zxJ0PvUaBsf3KI2aXZfNl5pd8kfkFewv2AjAyfCSPJT7G1Lipbd61sT5rURHHHnqIyu1JhD3wAGEP3I8yyL8/IYQQwp0kyW6m9ftyufOd7QD08PNkfN9Q7jy/L+P79mBwZAAGg0wD6RBaQ0k25O6HvP2Qt6/m8zTHvGoA72DH1I/xdzkeI0e06zQQrTXHSo+xIWsD6zLXsSt/FwDDewzn/439f0yNm9rm3Rrrs5WWUrbxW0q/+oqy774Dm42of/ydoCuvdOl1hBBCCNE6kmQ3U2JcCM/NHs55fUMZEOEvc6vbk9ZQUeBIpouzofBwTUJdk0ybS35u6xcO4YMdZfbCB0PMBIgYCu00klttr+bwqcOkFaWxv3D/6Y/SmgR/aI+hPDL2Eab2meqSXRrrshYVUbZ+PSVffUXF1u/R1dV4hIcTPGc2wddfj/fgwS69nhBCCCFaT5LsZgr29eTW81xfJ7nbqa6CysKaJPo4lBxzJNIl2VB8zPFYkgPWqjPPq02mR94AEYMhfIjja7+215N2Gqa9moLKAo6VHiOtKI20QkdSffDUQart1QB4G70ZGDKQ6XHTGRQyiIlRE9u8O2ODOE6epPSrryn96isqfvoJ7HZM0dGE3HILAZdfjs/oUTI1RAghhOiE3JpkK6VCgTeBqUA+8Aet9fuNtH0E+D3gA3wC3Ke1NndUrKKG3QaWMjCX1XksdTyaSx0ftUl0Rc1jZWHN54VQXd6wT2WEgF4QFA29RsPgKyGwt+PrwCgIjnNZMm2xWSi1lFJYVUhuRW6Dj5MVJ8mrzKOgsgCNPn1eqHcog0MHc8vQWxgcMpjBoYPpE9gHowumodgrK6nOyan5OH76c0tGBlW7dwPg2b8/Pe65m8DLL8dryBD5S4oQQgjRybl7JPtlwAL0BEYDa5RSqVrrPXUbKaWmAU8AlwI5wKfAn2uOndu0dmzZbbc5HrWt5nOb47nTn9sdm6TYrY5jTh9rP6rBVg02S53HRj6vrnSMGldXOR6tVXWOVf58zFLuSKSdJcnOeAeBTyj49gD/no4pHL49wCcEfHugfUKwB0Ri9e+JzbcH1Upj0zasdis2u+PRqq1Y7Vaqq05iKc/CbDNjtpmx2CxnPNZ+XmWrory6nFJLKWWWMsqqaz5qPi+1lJ4eha4v2CuYCN8IInwjGNpjKBG+EYT7htPLrxcDQwYS7hPeILHVWqNtNrTNBtXV2M1m7BUV2Csq0BUV2CsrHR/lFdgrK9CVldgrKrCdOnVGQm0rKjozGKMRU8+emHr3Jvzhhwm4/DK8+vdvzb8uIYQQQriJ0lo33ao9LqyUH1AEDNdaH6g5tgTI1lo/Ua/t+0Cm1vrJmq+nAO9prc9apiExMVFv377dJfHuWbGAnH/9tw09uPY+t7a3huepep+qM9vVSSw19UZPlTqjv4afa37+56V/PgbQgn93yklTZ+O4SisMBgNGDBiUEaNyfG5UBgzKgFEZMdR8bcSAhzLigRGjMqK0Bq3R2u4I3m7/+WurDW21OpLpmkdttYLV2uzXcEacvr6YevXCFBXl+OjVC1N01OmvPSIiUMb2W6gphOjalFJJWutEd8chRHfnzpHsgYCtNsGukQpc5KTtMGBlvXY9lVI9tNYFdRsqpe4G7gaIjXXd/FiDbyA2n8bKvjXyp3vVjDbOnmtsKsDp43WfV/VOqdPmdNKszkig635d/0rOpyGoeldUZ1xKcWZcqk4/CgVK1UTxczulQCkDCoVSqslHgzJiqEmWG/tQKDCoejGqn29O3cea66OUY5HkWb5WJg8wGlEeJkfy62FEGT1QHh51PjeivLwx+Ppi8PVxPPr4oHx8Gx4ztV/5QCGEEEJ0Du5Msv2B4nrHigFn+43Xb1v7eQBwRpKttX4DeAMcI9kuiRQYMvVOhky901XdCSGEEEKILsydZQnKgMB6xwKB0ma0rf3cWVshhBBCCCHcyp1J9gHAQykVX+fYKGCPk7Z7ap6r2+5k/akiQgghhBBCdAZuS7K11uXAcuBZpZSfUmoyMAtY4qT5O8AdSqmhSqkQ4Gng7Q4LVgghhBBCiBZw9y4W9+Ooe50LfICj9vUepVSsUqpMKRULoLX+ApgPfAMcqfn4k5tiFkIIIYQQ4qzcWidba10IzHZy/CiOxY51jy0AFnRMZEIIIYQQQrSeu0eyhRBCCCGE6HIkyRZCCCGEEMLFJMkWQgghhBDCxSTJFkIIIYQQwsUkyRZCCCGEEMLFJMkWQgghhBDCxSTJFkIIIYQQwsUkyRZCCCGEEMLFlNba3TG0G6VUHo7dIV0lDMh3YX+dQVd7TfJ6Ojd5PZ2bvJ7Orbmvp4/WOry9gxFCnF2XTrJdTSm1XWud6O44XKmrvSZ5PZ2bvJ7OTV5P59bVXo8QXZ1MFxFCCCGEEMLFJMkWQgghhBDCxSTJbpk33B1AO+hqr0leT+cmr6dzk9fTuXW11yNElyZzsoUQQgghhHAxGckWQgghhBDCxSTJFkIIIYQQwsUkyW4GpVSoUupTpVS5UuqIUuomd8fUVkqpjUqpKqVUWc1Hmrtjai6l1INKqe1KKbNS6u16z01RSu1XSlUopb5RSvVxU5jN1tjrUUrFKaV0nfeoTCk1z42hNotSyksp9WbN/yulSqkUpdQVdZ4/p96js72ec/g9elcpdVwpVaKUOqCUurPOc+fU+wONv55z9f2ppZSKr/k+/W6dY+fc+yP+f3t3F2pZXcZx/PtzjmQ4TpKaQYWDk5ko04BFUNgYWANBBk0X5lDURRfF3CnoTXJQwe6KwOzGwl4uKpgie6GbUNBqaoosBsQIaYymYAKnGd8qe7pYa+tud15mPIu9zv/s7wf+F+e/5uJ5+M0envnvtdbRonLIPjP3Av8ELgUOAPcluXrckgZxsKq29+vKsYs5C38B7ga+Mr2Z5GLgEPBZ4LXAEeBbc6/u7K3Yz5QLp3K6a451vVJLwFPAXuA1dHl8ux94Wsxo1X6m/kxrGd0D7KyqHcCNwN1Jrm00H1iln6nrreUzcS/wq8kPDecjLaSlsQvY7JKcD+wHrqmq08AjSb4PfAy4fdTiFlRVHQJI8nbgjVOXPgwcrarv9NeXgRNJ3lpVj8+90DO0Rj9NqqpngOWprR8keRK4FriIxjJap59fj1LUBlXV0ekf+7WLrqem8oE1+/n7OBVtXJKbgKeBnwFv7reb/DdOWlSeZK/vLcCLVfXE1N5jwFY4yb4nyYkkjya5fuxiBnA1XTbAS8PRH2k/qz8l+XOSr/YnWU1Jcind5+goWyCjmX4mmssoyZeSPAs8DhwHfkTD+azSz0RT+STZAdwJ3DJzqdl8pEXkkL2+7cDJmb2TwAUj1DKk24DLgTfQvXv1wSS7xi1pw7ZaVieAdwCX0Z0wXgB8c9SKzlKSc+lqfqA/aWs6oxX6aTajqvoMXb3X0d2C8AIN57NKP63mcxdwf1U9NbPfbD7SInLIXt9pYMfM3g7g1Ai1DKaqDlfVqap6oaoeAB4FPjB2XRu0pbKqqtNVdaSq/l1VfwMOAu/vT7k2vSTnAF+ne57hYL/dbEYr9dN6RlX1YlU9Qneb0qdpOB/4/35azCfJHuAG4PMrXG46H2nROGSv7wlgKckVU3tv43+/Kt4KCsjYRWzQUbpsgJfup9/F1slq8pujNn1OSQLcT/ew8P6q+ld/qcmM1uhnVjMZzVji5Ryay2cFk35mtZDP9cBO4FiSvwK3AvuT/Iatk4+0EByy19Hf83YIuDPJ+UneDXyI7kSrSUkuTLIvyXlJlpIcAN4D/GTs2s5EX/N5wDZg26QP4LvANUn299fvAH632R8IWq2fJO9McmWSc5JcBHwReKiqZr8u3ozuA64CPlhVz03tN5kRq/TTYkZJXpfkpiTbk2xLsg/4KPBTGsxnrX5azIfu9r1dwJ5+fRn4IbCPBvORFlpVudZZdK9K+h7wDHAMuHnsmjbYzyV0r4U6Rff0+i+A941d11nUv8zLbxCYrOX+2g10Dz49BzxE91qv0Wt+Jf3QDQpP9n/vjgNfA14/dr1n0M9lfQ/P0329PVkHWsxorX5azKj//D/cf/b/Afwe+NTU9dbyWbWfFvNZob9l4But5uNyLfJK1eTbM0mSJElD8HYRSZIkaWAO2ZIkSdLAHLIlSZKkgTlkS5IkSQNzyJYkSZIG5pAtSZIkDcwhW5IkSRqYQ7YkSZI0MIdsSZIkaWAO2ZIGkeSSJMeT3DG1tzvJ80k+MmZtkiTNm79WXdJgkuwDHgT2Ar8FjgC/rKpPjlmXJEnz5pAtaVBJvgDcCDwMXAfsqarToxYlSdKcOWRLGlSSVwGPAVcA76qqwyOXJEnS3HlPtqSh7QTeBBRw+bilSJI0Dk+yJQ0mybnAz4E/AIeBZWB3VR0bsy5JkubNIVvSYJJ8DrgZ2A2cBH4MvBp4b1X9Z8zaJEmaJ28XkTSIJHuBW4CPV9XT1f0P/hPAVcBtY9YmSdK8eZItSZIkDcyTbEmSJGlgDtmSJEnSwByyJUmSpIE5ZEuSJEkDc8iWJEmSBuaQLUmSJA3MIVuSJEkamEO2JEmSNDCHbEmSJGlg/wXhIJ+d5PlwnQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "alphas = [-4, -8,-12,-20]\n", "betas = [0.4,0.4,0.6,1]\n", "x = np.arange(40)\n", "fig = plt.figure(figsize=(8, 6)) \n", "ax = plt.subplot(111)\n", "\n", "for i in range(len(alphas)):\n", " a = alphas[i]\n", " b = betas[i]\n", " y = np.exp(a+b*x)/(1+np.exp(a+b*x))\n", "# plt.plot(x,y,label=r\"$\\frac{e^{%d + %3.1fx}}{1+e^{%d + %3.1fx}}\\;\\alpha=%d, \\beta=%3.1f$\" % (a,b,a,b,a,b))\n", " ax.plot(x,y,label=r\"$\\alpha=%d,$ $\\beta=%3.1f$\" % (a,b))\n", "ax.tick_params(labelsize=12)\n", "ax.set_xlabel('x', fontsize = 14)\n", "ax.set_ylabel('$p(x)$', fontsize = 14)\n", "ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop={'size': 16})\n", "ax.set_title('Logistic Functions', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Parameter $\\beta$ controls how fast $p(x)$ raises from $0$ to $1$\n", "\n", "The value of -$\\alpha$/$\\beta$ shows the value of $x$ for which $p(x)=0.5$\n", "\n", "Another interpretation of $\\alpha$ is that it gives the __base rate__ -- the unconditional probability of a 1. That is, if you knew nothing about a particular data item, then $p(x) = 1/(1+e^{-\\alpha})$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The function $f(x) = \\log (x/(1-x))$ is called the __logit__ function.\n", "\n", "So a compact way to describe logistic regression is that it finds regression coefficients $\\alpha, \\beta$ to fit:\n", "\n", "$$\\text{logit}\\left(p(x)\\right)=\\log\\left(\\frac{p(x)}{1-p(x)} \\right) = \\alpha + \\beta x$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Note also that the __inverse__ logit function is:\n", "\n", "$$\\text{logit}^{-1}(x) = \\frac{e^x}{1 + e^x}$$\n", "\n", "Somewhat confusingly, this is called the __logistic__ function." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "So, the best way to think of logistic regression is that we compute a linear function:\n", " \n", "$$\\alpha + \\beta x$$\n", " \n", "and then \"map\" that to a probability using the $\\text{logit}^{-1}$ function:\n", "\n", "$$\\frac{e^{\\alpha+\\beta x}}{1+e^{\\alpha+\\beta x}}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Logistic vs Linear Regression" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's take a moment to compare linear and logistic regression." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In __Linear regression__ we fit \n", "\n", "$$y_i = \\alpha +\\beta x_i + \\epsilon_i.$$\n", "\n", "We do the fitting by minimizing the sum of squared error ($\\Vert\\epsilon\\Vert$). This can be done in closed form. \n", "\n", "(Recall that the closed form is found by geometric arguments, or by calculus)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now, if $\\epsilon_i$ comes from a normal distribution with mean zero and some fixed variance, \n", "\n", "then minimizing the sum of squared error is exactly the same as finding the maximum likelihood of the data with respect to the probability of the errors.\n", "\n", "So, in the case of linear regression, it is a lucky fact that the __MLE__ of $\\alpha$ and $\\beta$ can be found by a __closed-form__ calculation." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In __Logistic regression__ we fit \n", "\n", "$$\\text{logit}(p(x_i)) = \\alpha + \\beta x_i.$$\n", "\n", "\n", "with $\\text{Pr}(y_i=1\\mid x_i)=p(x_i).$\n", "\n", "How should we choose parameters? " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Here too, we use Maximum Likelihood Estimation of the parameters.\n", "\n", "That is, we choose the parameter values that maximize the likelihood of the data given the model." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$ \\text{Pr}(y_i \\mid x_i) = \\left\\{\\begin{array}{lr}\\text{logit}^{-1}(\\alpha + \\beta x_i)& \\text{if } y_i = 1\\\\\n", "1 - \\text{logit}^{-1}(\\alpha + \\beta x_i)& \\text{if } y_i = 0\\end{array}\\right.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "We can write this as a single expression:\n", "\n", "$$\\text{Pr}(y_i \\mid x_i) = \\text{logit}^{-1}(\\alpha + \\beta x_i)^{y_i} (1-\\text{logit}^{-1}(\\alpha + \\beta x_i))^{1-y_i} $$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "We then use this to compute the __likelihood__ of parameters $\\alpha$, $\\beta$:\n", "\n", "$$L(\\alpha, \\beta \\mid x_i, y_i) = \\text{logit}^{-1}(\\alpha + \\beta x_i)^{y_i} (1-\\text{logit}^{-1}(\\alpha + \\beta x_i))^{1-y_i}$$\n", "\n", "which is a function that we can maximize via various kinds of gradient descent." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Logistic Regression In Practice" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "So, in summary, we have:\n", "\n", "**Input** pairs $(x_i,y_i)$\n", "\n", "**Output** parameters $\\widehat{\\alpha}$ and $\\widehat{\\beta}$ that maximize the likelihood of the data given these parameters for the logistic regression model.\n", "\n", "**Method** Maximum likelihood estimation, obtained by gradient descent." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The standard package will give us a correlation coefficient (a $\\beta_i$) for each independent variable (feature).\n", "\n", "If we want to include a constant (ie, $\\alpha$) we need to add a column of 1s (just like in linear regression)." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "Index(['gre', 'gpa', 'rank', 'intercept'], dtype='object')" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df['intercept'] = 1.0\n", "train_cols = df.columns[1:]\n", "train_cols" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Optimization terminated successfully.\n", " Current function value: 0.574302\n", " Iterations 6\n" ] } ], "source": [ "logit = sm.Logit(df['admit'], df[train_cols])\n", " \n", "# fit the model\n", "result = logit.fit() " ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
Logit Regression Results
Dep. Variable: admit No. Observations: 400
Model: Logit Df Residuals: 396
Method: MLE Df Model: 3
Date: Tue, 07 Nov 2023 Pseudo R-squ.: 0.08107
Time: 09:21:06 Log-Likelihood: -229.72
converged: True LL-Null: -249.99
Covariance Type: nonrobust LLR p-value: 8.207e-09
\n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "\n", " \n", "\n", "
coef std err z P>|z| [0.025 0.975]
gre 0.0023 0.001 2.101 0.036 0.000 0.004
gpa 0.7770 0.327 2.373 0.018 0.135 1.419
rank -0.5600 0.127 -4.405 0.000 -0.809 -0.311
intercept -3.4495 1.133 -3.045 0.002 -5.670 -1.229
" ], "text/plain": [ "\n", "\"\"\"\n", " Logit Regression Results \n", "==============================================================================\n", "Dep. Variable: admit No. Observations: 400\n", "Model: Logit Df Residuals: 396\n", "Method: MLE Df Model: 3\n", "Date: Tue, 07 Nov 2023 Pseudo R-squ.: 0.08107\n", "Time: 09:21:06 Log-Likelihood: -229.72\n", "converged: True LL-Null: -249.99\n", "Covariance Type: nonrobust LLR p-value: 8.207e-09\n", "==============================================================================\n", " coef std err z P>|z| [0.025 0.975]\n", "------------------------------------------------------------------------------\n", "gre 0.0023 0.001 2.101 0.036 0.000 0.004\n", "gpa 0.7770 0.327 2.373 0.018 0.135 1.419\n", "rank -0.5600 0.127 -4.405 0.000 -0.809 -0.311\n", "intercept -3.4495 1.133 -3.045 0.002 -5.670 -1.229\n", "==============================================================================\n", "\"\"\"" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "result.summary()" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Notice that all of our independent variables are considered significant (no confidence intervals contain zero)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Using the Model" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Note that by fitting a model to the data, we can make predictions for inputs that were never seen in the data. \n", "\n", "Furthermore, we can make a prediction of a probability for cases where we don't have enough data to estimate the probability directly -- e.g, for specific parameter values." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's see how well the model fits the data.\n", "\n", "We have three independent variables, so in each case we'll use average values for the two that we aren't evaluating." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "GPA:" ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "hide_input": true, "scrolled": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcgAAAFWCAYAAADtzQ3ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA8RElEQVR4nO3deXxU1fnH8c8DhB2CYAAFwr4ICCgRd0TRuqKoFbe61KqttrXaatW2olKrtrX1p61LsVr3Bfd9RVHBBXAJyL6FJMi+hCSQ/fn9cSc6xAlkQjIzmXzfr9e8MnPuuXeeM5ObJ+fcc+81d0dERER21CTeAYiIiCQiJUgREZEIlCBFREQiUIIUERGJQAlSREQkAiVIERGRCJQgJSGZ2YVm5qHHgAjLx4QtPzpOMbqZ3VSP26/8DHrtot7DYZ9F1cdLVer+wcyyzazMzL4OlXU1s1fMbFNonSvruB1XmtlpdbnN0HZ/0Jad1E0xs8vM7GMz22xmpWa22sxeM7PzzKxZWN0Lq3yG+WaWaWa/Cq8XqtvKzPJC9YbXdRslvprtuopIXOUD5wE3VCk/P7SsXcwj+t7BQG4c3z/ceuDkCOWbKp+Y2SjgL8DfgZcIPj+AicARwIXAaiCrjmO7EpgOvFBXG9xJWyLVbQe8CYwEHgitswXoTvCZ/Q8oAZ6psuoZBN9v+9DzfwGdCT6vSqeFlkPwO/m7WjdKEo4SpCS6F4CfmNlED13VwsxaAacDzxP8Ua8TZtbC3YtrWt/dP6ur964DJTWIZ5/Qz/vdfXmV8kx3f7F+QqsX1bUlkn8BGcAR7v55lWVPmtl+QKsI633t7ktDz98xs34EyT48QV5A8E/IEuBcM/u9u5dH0Q5JYBpilUT3GNATOCys7FSgKUGC3IGZHWBmz5lZrpltN7NFZnZrKKmG15tmZtPNbJyZfWVmxcDloWX7h4biiswsJzSUd7OZeZVt7DDEamY3hcr6m9nrZlZgZivNbKKZNQmr19LM7jSzb0J11pjZq2Y2qA4+r4jMbBrwcOjlslCcD4faNAY4PGxIsVdond5m9oSZrTezYjP72sxOjbDt4Wb2opltDPvMrw8tyyL4/s4N2/7DVbdRZXujzOy90GdTaGZTQz3GnbXlpmq21Q34CfCfCMkRAHf/yt0/2VlMIbOAdmbWOWzbY4Gngf8CXYBja7AdaSDUg5REtxL4iGCY9eNQ2fnAi0BBhPrpwNcEf0DzgSEE//H3Ac6qUncAcDfwZ2A5sMnM9gSmAt+G3qcEuAroFUXMLxIM290JjANuBnJCZQAtCIaGbyEY0uxIkJw/M7NB7r4mivf6TtXjYyHloZ735QSJ4nqCYcHVocf9wH+A8lAdgNVm1gP4HFhH0P71wJnA82Y23t1fCb3nKGAasDRULxfoDwwLbetU4A0gE7gpVLZ+J20YBnwIzCcYHXDgOuBDMzvI3TOraUt1Q91jCP6Zeq2694xCb4LPqfL37jyCTsajwAKCnuoFBO2VZODueuiRcA++/+PYD7gI2Ay0BPYCyoBjCP74OXB0Ndswgn8CfwJUAJ3Clk0LlY2oss6tBEmxe1hZK2BtsLvsUNeBm8Je3xQq+2mVenOBd3bS1qZAa4KEflWEz6DXLj6rh0P1Ij2uDqt3caTtERwfnFal7EGCRNapSvm7BEOPla8/Ikj+rXcSXxbweA2/9+cIjg92CCtrTzCM+cKu2hJhe9eG6g2s5nej8tEkwuc+MLRsD+DnBMnxpbB684GFYa+fAorCY9ejYT80xCoNwbMEva5xwLnAGoJe3g+YWXsz+6uZLQOKgVKCYVoj6NmEy3L3r6uUHQR86u7f9UjcfTvwehTxVq37DUHPNjzOCWb2uZltIUj4hUBbgj/KtbEOOCDC47Fabu84gp5Qnpk1q3wAbwPDQ59za+BQ4Al331bL96lqNPCau2+pLHD3rcArBBOJomXVlF9L8LtR+Xg0Qp2FoWWbgHuBJwj+WavsOe/Djp/vIwS/pxNqEackIA2xSsJz93wLTlc4j2Co8wl3rzCL+Lfvf8DRBMOqXxMknlHAPQQ90HCrI6y/F0FCq2ptFCFvqvK6OPy9zWwcwYzJRwiGXzcQ9GbfiBBjTZW6++xarhtJZ4Ih5vOrWd6JoKfdhLqdyduRyN/LGoKeXLRyQj/TgUVh5Q8D74Wev1LNuqcStC0fWOnuRWHLLgj9fNXMOoSezyLodV8ATK5FrJJglCCloXiUoGfWBDg7UgUzawmcQjDseVdY+b7VbDPSvd5WEySHqrpEFe3OnQUsdfcLKwvMLIUgOSSKjQTHfP9azfJvCYaGK4Budfi+m4CuEcq78sN/PGpiGkGMJxEMDwPgwXHeNQBmVlLNut/497NYv2Nmzfn+eHZmhPXSzKxfpHWlYVGClIbiXWAKsMXd51VTpwXBH+3SKuUXRvE+nwFXm1n3ymHW0AzYE6MLd6daEwyrhjuPIPZE8RbBeZ7zQkPMEZnZdILTcCbtpF4xkU+jiORD4EQza+fu+aH3aEcwvD6tpsFXcvdVZvYE8HMze9KrmckapXEE/8zcHCGmLgSzWs9nx9NBpAFSgpQGwYNzyyL2HMPq5JnZZ8DvzGw1wdDlRUTXw/kncBnwtpndTPDH/behn3V1d/G3gPFmdifB7MqRwBUEk1Nqq7mZHRShfJu7z6nF9iYCM4GPzOzfBBNt9gCGAn3c/aJQvasJktqnZvYPgiHJPgSTn34dqjOf4DSSkwh6bRvcPaua9/0zQW9vqpn9leAzv5bgn4pJtWgHwK8Ijj9/YGYPEAytbiZIcqMJeqfVXmggggsIZrLe4e4/mEltZlcB55vZje6uO9I3YJqkI8nmbOALgmOODxP8Qf5NTVd29w0E57ZtJhjWvZfgD+qLQF4dxfgAwVVgzgReJeidjtvN7acBn0Z4PFmbjbl7NsHJ9ZkEM3vfBe4jmCjzfli9WQQTdXIITnN4A7iGHY9LXk9w/G8KwXG6m3byvnMIZidvJThG+xhBMjrCg1M8atOWraG4rwm16THgA4LTWwYBPyNIortkZmnA8cCUSMkx5EGCcz9rM6lIEojpHxyRnTOzpsCXBD2fsfGOR0RiQ0OsIlWY2Z8JTnxfSTBb82KCE99PiGdcIhJbSpAiP+QEx+D2Dj2fA4x39zfjGpWIxJSGWEVERCLQJB0REZEIlCBFREQiaFTHIPfcc0/v1atXvMMQEZEE8cUXX2xw97RIyxpVguzVqxezZ9fl5SpFRKQhM7OV1S3TEKuIiEgESpAiIiIRKEGKiIhEoAQpIiISgRKkiIhIBEqQIiIiEShBioiIRKAEKSIiDcucKXDnULipQ/BzzpR6eZtGdaEAERFp4OZMgVevgNLtweu8nOA1wLAJdfpW6kGKiMRDjHpBSWfqpO+TY6XS7UF5HVMPUkQk1mLYC0o6ebnRle8G9SBFRGIthr2gpJPaPbry3aAEKSISazHsBSWdsRMhpdWOZSmtgvI6pgQpIhJrMewFJZ1hE2Dc3ZDaA7Dg57i762VoWscgRURibezEHY9BQr31gpLSsAkxOVarHqSISKzFsBcktacepIhIPMSoFyS1px6kiIhIBDFNkGbW0cxeNLNCM1tpZufUYJ33zczNrFlY2TQzKzKzgtBjUf1GLiIijU2se5D3ACVAF+Bc4D4zG1JdZTM7l+qHgX/l7m1Dj4F1H6qIiDRmMUuQZtYGOB24wd0L3H068ApwXjX1U4Ebgd/HKkYREZFKsexBDgDK3X1xWFkmUF0P8lbgPmBNNctvM7MNZjbDzMZU96ZmdqmZzTaz2evXr69F2CIi0hjFMkG2BfKqlOUB7apWNLMM4FDgX9Vs61qgD9ANmAy8amZ9I1V098nunuHuGWlpabWNXUREGplYJsgCoH2VsvZAfniBmTUB7gV+4+5lkTbk7p+7e767F7v7I8AM4IR6iFlERBqpWCbIxUAzM+sfVjYcmFelXnsgA3jGzNYAs0LluWZ2eDXbdsDqMlgREWncYnahAHcvNLMXgElmdjEwAjgFOKRK1Txg77DXPYCZwEhgvZl1AA4EPgTKgDOB0cCV9Ri+iIg0MrG+ks7lwEPAOmAjcJm7zzOzdGA+MNjdswmbmGNmLUNP17p7WWh26y3AIKAcWAiMd3edCykiInUmpgnS3TcB4yOUZxNM4om0ThZhw6fuvh44oH4iFBERCehScyIiIhEoQYqIiESgBCkiIhKBEqSIiEgESpAiIiIRKEGKiIhEoAQpIiISgRKkiIhIBEqQIiIiEShBioiIRKAEKSIiEoESpIiISARKkCIiIhEoQYqIiESgBCkiIhKBEqSIiEgESpAiIiIRKEGKiIhEoAQpIiISgRKkiIhIBEqQIpKc5kyBO4fCTR2Cn3OmxDsiaWCaxTsAEZE6N2cKvHoFlG4PXuflBK8Bhk2IX1zSoKgHKSLJZ+qk75NjpdLtQblIDSlBikjyycuNrlwalLLyCu6btox1W4vq9X00xCoiySe1ezCsGqlcGrSsDYVcNeVrvsreQrMmxiWj+9Tbe6kHKSLJZ+xESGm1Y1lKq6BcGiR356mZ2Zxw98csW1fAXWeNqNfkCOpBikgyqpyIM3VSMKya2j1Ijpqg0yCtzy/m+hfm8N6CdRzarxN///Fw9u7Qatcr7iYlSBFJTsMmKCEmgXfnr+W65+eQX1zGxJMGc+EhvWjSxGLy3jEdYjWzjmb2opkVmtlKMzunBuu8b2ZuZs3CyqLejoiINBwFxWVc+9wcLnl0Nl3at+S1Xx/GRYf1jllyhNj3IO8BSoAuwAjgdTPLdPd5kSqb2blEjjGq7YiISMPxxcpNXPVMJjmbt3HZmL5cdfQAmjeL/ZSZmCVIM2sDnA4MdfcCYLqZvQKcB1wXoX4qcCNwPvBpbbcjIiINQ2l5BXe9t4R7py1l7w6teObSgxnVu2Pc4ollD3IAUO7ui8PKMoEjqql/K3AfsGY3tyMiIglu6bp8rnomk7mr8jhjZHcmjhtMu5YpcY0plgmyLZBXpSwPaFe1opllAIcCvwGqnrhU4+2EtnUpcClAenp61EGLiEj9qahwHvtsJbe+sYDWzZty/0/257ihe8U7LCC2CbIAaF+lrD2QH15gZk2Ae4HfuHuZ2Q8OyNZoO5XcfTIwGSAjI8NrFbmIiNS5NXlFXPNcJh8v2cCYgWn87cfD6NyuZbzD+k4sE+RioJmZ9Xf3JaGy4UDViTXtgQzgmVBybBoqzzWzM4Ava7gdERFJUK/PWc0fXpxLcVk5t4wfyrkHphOhQxRXMUuQ7l5oZi8Ak8zsYoLZp6cAh1SpmgfsHfa6BzATGAmsd/eSGm5HREQSzNaiUm58eR4vfrWK4d1TufPMEfRJaxvvsCKK9WkelwMPAeuAjcBl7j7PzNKB+cBgd88mbGKOmVX2t9e6e9nOthOjNoiISC18tnwjv5uSyZqtRfxmbH9+dVQ/Upom7hVPY5og3X0TMD5CeTbB5JtI62QBVqUs4nZERCTxFJeV8493FvPAx8vp1akNz/3iYPZL3yPeYe2SLjUnIiL1ZsHqrVz1zNcsXJPPuQem88cT96F184aRehpGlCIi0qBUVDj/nb6cO95eTPtWKTx0YQZHDeoS77CiogQpIiJ1KnfzNq5+NpPPlm/iR4O7cNtp+9KpbYt4hxU1JUgREdnRnCm1ulWYu/PS16uY+NI8Ktz524+HccbI7gl3+kZNKUGKiMj35kyBV6+A0u3B67yc4DXsNElu2VbCH1/8htfnriaj5x7ceeYIenRsHYOA648SpIiIfG/qpO+TY6XS7UF5NQnyo8XrufrZTDZvK+H3xw3k56P70jSGt6WqL0qQIiLyvbzcGpdvLynn9jcX8MinK+nXuS0PXXgAQ7ul1nOAsaMEKSIi30vtHgyrRioPMzc3jyuf+Ypl6wv56aG9uPa4QbRMafrD9RqwxL2EgYiIxN7YiZDSaseylFZBOVBWXsG/31/CqffOoLC4nMd/diA3jhuSdMkR1IMUEZFwlccZI8xiXbmxkKue+Zovs7dw0rC9uGX8UDq0bh7feOuREqSIiOxo2IQdJuS4O8/MzGbSa/Np2sS466wRnDKiWxwDjA0lSBERqdaGgmKue34u7y1Yy8F9OvGPCcPZu0OrXa+YBJQgRUQkovfmr+W6F+awtaiMP524Dxcd2psmSXD6Rk0pQYqIyA62FpXyl9cW8MzsHPbZqz1PXDyCgV3bxTusmFOCFBGR73y8ZD3XPjeHNVuL+MURfbnqmP60aJZ8M1RrQglSREQoKC7j1jcW8OTn2fRJa8Pzlx3SIO7ZWJ+UIEVEGrlPlm7gmufm8G3edi4d3YffHjMgKc9rjJYSpIhII1VYXMZf31rIo5+upPeebXjuFwczsmfHeIeVMJQgRUQaoc+Wb+Sa5zLJ3bydnx3Wm6t/NJBWzdVrDKcEKSLSiGwrKeNvby3i4U+y6NmpNc9cejCjeqvXGIkSpIhIIzEraxPXPJtJ1sZtXHhIL35/3EBaN1caqI4+GRGRJFdUWs4dby/iwRkr6NahFU9dchAH9+0U77ASnhKkiEgS+2LlZq55NpPlGwo576CeXHf8INq00J/+mtCnJCKShIpKy7nz3cU88PFy9kptxRMXH8ih/faMd1gNihKkiEiS+TpnC1c/m8nSdQWcPSqdP5wwiHYtU+IdVoOjBCkikiSKy8q5670l3P/hMrq0b8mjF41i9IC0eIfVYClBiogkgTm5Qa9x8doCJmR0508nDaa9eo27RQlSRKQBKymr4F/vL+HeacvYs21z/vfTAzhyYOd4h5UUmsTyzcyso5m9aGaFZrbSzM6ppt5ZZrbIzPLMbJ2ZPWJm7cOWTzOzIjMrCD0Wxa4VIiKJ4ZtVeZz87+n86/2ljB/RjXeuPELJsQ7FNEEC9wAlQBfgXOA+MxsSod4M4FB3TwX6EPR0b6lS51fu3jb0GFifQYuIJJLS8gr+773FjL9nBhsLS3jwggz+MWE4qa01pFqXYjbEamZtgNOBoe5eAEw3s1eA84Drwuu6e06V1cuBfjEJVEQkgS1YvZXfTclk/uqtnLpfN24cN5gOrZvHO6ykFMtjkAOAcndfHFaWCRwRqbKZHQa8DrQHtgGnVqlym5ndDiwC/uju0+o8YhGRBFFWXsH9Hy7jrqlLSG2Vwn/OG8mxQ7rGO6ykFssE2RbIq1KWB7SLVNndpwOpZtYNuATIClt8LTCfYLj2LOBVMxvh7suqbsfMLgUuBUhPT9/NJoiIxN6iNflc/Wwmc1flMW743tx88hA6tlGvsb7F8hhkAUFvMFx7IH9nK7n7KuAt4Omwss/dPd/di939EYJjlidUs/5kd89w94y0NJ0PJCINR1l5BfdOW8q4f03n2y3bue/c/fnX2fspOcZILHuQi4FmZtbf3ZeEyoYD82qwbjOg706WO2C7GZ+ISMJYui6f3z07h8ycLZywb1f+fMpQOrVtEe+wGpWYJUh3LzSzF4BJZnYxMAI4BTikal0zOxf4GMgB0oG/AFNDyzoABwIfAmXAmcBo4Mr6boOISH0rr3D++/Fy/vHuYto0b8q/z9mPk4btHe+wGqVYXyjgcuAhYB2wEbjM3eeZWTrBMcXB7p4NDAb+CuwBbAbeAK4PbSOF4JSPQQSzWxcC491d50KKSIO2bH0B1zybyZfZWzh2SBduGb8vae3Ua4wXc/d4xxAzGRkZPnv27HiHISKyg/IK538zVvD3txfRMqUpk04ZwsnD98ZMR47qm5l94e4ZkZbpUnMiInGUtaGQa57LZFbWZo7epzO3nrovndu3jHdYghKkiEhclFc4j36axV/fWkjzpk3454ThnLpfN/UaE4gSpIhIjC1em8+1z8/hq+wtHDkwjdtOG0bXVPUaE80uE6SZdYx2o+6+qXbhiIgkr+Kycu75YBn3TVtK2xbN+L8zR3DKCB1rTFQ16UFuIDjPsKbczAa4+/JaxpS45kyBqZMgLxdSu8PYiTBsQryjEpEGYHbWJq59fg7L1hdy6n7d+NOJ++i8xgRX0yHWHwM16RUawSkZyWfOFHj1CijdHrzOywleg5KkiFQrv6iUv761kMc/y6Zbh1Y8ctEojhigq3o1BDVJkCuBj9x9Y002aGbLgdLdiioRTZ30fXKsVLo9KFeCFJEI3pm3hokvz2NdfhE/O6w3vz1mAG1aaOpHQ7HLb8rde0ezQXcfWvtwElhebnTlItJorcsv4qZX5vHG3DUM6tqO/5w3kuE9OsQ7LIlSVP/KmNn5wDPuXlylvDlwlrs/WpfBJZTU7sGwaqRyERHA3ZkyO4e/vL6AorIKrjl2IJeO7kNK01jfm17qQrTf2v+A1Ajl7ULLktfYiZDSaseylFZBuYg0eis2FHLOA59z7fNz2Wev9rz1m8P55ZH9lBwbsGgHw43IM1rT+eG9HpNL5XFGzWIVkTCl5RU88PFy7npvCc2bNeG20/blzIweNGmiUzcauholSDObS5AYHfjQzMrCFjcFepKss1fDDZughCgi35mTu4Vrn5/LgtVbOX5oV24+eYguE5dEatqDfC70cyjwOsHNjyuVAFnA83UXlohI4tpWUsY/31nMQzNWkNauBf85byTHDuka77CkjtUoQbr7zQBmlkUwSaeoPoMSEUlUHy1ezx9enEvu5u2ce2A61x4/iPYtU+IdltSDqI5Buvsj9RWIiEgi21RYwi2vzeeFr1bRJ60NU35+MKN6R30lTmlAanIt1q1AH3ffYGb57OSyc+7evi6DExGJN3fnlcxvufnV+WzdXsqvj+rHL4/sR8uUpvEOTepZTXqQvwbyw543njssi0ijlrt5G3966RumLVrPiB4duP30fRnUVf2AxqImV9J5JOz5w/UajYhIAiivcB75JIs73lkEwI3jBnP+wb1oqlM3GpVaXxTQzFpS5UID7r5ttyMSEYmjhWu2cu3zc8nM2cKYgWncMn4o3fdoHe+wJA6ivdRcT+Bu4EigTYQqGpQXkQapqLScf7+/lPs/XEb7VincddYITh6uezU2ZtH2IB8HWhIci1yLjkeKSBL4fPlGrn9hLss3FHLa/t3404mD6dimebzDkjiLNkHuBxzg7gvqIxgRkVjaWlTK7W8u5MnPs+nRsRWP/WwUh/fXvRolEG2CzATSACVIEWnQ3vpmDRNf/oYNBcVccnhvrjpmAK2b616N8r1ofxsuBe42s7uBb6hyY2R3z66rwERE6sParUXc+PI83pq3hn32as9/L8hgWPcO8Q5LElC0CbIJ0Bl4kR2PP1be5UOTdEQkIVVUOE/PyuG2NxdQUlbBtccN4uLDe+t2VFKtaBPkI8B6YByapCMiDcSy9QVc/8JcZq7YxMF9OnHrafvSe89IE/FFvhdtghwEjHD3xfURjIhIXSotr2DyR8u5a+oSWjZrwt9OH8YZGd116obUSLQJcibQG1CCFJGE9smyDUx8eR5L1xVw4r57cePJg+ncTvdqlJqLNkHeB/yfmf0DmMsPJ+l8WVeBiYjUxrqtRdzy+gJeyfyWHh1b8eAFGYzdp0u8w5IGKNoE+VTo5+QIy3Y5ScfMOgIPAj8CNgDXu/uTEeqdBdwMdAWKgTeBX7v71mi2IyKNR1l5BY98upI7311MSXkFV4ztz+Vj+uquG1Jr0SbI3rv5fvcAJUAXYATwuplluvu8KvVmAIeGbrHVFvgPcAtwRZTbEZFGYFbWJm546RsWrsnniAFp3HzyEHppEo7spmhvmLyytm9kZm2A04Gh7l4ATDezV4DzgOuqvE9OldXLgX7RbkdEktv6/GJue3MBL3y5im4dWnH/T0Zy7JAumoQjdaImN0w+v6Ybc/dHd7J4AFBeZQZsJnBENe97GPA60B7YBpxam+2ISPIpK6/gic+zueOdRRSVlnP5mL786qh+uhKO1Kma/DbdU+V1cyAFqAi9bkIwWacY2FmCbAvkVSnLA9pFquzu04FUM+sGXAJk1WY7ZnYpwRWASE9P30l4ItIQfLFyMze89A3zV2/lsH57cvMpQ+ib1jbeYUkS2uUlJNy9XeUDOAuYAxxOcFePlqHnXwPn7GJTBQS9wXDtgfxdvP8q4C3g6dpsx90nu3uGu2ekpekixCIN1caCYn7/XCan3/cJmwpLuOec/XnsZ6OUHKXeRDsecQdwkbt/GlY2w8yuBB4GXtvJuouBZmbW392XhMqGAzWZWNMM6FsH2xGRBqa8wnl6VjZ/e2sRhcVl/Hx0H64Y2582LTScKvUr2t+wXkBhhPJtwE7HL9290MxeACaZ2cUEs09PAQ6pWtfMzgU+BnJC2/0LMDXa7YhIw5aZs4UbXv6GObl5HNSnI5NOGcqALhGPpojUuWiv0vs5wd08ulUWhJ7fCXxWg/UvB1oB6wjOqbzM3eeZWbqZFZhZZZIdDHxCMJw6A1hEcBxyp9uJsi0ikqC2bCvhDy/OZfy9M1idV8RdZ43gqUsOUnKUmDL3ml9v3Mz6Ai8RXJN1Vai4G0ECG+/uS+s6wLqUkZHhs2fPjncYIlKNigrn2S9yuP3NhWwtKuOCg3tx1TH9adcyJd6hSZIysy/cPSPSsmjPg1xmZsOAYwiSpAHzgfc8mkwrIlLFN6vymPjyN3yZvYUDeu3BpFOGss9eVefjicRO1Ee5Q4nwndBDRGS35G0v5Z/vLOKxz1ayR+vm3HHGcE7fv5tO9pe4izpBhq6DehzB5Jnm4cvcfVIdxSUiSc7deeHLVdz25gI2FZbwk4N68rsfDSS1lYZTJTFElSDN7CCCq9sUA2kExyH3Cr3OApQgRWSXFq7Zyg0vfcOsrM2M6NGBh386iqHdUuMdlsgOou1B/h14AvgNsBU4iuC0j6cI7q4hIlKt/KJS7nx3CY98mkX7ls346+n7csbIHjRpouFUSTzRJshhwM/c3c2sHGjh7svN7FrgSYLkKSKyA3fnlcxvueX1BWwoKOasA9L5/bED2aNN812vLBIn0SbIkrDna4GewAKC8xX3rqugRCR5LFmbz8SX5/Hp8o3s2y2VB87PYESPDvEOS2SXok2QXwIHEFzubRpwi5l1AX5CcI1WEREACovLuHvqEh6cvoI2LZpxy/ihnD0qnaYaTpUGItoE+Ue+v2vGnwju3vEvgoT50zqMS0QaKHfnjblr+PNr81mztYgJGd259rhBdGrbIt6hiUQl2gsFzA57vh44vs4jEom1OVNg6iTIy4XU7jB2IgybEO+oGqRl6wu46ZV5fLxkA4P3as895+7PyJ57xDsskVrR5fClcZszBV69Akq3B6/zcoLXoCQZhW0lZfz7/aU88PFyWqY05eaTh3Dugek0axrt5Z5FEscuf3vN7A0zq/EJSmb2fOi4pEjimzrp++RYqXR7UC675O689c0ajvnnR9w7bRnjhu3N+78bwwWH9FJylAavJj3IY4GuZta0hts8BmhT+5BEYigvN7py+c43q/K45fX5fLZ8EwO7tOOZSw/iwD6d4h2WSJ2pSYKsvCC5SPJJ7R4Mq0Yql4jWbi3i728v4vkvc+nQKoU/nzKEs0alk6IeoySZmiTII2ux3VW7riKSAMZO3PEYJEBKq6BcdrC9pJzJHy3n/g+XUVZRwSWH9+GXR/bTtVMlae0yQbr7h2bWmuAyc+OBFOA94Ap331C/4YnUs8qJOJrFWq2KCuelr1fxt7cWsWZrEccP7cp1xw+iZycdSZHkVtNZrDcDFxJcSm47cA5wH3BG/YQlEkPDJighVmPmik3c8vp85uTmsW+3VO4+ez9G9e4Y77BEYqKmCfI0gmuwPg1gZk8AM8ysqbuX11t0IhIX2Ru3cdubC3jzmzV0bd+Sf04YzvgR3XRRcWlUapogewAfV75w95lmVkZw/dUIMxxEpCHaWlTKPe8v5X8zsmjaxLjq6AFcMro3rZvrlGlpfGr6W9+UHS9UDlAWxfoiksDKyit4alYOd767mM3bSjh9/+5c/aOBdE1tGe/QROKmpgnOgMfNrDisrCXwgJltqyxw95PrMjgRqX/TFq3jL68vYMm6Ag7s3ZEbThqsmxeLUPME+UiEssfrMhARia1Fa/L5yxsL+Gjxenp2as39PxnJsUO6YKbjjCJQwwTp7rpTh0iS2FBQzJ3vLuapmdm0adGMP524D+cf3IvmzXSiv0g4HUMUaSSKSst5+JMs7nl/KdtKyznvoJ785ugBdGzTPN6hiSQkJUiRJFd5f8bb31pAzqbtHDWoM384YR/6dW4b79BEEpoSpEgS+zpnC7e8Np/ZKzczqGs7HvvZKA7vnxbvsEQaBCVIkST07Zbt/O2thbz09bfs2bY5t522LxMyetBUJ/qL1JgSpEgSKSwu4/4PlzH5o+U4cPmYvlw2pi/tWuqC4iLRimmCNLOOwIPAj4ANwPXu/mSEehcAVwD9ga3Ak8Af3L0stHwacBDBxQoAVrn7wHpvgEiCKq9wnv8il7+/s4j1+cWMG7431x43kO57tI53aCINVqx7kPcQXJGnCzACeN3MMt19XpV6rYErgc+BNOAV4Grg9rA6v3L3/9Z3wCKJ7pNlG7jltQXMX72VET06cP9PRjKy5x7xDkukwYtZgjSzNsDpwFB3LwCmm9krwHnAdeF13f2+sJerQhdHr819KUWS1vL1Bdz6xkLeW7CWbh1acffZ+zFu2F460V+kjsSyBzkAKHf3xWFlmcARNVh3NFC1l3mbmd0OLAL+6O7T6iRKkQS3ZVsJd09dyqOfZtGiWROuOXYgPzusNy1TmsY7NJGkEssE2RbIq1KWB7Tb2Upm9lMgA7g4rPhaYD7BcO1ZwKtmNsLdl0VY/1LgUoD09PRaBy8Sb6XlFTz26UrumrqE/KJSzjygB1cdM4DO7XRBcZH6EMsEWQC0r1LWHsivbgUzG09w3PFod99QWe7un4dVe8TMzgZOAP5VdRvuPhmYDJCRkeG1DV4kXtyd9xas47Y3FrB8QyGH9uvEn04czD57Vd2dRKQuxTJBLgaamVl/d18SKhvOD4dOATCz44AHgBPdfe4utu0EdxwRSSozV2zi728vZFbWZvqkteHBCzI4alBnHWcUiYGYJUh3LzSzF4BJZnYxwSzWU4BDqtY1s6OAJ4BT3X1mlWUdgAOBDwlO8ziT4BjllfUYvkhMzc3N4453FvHh4vWktWvBn08Zwlmj0klpqguKi8RKrE/zuBx4CFgHbAQuc/d5ZpZOcExxsLtnAzcAqcAbYf8pf+zuxwMpwC3AIKAcWAiMd/dFMW2JSD1Yui6ff767mDfmrqFD6xT+u99yjlp1P03eXgWfdYexE2HYhHiHKdIoxDRBuvsmYHyE8myCSTyVr6s9pcPd1wMH1Ed8IvGSs2kbd01dwgtf5tIqpSlXjO3PLzp+Qeu3/gKl24NKeTnw6hXBcyVJkXqnS82JxNG6/CLueX8pT87Mxsy46NDeXDamL53atoA7T/s+OVYq3Q5TJylBisSAEqRIHGzZVsL9Hy7n4U9WUFruTMjowRVj+7FXaqvvK+XlRl65unIRqVNKkCIxVFBcxv+mr2DyR8spKCnj5OF7c9XRA+i1Z5sfVk7tHgyrRioXkXqnBCkSA0Wl5TzxeTb3frCUjYUlHL1PF373owE7P5dx7MTgmGP4MGtKq6BcROqdEqRIPSotr+D5L3K5a+oSVucVcUjfTlx97ED2T6/BxcQrjzNOnRQMq6ZqFqtILClBitSDigrntbmrufPdxazYUMiIHh2444zhHNpvz+g2NGyCEqJInChBitQhd2fqgnXc8c4iFq7JZ2CXdjxwfgZH76Or34g0NEqQInXkk2Ub+Pvbi/gqews9O7XmrrNGcNKwvWnaRIlRpCFSghTZTV/nbOGOtxcxfekGurZvya2n7ssZGd11WTiRBk4JUqSWFq3J5x/vLOKd+WvZo3UKfzpxH35yUE/dl1EkSShBikRp5cZC/u+9Jbz09SraNm/GVUcP4KLDetGuZUq8QxOROqQEKVJDa/KKuPv9JUyZlUPTJsalo/vwi9F92aNN83iHJiL1QAlSZBc2FZZw37SlPPrpSsornLNHpfOro/rRpX3LeIcmIvVICVKkGvlFpfz34xU8OH0FhSVlnLpfN64cO4D0Tq3jHZqIxIASpEgVRaXlPPppFvdOW8aWbaUcN6Qrv/3RAAZ0aRfv0EQkhpQgRUJKyip4ZnYO/35/CWu3FjN6QBpX/2gAw7p3iHdoIhIHSpDS6JWWV/Dy199y99QlZG/axsiee3DXWftxUJ9O8Q5NROJICVIaraLScp77Ipf7P1xG7ubtDN6rPf+78ADGDEzTZeFERAlSGp9tJWU8+Xk2kz9azrr8Yob36MCN44YwdlBnmuiycCISogQpjUbe9lIe+zSLh2ZksamwhIP6dOSfE0ZwaL9O6jGKyA8oQUrS21hQzEMzVvDoJyvJLy7jyIFp/Oqofozs2THeoYlIAlOClKS1Jq+IyR8t56mZ2RSVlXP80K5cPqYfQ7ulxjs0EWkAlCAl6eRs2sZ9Hy7judm5lLtzyvC9ufzIvvTrrPMYRaTmlCAlaSxdl8+9Hyzj5cxvaWrGjzO684vRfXXlGxGpFSVIafC+WZXHPR8s5a15a2jZrCkXHtKLSw7vQ9dUXStVRGpPCVIarNlZm/j3B0uZtmg97Vo045dj+vHTQ3vRqW2LeIcmIklACVIaFHdnxtKN/PuDJXy2fBMd2zTnmmMHct7BPWmv+zGKSB1SgpQGoaLCmbpwHf/+YCmZOVvo0r4FN5w0mLNH9aB1c/0ai0jd018WSWjlFc7rc1dz7wdLWbgmnx4dW3Hrqfty+shutGjWNN7hiUgSaxLLNzOzjmb2opkVmtlKMzunmnoXmNkXZrbVzHLN7G9m1iza7UjDVVJWwZRZORz9zw+54qmvKKtw/jlhOB/8bgznHJiu5Cgi9S7WPch7gBKgCzACeN3MMt19XpV6rYErgc+BNOAV4Grg9ii3Iw1MUWk5U2bn8J8Pl7Nqy3aG7N2e+87dn2OHdNV1UkUkpmKWIM2sDXA6MNTdC4DpZvYKcB5wXXhdd78v7OUqM3sCODLa7UjDUVBcxhOfreSBj1ewoaCYjJ57cMupQxkzQHfWEJH4iGUPcgBQ7u6Lw8oygSNqsO5ooLJ3uDvbkQSzZVsJD3+Sxf9mZJG3vZTD++/JL4/cjwN7d1RiFJG4imWCbAvkVSnLA3Z6/S8z+ymQAVxcm+2Y2aXApQDp6enRRSz1Zn1+Mf+dvpzHP11JYUk5xwzuwi+P7MeIHh3iHZqICBDbBFkAtK9S1h7Ir24FMxtPcNzxaHffUJvtuPtkYDJARkaGRx211Klvt2z/7gLipeUVnDQsuE7qoK5Vv1IRkfiKZYJcDDQzs/7uviRUNpzvh053YGbHAQ8AJ7r73NpuRxLD0nX5PPDRCl74Khd3OG3/blw2ph+992wT79BERCKKWYJ090IzewGYZGYXE8w+PQU4pGpdMzsKeAI41d1n1nY7El/uzkdLNvDg9BV8tHg9LZo14ZxR6Vx6RF+6dWgV7/BERHYq1qd5XA48BKwDNgKXufs8M0sH5gOD3T0buAFIBd4Im6jxsbsfv7PtxK4ZsjPbS8p54atc/jcji6XrCjiv9efMSX2GdsVrseXdofdE6DAh3mGKiOxUTBOku28CxkcozyaYfFP5+sjabEfia01eEY9+msWTM7PZsq2Ufbul8uwhuWTMnYwVbw8q5eXAq1cEz4cpSYpI4tKl5mS3ZeZs4aEZK3h9zmoq3Dl2SFcuOqw3GT33wP7vF1C6fccVSrfD1ElKkCKS0JQgpVbKyit4Z/5aHpy+gi9WbqZdi2ZceEgvLjikFz06ht2gOC838gaqKxcRSRBKkBKVvO2lPDMrm0c+WcmqLdtJ79iaG8cN5oyMHrRtEeHXKbV7MKwaqVxEJIEpQUqNrNhQyMMzVvDsF7lsKynnoD4duXHcYMbu04WmO7tG6tiJwTHH8GHWlFZBuYhIAlOClGq5O58u28iD01fw/qJ1pDRpwrjhe/PTQ3sxtFtqzTZSeZxx6qRgWDW1e5AcdfxRRBKcEqT8QFFpOa9kfstD01ewcE0+ndo054qj+nPuQel0btcy+g0Om6CEKCINjhKkfGddfhGPf5bNE5+tZGNhCYO6tuNvPx7GycP3pmWK7r8oIo2LEqQw79s8HpqexauZ31JaUcHYQZ256NDeHNy3k+6oISKNlhJkI1Ve4UxdsJaHZqzgs+WbaN28KWeP6sGFh/bW9VFFRFCCbHQKist4dnYOD3+SxcqN2+jWoRV/OGEQZ2akk9o6Jd7hiYgkDCXIRiJn0zYe/iSLKbNyyC8uY2TPPfj9sYM4dkgXmjVtEu/wREQSjhJkEnN3ZmVt5qHpK3hn/hqamHHCvntx0WG9dWNiEZFdUIJMQiVlFbw+91semp7F3FV5pLZK4edH9OX8g3uyV6puMyUiUhNKkElkY0ExT36ezaOfrWR9fjF909rwl1OHctp+3WnVXKdpiIhEQwmygauocD5bvpEnZ2bz9rw1lJY7owek8fcf92J0/zSa7OwycCIiUi0lyAZqQ0Exz32Ry9Mzs8nauI3UVin85KCenDMqnf5d2sU7PBGRBk8JsgGpqHBmLNvAUzOzeWfeWsoqnFG9OvKbo/tz/NC9dLUbib05U3SdXUlaSpANwLr8Ip6dncvTs7LJ2bSdDq1TuPCQXpw1qgf9Oqu3KHEyZ8qOd2rJywleg5KkJAUlyARVXuF8vGQ9T83MZuqCdZRVOAf16cjVPxrIsUO6qrco8Td10o63MYPg9dRJSpCSFJQgE8zarUVMmZXD07NyWLVlOx3bNOdnh/XmzAN60CetbbzDE/leXm505SINjBJkAiivcD5cvI6nZubw/sJ1lFc4h/brxPUnDOKYwV1o0Uy9RUlAqd2DYdVI5SJJQAkyjr7dsp0ps3OYMiuHb/OK2LNtcy45vA9nHdCDXrpguCS6sRN3PAYJkNIqKBdJAkqQMVZWXsG0RcGxxQ8WraPC4fD+e3LDSYMZu08XmjfTdVGlgag8zqhZrJKklCBjJHfzNqbMymHK7FzWbC0irV0LLh/TjzMP6EGPjq3jHZ5I7QyboIQoSUsJsh6Vllfw/sJ1PDUzmw8XrwfgiAFp3HzKEI4a1JkU3UVDRCRhKUHWg5xN23hmVg5TZuewLr+Yru1b8usj+zHhgB5030O9RRGRhkAJso6Ullfw3vy1PDkzm+lLN2DAkQM7c/aodMYMTNM9F0VEGhglyN20cmMhT8/K4dnZuWwoKGbv1JZcOXYAEw7orltLiYg0YDFNkGbWEXgQ+BGwAbje3Z+MUG8o8A9gJNDJ3a3K8mnAQUBZqGiVuw+sx9B3UFJWwTvz1/D0zBymL91A0ybGUYM6c86odEYPSKOp7qAhItLgxboHeQ9QAnQBRgCvm1mmu8+rUq8UmALcC7xUzbZ+5e7/rac4I1q3tYgHp6/guS9y2VhYQrcOrfjdMQM4I6MHXVNbxjIUERGpZzFLkGbWBjgdGOruBcB0M3sFOA+4Lryuuy8CFplZv1jFVxNFpRU8NGMFYwd14ewD0zms357qLYqIJKlY9iAHAOXuvjisLBM4opbbu83MbgcWAX9092m7Gd8upXdqzew/HkNq65T6fisREYmzWE6tbAvkVSnLA2pzv6ZrgT5AN2Ay8KqZ9Y1U0cwuNbPZZjZ7/fr1tXirHSk5iog0DrFMkAVA+ypl7YH8aDfk7p+7e767F7v7I8AM4IRq6k529wx3z0hLS4s6aBERaZximSAXA83MrH9Y2XCg6gSd2nCgcR8MnDMF7hwKN3UIfs6ZEu+IREQatJglSHcvBF4AJplZGzM7FDgFeKxqXQu0BJqHXrc0sxah5x3M7NhQWTMzOxcYDbwdq7YknMo7u+flAP79nd2VJEVEai3Wl3e5HGgFrAOeAi5z93lmlm5mBWaWHqrXE9jO973L7QSTcQBSgFuA9QTnUv4aGB+a+do47ezO7iIiUisxPQ/S3TcB4yOUZxNM4ql8nUU1Q6buvh44oH4ibKB0Z3cRkTqnC4Qmg+ru4K47u4uI1JoSZDIYOzG4k3s43dldRGS3KEEmg2ETYNzdkNoDsODnuLt1I1sRkd2gu3kkC93ZXUSkTqkHKSIiEoESpIiISARKkCIiIhEoQYqIiESgBCkiIhKBEqSIiEgESpAiIiIRKEGKiIhEYO4e7xhixszWAyt3YxN7EtxBJBmoLYlJbUlMaktiqou29HT3tEgLGlWC3F1mNtvdM+IdR11QWxKT2pKY1JbEVN9t0RCriIhIBEqQIiIiEShBRmdyvAOoQ2pLYlJbEpPakpjqtS06BikiIhKBepAiIiIRKEGKiIhE0GgTpJm1MLMHzWylmeWb2Vdmdnw1dS8wsy/MbKuZ5ZrZ38ysWdjyaWZWZGYFocei2LUk6rZcaGblYbEWmNmYsOUdzexFMysMbe+cWLUj9P7RtOX+Ku0oNrP8sOVx/V5CMTxuZqtDvzuLzezindS9yszWmFmemT1kZi3ClsX1ewnFUKO2JPr+Eoqhpm1J6P0lFENN25Lw+0tYLP1DsTy+kzr1v7+4e6N8AG2Am4BeBP8onATkA70i1L0MOBxoDnQDvgCuC1s+Dbi4gbTlQmD6Trb1FPAM0BY4DMgDhiRiWyKs+zDwUKJ8L6EYhgAtQs8HAWuAkRHqHQusDdXfIxT77YnyvUTZloTeX6JsS0LvL9G0JcJ6Cbe/hMXyDvAx8Hg1y2OyvzTaHqS7F7r7Te6e5e4V7v4asAIYGaHufe7+sbuXuPsq4Ang0FjHXJ1o2rIzZtYGOB24wd0L3H068ApwXt1HHVlt2xIW+yOxiLOm3H2euxdXvgw9+kaoegHwYKj+ZuDPBH+cE+J7gZq3JdH3F4jqe6lWQ/tewiXq/gJgZmcBW4CpO6kWk/2l0SbIqsysCzAAmFeD6qMj1LvNzDaY2YzwIZh4qEFb9gvFutjMbggb/hoAlLv74rC6mQT/pcVFFN/L6cB64KMq5XH/XszsXjPbBiwEVgNvRKg2hOCzrpQJdDGzTiTQ91LDtlSVkPtLFG1J+P2lFt9LQu4vZtYemAT8bhdVY7K/KEECZpZC8F/uI+6+cBd1fwpkAHeEFV8L9CEYTpoMvGpmUf03Wldq0JaPgKFAZ4Kd5GzgmtCytgRDEeHygHb1E+3ORfO9EPxH+aiHxldCEuJ7cffLCT7Dw4EXgOII1ap+9pXP20VYVrk85t9LDdvynUTeX2rYlgaxv0T7vZC4+8ufCXqGObuoF5P9pdEnSDNrAjwGlAC/2kXd8cDtwPHu/t0Fct39c3fPd/did38EmAGcUH9RVxvfLtvi7svdfUVo+HIuwX9rPw4tLgDaV1mlPcExwJiK8nvpARwBPBpenijfSyiW8tBQT3eCY3RVVf3sK5/nR1hWuTzm3wvUqC1A4u8voVh22paGsr9AVN9LQu4vZjYCOBq4swbVY7K/NOoEaWYGPAh0AU5399Kd1D0OeAAYF9pRdsYBq7NAayCatlQRHutioJmZ9Q9bPpyaDTvXmVq05XzgE3dfvot6Mf9eImhG5OND8wg+60rDgbXuvpEE+V4iqK4tCb+/RFBtW6pIuP0lgl21JVH3lzEEk/OyzWwNcDVwupl9GaFubPaXaGf1JNMDuB/4DGi7i3pHARuB0RGWdSCYUdWS4BfzXKAQGJigbTke6BJ6Pgj4BrgxbPnTBDPA2hBMrIjHrLwatSWs/iLgokT7XgiG5c4iGPJpGoqnEDglQt3jCGYfDiaYlfc+O87Ki+v3EmVbEnp/ibItCb2/RNOWsHUSdX9pDXQNe9wBPAekRagbk/0lJg1PxAfQk+A/pCKCLnnl41wgPfQ8PVT3A6CsSr03Q8vSgFkE3fctBH/Yj0ngttxBMD26EFhOMGSUEratjsBLoeXZwDmJ2pZQ/YNDsbarsp1E+F7SgA9D778VmAtcEloWqS2/DX03W4H/EZq6nyDfS43b0gD2l2jakuj7S7S/Ywm7v0Ro202ETvOI1/6ia7GKiIhE0KiPQYqIiFRHCVJERCQCJUgREZEIlCBFREQiUIIUERGJQAlSREQkAiVIERGRCJQgRUREIlCCFBERiUAJUiRJmFkbM3vUzArMbK2ZXW9mr5nZw6HlWWZ2k5k9HqqzxsyurrKN35rZHDMrNLNVZvZfM+sQj/aIxJsSpEjy+AfBbYxOJbhg+HCC+wOG+y2wANgfuBG41cxOC1teAVxJcHPZc4BRwL/qNWqRBKVrsYokATNrC2wCznf3p0NlbYBc4GV3v9DMsoAl7n5M2Hr/BQa5+2HVbPc44GWglbtX1HMzRBKKepAiyaEvkALMrCxw90KC2zOF+zTC68GVL8zsKDN718xyzSyf4O70zQluPyTSqChBiiSHyhvb1npIyMx6Aq8TDMGeAYwELgotbr5b0Yk0QEqQIslhKVBKcMwQADNrDQytUu+gCK8XhJ5nECTCq9z9U3dfDOxdP+GKJL5m8Q5ARHafuxeY2UPAX81sA7Aa+BPBP8HhvcqDzOx6gju1jwHOJ7gZNcCSUP0rzewFguR5ZUwaIJKA1IMUSR5XAx8DrwAfAHOA2UBRWJ1/AsOAr4BbgInu/hyAu88BfkMw03U+cHFomyKNkmaxiiQpM2sBrAT+7u7/CM1i/be73xHfyEQaBg2xiiQJM9sP2IdgJms74NrQz2fiGZdIQ6UEKZJcfgsMBMqAr4HR7p4b14hEGigNsYqIiESgSToiIiIRKEGKiIhEoAQpIiISgRKkiIhIBEqQIiIiEShBioiIRPD/+mQBioMDs+sAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "bins = np.linspace(df.gpa.min(), df.gpa.max(), 10)\n", "groups = df.groupby(np.digitize(df.gpa, bins))\n", "prob = [result.predict([600, b, 2.5, 1.0]) for b in bins]\n", "ax = plt.figure(figsize = (7, 5)).add_subplot()\n", "ax.plot(bins, prob)\n", "ax.plot(bins,groups.admit.mean(),'o')\n", "ax.tick_params(labelsize=12)\n", "ax.set_xlabel('gpa', fontsize = 14)\n", "ax.set_ylabel('P[admit]', fontsize = 14)\n", "ax.set_title('Marginal Effect of GPA', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "GRE Score:" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAcEAAAFWCAYAAAAR2CYTAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0IklEQVR4nO3deXyc1X3v8c/Pu6zNliWvsrybzdgGBGGHBtImTQkkJJSGQEhCaKAtWcq9SdqGEJK2l6QNtySUhNwkkJCNNtCSQNI2tCxmF4uNDXjf8SJZlizJiyzpd/84j+TxMLI18uiRZp7v+/WalzTnOfPMOTMj/eac5yzm7oiIiCTRsMEugIiIyGBREBQRkcRSEBQRkcRSEBQRkcRSEBQRkcRSEBQRkcRSEJTYmdm1ZubRbX6G4xemHL94kMroZnbrAJ6/+zWYeZR896a8Fum3f0vL+1dmtsnMOszs1Shtspk9bGaN0WM+k+N6fMbMPpDLc0bnfVtdjpB3pJndYGZPmdluMztoZtvM7NdmdrWZjUjJe23aa9huZmvN7O/MbEzaeS+03l97N7Nxua63xG/E0bOIDJgW4GrgS2np10THSmMv0SFnAVsG8flT1QPvy5De2P2LmZ0B/C3wDeDfCK8fwC3ABcC1wDZgQ47L9hlgCfBgrk54hLpkylsK/AY4Dfhe9JgmoJrwmv0QaAd+kfbQDxHe31Lg/cAXo9//IsPT3AS8mCG913JJ/lAQlMH0IPARM7vFo1UbzKwIuBz4JeEfd06Y2Wh3P9DX/O7+XK6eOwfa+1CeE6Kf33H3dWnpS939oYEp2oDorS6ZfAuoBS5w9+fTjv3UzE4BijI87lV3XxP9/l9mNg/4hJl92t270vK+McQ+D5JD6g6VwfRjYAZwbkra+4HhhCB4GDM73cz+1cy2mNk+M1sZdWMVpeV73MyWmNklZvaKmR0AboyOnRp1m+03s81Rt9tXzMzTznFYd6iZ3RqlzTOzR8ys1cw2mtktZjYsJd8YM7vDzJZHebab2a/M7PgcvF4ZmdnjwL3R3bVROe+N6nQhcF5KF97M6DGzzOwnZlZvZgfM7FUze3+Gcy8ys4fMbFfKa/7F6NgGwvt3Vcr5700/R9r5zjCz30WvTZuZPRa1/I5Ul1t7Odc04CPAdzMEQADc/RV3f+ZIZYq8TAiWlX3IKwVELUEZTBuBJwldok9FadcADwGtGfLXAK8S/km2ACcRuvtmA1em5Z0P3Al8FVgHNJpZJfAY8Fb0PO3AZ4GZWZT5IUIX2x3AJcBXgM1RGsBoQrfa1wjdjxWEAPycmR3v7tuzeK4eqde1UnRGLegbCcHgi8AHoufdBnwH+C7QGeUB2GZm04HngZ2E+tcDfwz80swuc/eHo+c8A3gcWBPl2wLMAxZG53o/8CiwFLg1Sqs/Qh0WAk8ArxNa+Q58AXjCzM5096W91KW3bukLCV+Yft3bc2ZhJtAM7MpwbFiG19/dvTMHzyuDzd110y3WG4f+Ac4FPg7sBsYAU4AO4F2Ef3AOXNzLOYzwJe4jQBcwIeXY41Ha4rTH/B0h8FWnpBUBO8KfwmF5Hbg15f6tUdrH0vK9BvznEeo6HBhLCNqfzfAazDzKa3VvlC/T7eaUfNdlOh/het3jaWnfJwSrCWnp/0XoJuy+/yQhwI89Qvk2APf38X3/V8L1unEpaWWEa5sPHq0uGc73+Sjfcb18NrpvwzK87sdFx8ZHn8EO4M/TztP9Gcx0Wz7Yf0e65eamlqAMtn8Bvk1oVc0AthNaa+enZzSzMuCvgQ8C04GRKYfncfi3+A3u/mraKc4EnnX3npaFu+8zs0eAj/WxvI+k3V8OnJJWziuAvyT8oy1POXRcH58j3U7gvRnSN/fzfO8mtOCa01o4/wF8I3qdO4BzgG+4+95+Pk+684Ffu3tTd4K77zGzhwnvf7asl/TPA3+fcv8nhC9Lqd5Mu//P7v7tXs73Z8ALaWn7+lRCGfIUBGVQuXuLhaH+VxO6pH7i7l1mGf+//RC4mNAF+irQBpwB3EVoSabaluHxUwhBK92OLIrcmHb/QOpzm9klhJGI9xG6ShsIrdJHM5Sxrw66e10/H5vJREJ38DW9HJ9AaDEPI7cjZCvI/L5sJ7TIstX9JaAGWJmSfi/wu+j3h3t57PsJdasCPgfcaGbPu/uPMuRdlePXX4YQBUEZCn5EaGENA/4kU4ZoDtelhC7Kf0pJP7mXc2baI2wbIQCkm5RVaY/sSmCNu1/bnWBmIwkBYKjYRbgGe3svx98idON2AdNy+LyNwOQM6ZN5+5eLvnicUMY/InTlAuDhuut2ADNr7+Wxyz0aHWpm/w0sI7SCf+nubf0oi+QpjQ6VoeC/gAcIQ+JX9JJnNOEf88G09GuzeJ7ngLPMrLo7IRpZmqmrsb/GEroSU11NKPtQ8VvC4JYV7l6X4XYg6gJdQpjCkmmKQbcDZJ6CkMkTwHujuX1Azzy/S6JjWXH3rYSuzj81s3dk+/iU8xwA/hfhC9KNR8kuBUYtQRl0HkbZZWwBpuRpNrPngL80s22EbsaPk11L5ZvADcB/mNlXCP/APxf9zNXu0r8FLjOzOwijFk8jTLZuOoZzjjKzMzOk73X3Zf043y2Ea1xPmtm3CYNbxgMLgNnu/vEo382E4PSsmf0joftwNmHAUfek8tcJUzD+iND6anD3Db0871cJrbbHzOx2wmv+ecIXh9v6UQ+APydcD/4fM/seoRt0N6HlfT6hlXnUSe3u/rCZvQjcbGbfdvfUa34nmFmm0cqvqdWY/xQEJZ/8CXA34RrgPkLr8dP0cYi8uzeY2UWEqRM/InQLfocwN6y362PZ+h5h0M7HgT8lrDRyCWFqRX9VAc9mSF9BCFxZcfdNZlZLGPH6d9H5dxGul96Xku9FMzuHEKC+RWiNb+TQdBAIUxm+R3gviqLHX9vL8y4zswsJq8HcRxjY8hxhovvSbOsRnXOPmV0AfBL4MPBRoJjwJekl4BPAz/t4ur8hDA76FGEKTLc7e8l/OqBrhXnO3HP1BVgk/5jZcMJE6QZ3v2iwyyMi8VJLUBLFzL5KmPy9kTAK8jrC9bE/HMxyicjgUBCUpHHCNbGp0e/LgMvc/TeDWioRGRTqDhURkcTSFAkREUksBUEREUmsgromWFlZ6TNnzhzsYoiIyBDy0ksvNbh7VaZjBRUEZ86cSV2dpu2IiMghZraxt2PqDhURkcRSEBQRkcRSEBQRkcRSEBQRkcRSEBQRkcRSEBQRkcRSEBQRkcSKNQiaWYWZPWRmbWa20cw+3Es+M7OvmdlWM2s2s8fN7KQ4yyoiIr1Y9gDcsQBuHRd+Lnsgt/ljFHdL8C6gHZgEXAXc3Utw+xBhU9LzCDtEPwv8OK5CiohIL5Y9AL+6CZo3Ax5+/uqm3gNbtvljFlsQNLNi4HLgS+7e6u5LgIeBqzNknwUscfd17t4J3A+cGFdZRUSkF4/dBgf3HZ52cF9Iz0X+mMXZEpwPdLr7qpS0pUCmluDPgblmNt/MRgIfBX6b6aRmdr2Z1ZlZXX19fc4LLSIiKZq3DGx6zOIMgiVAc1paM1CaIe824ClgJbCP0D362Uwndfd73L3W3WurqjKujyoiIrlSXj2w6TGLMwi2AmVpaWVAS4a8XwZOB6YDY4CvAP9tZmMHtIQiInJkF90CI4sOTxtZFNJzkT9mcQbBVcAIM5uXkrYIWJEh7yLgF+6+xd073P1eYDy6LigiMrgWXgGX3Anl0wELPy+5M6TnIn/MzN3jezKznwMOXAcsBh4Fznb3FWn5vgy8izCQpp4wkvQ7wDR3b+rt/LW1ta6tlEREJJWZveTutZmOxb2f4I3AD4CdwC7gBndfYWY1wOvAie6+CbgdmAi8ChQDa4DLjxQARUREshVrEHT3RuCyDOmbCANnuu/vB/4suomIiAwILZsmIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJFWsQNLMKM3vIzNrMbKOZfbiXfN8xs9aU2wEza4mzrCIiUvhGxPx8dwHtwCRgMfCImS119xWpmdz9U8Cnuu+b2b1AV3zFFBGRJIitJWhmxcDlwJfcvdXdlwAPA1f38XH3DXwpRUQkSeLsDp0PdLr7qpS0pcBJR3nc5UA98ORAFUxERJIpziBYAjSnpTUDpUd53EeBH7m7ZzpoZtebWZ2Z1dXX1+egmCIikhRxBsFWoCwtrQzodcCLmU0HLgB+1Fsed7/H3WvdvbaqqionBRURkWSIMwiuAkaY2byUtEXAil7yA1wDPOPu6wa0ZCIikkixBUF3bwMeBG4zs2IzOwe4FPjxER52DXBvDMUTEZEEinuy/I1AEbAT+Blwg7uvMLOaaD5gTXdGMzsLqAb+JeYyiohIQsQ6T9DdG4HLMqRvIgycSU17FiiOp2QiIpJEWjZNREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSK9YgaGYVZvaQmbWZ2UYz+/AR8s42s1+bWYuZNZjZ1+Msq4iIFL64W4J3Ae3AJOAq4G4zOyk9k5mNAv4L+G9gMlAN3B9jOUVEJAFiC4JmVgxcDnzJ3VvdfQnwMHB1huzXAm+5+zfdvc3d97v7srjKKiIiyRBnS3A+0Onuq1LSlgJvawkCZwIbzOw3UVfo42Z2ciylFBGRxIgzCJYAzWlpzUBphrzVwJXAncBU4BHg36Nu0sOY2fVmVmdmdfX19TkusoiIFLI4g2ArUJaWVga0ZMi7D1ji7r9x93bgH4AJwAnpGd39HnevdffaqqqqXJdZREQKWJxBcBUwwszmpaQtAlZkyLsM8FhKJSIiiRVbEHT3NuBB4DYzKzazc4BLgR9nyH4/cKaZXWxmw4HPAA3AG3GVV0RECl/cUyRuBIqAncDPgBvcfYWZ1ZhZq5nVALj7SuAjwHeA3YRg+b6oa1RERCQnRsT5ZO7eCFyWIX0TYeBMatqDhJajiIjIgNCyaSIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklgKgiIiklixBkEzqzCzh8yszcw2mtmHe8l3rZl1mllryu3COMsqIiKFb0TMz3cX0A5MAhYDj5jZUndfkSHvs+5+bpyFExHJyrIH4LHboHkLlFfDRbfAwisGu1SShdhagmZWDFwOfMndW919CfAwcHVcZRARyZllD8CvboLmzYCHn7+6KaRL3oizO3Q+0Onuq1LSlgIn9ZL/FDNrMLNVZvYlM4u71Soi0rvHboOD+w5PO7gvpEveiDOwlADNaWnNQGmGvE8CC4CNhCD5C6AD+Pv0jGZ2PXA9QE1NTQ6LKyJyBM1bskuXISnOlmArUJaWVga0pGd093Xuvt7du9z9NeA24IOZTuru97h7rbvXVlVV5bzQIiIZlVdnly5DUpxBcBUwwszmpaQtAjINiknngA1IqURE+uOiW2Bk0eFpI4tCuuSN2IKgu7cBDwK3mVmxmZ0DXAr8OD2vmb3HzCZFvx8PfAn497jKKiJyVAuvgEvuhPLpgIWfl9yp0aF55qjXBM2sItuTuntjL4duBH4A7AR2ATe4+wozqwFeB050903ARcC9ZlYC7ADuB/4u23KIiAyohVco6OW5vgyMaSB0R/aVm9l8d1/3tgMhOF6WIX0TYeBM9/2bgZuzeE4REZGs9XV06AeB3lp3qQx4tP/FERERiU9fguBG4El339WXE5rZOuDgMZVKREQkBkcNgu4+K5sTuvuC/hdHREQkPlmNDjWza8xsdIb0UWZ2Te6KJSIiMvCynSLxQ6A8Q3ppdExERCRvZBsEjcwjRWt4+5JoIiIiQ1qfRoea2WuE4OfAE2bWkXJ4ODADjQoVETk6bb80pPR1isS/Rj8XAI8Q1gHt1g5sAH6Zu2KJiBSg7u2Xunef6N5+CRQIB0mfgqC7fwXAzDYAv3D3/QNZKBGRgnSk7ZcUBAdFVlspuft9A1UQEZGCp+2Xhpy+rB26B5jt7g1m1sIRllBz9/StkkREpFt5dbQTfYZ0OSTG66Z9aQn+BYf2/PsLsltHVEREul10y+HXBEHbL6WL+bppX1aMuS/l93tzXgIRkaTo/ieu0aG9i/m6aVbXBFOZ2RjS5hm6+95jLpGISCHT9ktHFvN102yXTZthZv8eXSdsI3STpt5ERET6r7frowN03TTbluD9wBjCtcEd6PqgiIjkUszXTbMNgqcAp7v7GwNRGBERSbiYr5tmGwSXAlWAgqBIvtFyXZIvYrxumm0QvB6408zuBJaTtnmuu2/KVcFEJIe0XJdIRtkGwWHAROAhDr8e2L27xPAclUtEcknLdYlklG0QvA+oBy5BA2NE8oeW6xLJKNsgeDyw2N1X9efJzKwC+D7w+0AD8EV3/+lRHvPfwO8BI92940h5RaQXWq5L8oi7s2pHK41t7Zw1Z8KAPle2QfAFYBbQryAI3EXYemkSsBh4xMyWuvuKTJnN7Kp+lFFE0iV1uS4NBsobTXvbeWp1A0+uquep1Q1s37OfuRNL+N3nLhjQ5802wNwN/F8z+0fgNd4+MObl3h5oZsXA5cACd28FlpjZw8DVwBcy5C8HvgxcAzybZTlFJFUSl+vSYKAhraOzi6VbmnhiVQh8y7Y00eVQXjSSc+dWcsH8Ks6bXzng5TD3vl/WM7OuIxx2d+91YIyZnQI84+5FKWk3Axe4+yUZ8t8FrCEMwllPH7pDa2trva6u7ii1EJFEuGNBL13A0+Gzy+Mvj/BW0z6eXFXPk6vrWbK6gT37OxhmsGj6OC6YX8X586tYVD2O4cMsp89rZi+5e22mY9m2BGcdQzlKgOa0tGagND2jmdUC5wCfBo540cLMridM3aCmpuYYiiciQ1423ZsaDDTo9rV38tz6XTy1qoEnV9ezZmcrAJPLxvCeBVM4f34V58ydwLixowatjNluqrvxGJ6rFUjfb7CMtDVHzWwY8M/Ap929w+zI3wjc/R7gHggtwWMon4gMZdl2b2owUOzcnTe3t/S09l5cv5v2zi5GjxjGGbMquPL06Zw/v4p5E0s42v/2uPRlU91r+noyd//REQ6vAkaY2Tx3Xx2lLQLSB8WUAbXAL6IXqbuLdYuZfcjdn+preUSkgGQ71zGpg4Fi1tB6gCWrQ0vvqdUN1LccAGD+pBKuOWsG58+v4oxZFYwZOTSnkfelJXhX2v1RwEig+/rgMMIAmQNAr0HQ3dvM7EHgNjO7jjA69FLg7LSszcDUlPvTCaNSTyPMURSRJMq2ezOJg4FicKCjk5c27uap1Q08tbqe5Vv3ADBubBjQcv78Ks6fV8Xk8jGDXNK+6cumuj3X7MzsvcCtwGeA56PkdwDfBL7ah+e7EfgBsBPYBdzg7ivMrAZ4HTgxWnpte8pzdr+SOzRPUCTB+tO9qb37jpm7s7a+lSdXhaD33LpG9h3sZMQw49Sa8dz8+/M5b14VC6aV53xASxyyHRjzD8DH3T11ysLTZvYZ4F7g10d6sLs3ApdlSN9EGDiT6TEbCMuyiRQuzWc7OnVvxqaxrZ0laxp4alU9S9Y0sK15PwCzKov5UG01582r4szZFZSOGTnIJT122QbBmYTNdNPtBTQ0U6Q/NJ+tb9S9OWAOdHTy8sYmnoqu6y1/qxl3KBszgnPnVXLTvCrOnVvJ9Iqxg13UnMt2nuDj0a9XufvWKG0a8OPoXL+X8xJmQfMEJS9pPpvErHtZsu6g98L6w7s4z51XyXnzKlk4AHP2BkMu5wl+Avg3YIOZbY3SpgErydDNKSJ9oPlsEoOde/azZE0DS1Y3sGRNAzujUZzXldfxT2N+QvnwnXjZNIad/WVYeNYglzY+2c4TXGtmC4F3ERbTNsKAlt95Nk1KETlE89lkAOxt7+D59Y0h6K1uYOWOMCW7ongU58yt5Ly5lVzc+QQVj93d0xVve7Ykris+68Wpo2D3n9FNRI6VBnxIDnR2Ocu2NPH0mtDSe3ljE+2dXYwaMYwzZlbw/lOnce7cSk6cUsaw7i7OO/5P4veZzDoIRtshvZswEOawtW7c/bYclUskOTTgQ/rB3Vnf0NYT9J5Zu4uW/WEW2UlTy7j2nJmcO7fyyBPV1RWfXRA0szOBRwgT46uArcCU6P4GQEFQpD80n036oL7lAM+sDd2bT69p4K1o6sK0cUW89+QpnDO3krPnTGBCyei+nVBd8Vm3BL8B/ISwsPUe4J2EKRM/I2yWKyIiOdJ2oIMX1jf2tPbe3B6u65UXjeTsORP4s3dWcu7cSmoqxvZvLU51xWcdBBcCn3B3N7NOYLS7rzOzzwM/JQRIERHph/aOLl7dHK7rPbO2gVc2NdHR5YwaMYzaGeP53+8+jnPnVnLS1BytzqKu+KyDYHvK7zuAGcAbhB0ipmZ8hIiIZNTVFXZdeHpNA0+vDfP19rZ3YgYLp5XzyfNnc86cSmpnjh+4BagT3hWfbRB8GTidsCPE48DXzGwS8BFgWW6LJiJSWNydTY17eWbtLpasaeDZtbtobAttizlVxXzwtGrOnlPJWbMnUD42/5ckywfZBsG/5tAmuH9D2DXiW4Sg+LEclkv6S2tQSq7os5QTO/bs55m1DTyzZhfPrN3F1qZw/W1S2WguPK6Kc+ZUcs7cyrzZdaHQZDtZvi7l93rgPTkvkfSf1qCUXNFnqd+a9rbz7NoQ8J5Z28Da+rDc8rixIzlr9gQ+dcFszppTyZyq4iGzsWySZT1PUIawbDcdFemNPkt91nqggxc3NPLs2l08vaaB17ftwR3Gjhoe7aZew1lzJhw+SV2GjL7sLP8o8Cfu3tyXE5rZL4Eb3X3HsRZOsqSJr5Ir+iz1al972FT22XXhmt7SLc10djmjhg/j1Bnj+OzF8zln7gQWVo9j5PBhg11cOYq+tAT/AJhsZn0dmvQuoLj/RZJ+08RXyRV9lnoc6OjklU1NPLt2F8+u28Wrm8JyZMOHGQury0P35uxKTpsxnqJRAzSCUwZMX4Jg9yLZMtRp4qvkSoI/Swc7u1i25VDQq9uwmwMdXQwzWDCtnI+dM5Mz50zg9JkVlIzWFaV815d3sD97BG49ehbJOU18lVxJ0GfpYGcXr21t5rl1u3huXSN1G8JcPYATppRx1TtmcNacCZwxq4LyIk1bKDR92lTXzMYSlky7DBgJ/A64yd0bBrR0WdKmuiJyNB09Qa+R59btom5DI21R0DtuUilnzq7gzNkTeMfsCVQUjzrK2SQf5GJT3a8A1xKWRdsHfBi4G/hQLgooIjJQOjq7WP7Wnqilt4sX1x8KevMnlXD5adWcOTu09Cr7uvC0FIy+BsEPENYM/TmAmf0EeNrMhrt754CVTkQkS93dm8+va+T59eGaXuuBsMXQ3IklfODU6qilp6AnfQ+C04Gnuu+4+wtm1kFYLzTDELLMor0Ivw/8PtAAfNHdf5oh35WE1udkwjZNvwH+wt339PW5RCQZDnR0smxLM8+v28Xz6xt5aePunmt68yaWcNkpU3nHrAmcOXsCVaUKenK4vgbB4Ry+eDZARxaP73ZXdJ5JwGLgETNb6u4r0vI9DZzj7g1mVgJ8F/gacFOWzyciBWb/wU5e3dzU09J7edNu9h/sAuD4yaV86LRq3qHuTemjvgYxA+43swMpaWOA75nZ3u4Ed39frycwKwYuBxa4eyuwxMweBq4GvpCa193TW5edwNw+llVECkjbgQ5e3rSbF9Y38vz6Rl7d3ER7RxdmcMLkMv7kjJpwTW9mBeM1kEWy1NcgeF+GtPuzfK75QKe7r0pJWwpckCmzmZ1L2MW+DNgLvD/L5xORPNS89yAvbmjkhQ0h6C3fGlZkGT7MWDC1jI+eNYN3zArz9LTTghyrPgVBd8/FDhElQPrSa80c2pUi/TmXAOVmNg34JLAhUz4zux64HqCmpiYHxRSRONW3HOCF9Y28sD5c01u5owV3GDV8GIunj+OGC+ZwxqwKTp0xXpPTJefi/ES1Elp1qcqAliM9yN23mtlvgZ8Dp2Y4fg9wD4R5grkpqsgx0jZEGXXvp/fC+kZe3NDIixt2s74h7LIwdtRwTpsxnveePIUzZlWwaPq4gdtIViQSZxBcBYwws3nuvjpKWwSkD4rJZAQwZ8BKJpJL2oaoR2eX8+b2Pby4vpEXN+7mxfWN7GwJQwvKi0Zy+szxXHn6dN4xewInTS3TgtMSu9iCoLu3mdmDwG1mdh1hdOilwNnpec3sKsKUjM1ADfC3wGNxlVXkmCR4G6Lu6QrdLb2XNu6mZX+Yoze1fAxnRWtunjGrgrlVJdpaSAZd3B3sNwI/AHYCu4Ab3H2FmdUQFuk+0d03AScCtwPjgd3Ao8AXYy6rSP8kaBui3W3tvLRxN3Ubd1O3oZFlW5pp7wzTFeZNLOGSRVM5Y2YFp8+qYNq4okEurcjbxRoE3b2RsP5oevomwsCZ7vt/Dfx1fCUTyaEC3YbI3dncuI8XNzRSt7GRug27Wb2zFYCRw42Tox0WTpsxntqZFVp3c7DoenRWNNRKJNcKZBuig51dvLFtD3UbdlO3MQxiqY+u55WNGcFpM8Zz2SnTOH1mBQuryzWIZSjQ9eisKQiK5FqebkPUtLedVzY1UbcxXMtburmZfQfD8mPV44s4d27YOPb0mRXMm6jreUNSgq9H95eCoMhAWHjFkP6n4+6sb2jjpY27e27dXZvDhxknTS3jj0+fTu3M8Zw2YzxTynU9Ly8k6Hp0rigIiiTA/oNh1ObLm3ZTt2E3L2/aTWNbWA64u2vz0sVTOW1GBYumlzN2lP415KUCvR49kPRJFykw7s6W3ft4edNuXtnUxMubdvP6W3vo6AprScyqLOadx08MA1hmjGeOpioUjgK5Hh0nBUGRPLf/YCfLt4ZW3ssbQ9DrnpBeNHI4C6vL+eT5szm1Zjyn1IzTzgqFLE+vRw8mBUHJjoZfD6ruVt4rm5t4JWrprXirmYOdoZU3vaKIs+dM4NQZ4zm1ZjzHTy5lRFyrsOizMTQM8evRQ42CoPSdhl/Hru1AB8u2NPPK5hDwXtnURENraOWNGTmMhdPG8fFzZ3FqTQh6g7ZprD4bkqcUBKXvNPx6QHV1Oesa2kILb3MIeCu37yG6lMesymLOn1fJKTXjOKVmPMdNLh06a23qsyF5SkFQ+k7Dr3OqofUAr25qYumWJl7d3MTSzU3sidbZLB09gsU143jX783llJrxLJ4+bmhvGKvPhuQpBUHpOw2/7rfuwSuvbm7ilSjgbdkdWk7DDI6bXMZ7F05l8fRyTq3JwxGbhfLZ0HXNxFEQlL7T8Os+6exy1ta3snRzaOG9urmJldtbeqYoTBtXxKLp5Vxz1gwWTx/Pgmll+T8vrxA+G7qumUh5/pcnsdLw67fpHq25dEsTy7Y0s3RzE8u3NtPWHpYbKx09goXTy/nTC2azqHoci6ePY2LZmEEu9QAohM+GrmsmkoKgZCfhw68bWg+wbEsTSzc39wS+7pVXRg0fxglTy7j8tGoWVY9j0fRyZlfmWbfmscj3z8ZQva6pLtoBpSAo0ovmvQd5bWszy7Y28dqWZpZtaWZrU2gpmIX98t55/EQWTR/Houpyjp9cxqgRQ2S0pmRvKF7XVBftgFMQFAFaD3SwfGtzCHZbm1m2pYmNu/b2HK+pGMvi6eP46NkzWFg9jgXTyikZrT+fgjIUr2uqi3bA6a9YEqftQAevb9vDa1uaQ0tvSxPrGtrwaD7etHFFnDytnCtqp7OwupyTp5UzbuwQnp4guTEUr2sO1S7aAqIgKAWt9UAHK7aGYLfirT28trWZtfWtPQGvqnQ0i6rLed+iaSHgVZdrbc0kG2rXNYdiF22BURCUgtGy/yDLt+5h+dZmlr8VAt/6lBbepLLRLJhazntPnsLJ00LAm1SIIzWlcAzFLtoCoyAoeWlX6wFWvLWHFW/tYflbzbz+1h7WN7T1HJ9SPoaTppZz6aJpnFxdxoJp5UwsVcCTPDMUu2gLjIKgDGnuzrbm/SHYRV2aK95qZlvz/p481eOLWDC1nA+cMo0F1eUsmFo+eAtJS99p6H/fDLUu2gITaxA0swrg+8DvAw3AF939pxnyfRS4CZgH7AF+CvyVu3fEWFyJWWeXs76hjde3hUD3etTS656HN8xgdlUJZ8yqYMHUck6aWsaJU8s0aCUfaei/DBFxtwTvAtqBScBi4BEzW+ruK9LyjQU+AzwPVAEPAzcD/ye2ksqA2tvewZvbW3j9rT28vm0Pr7+1hze372H/wS4ARg435k8q5V0nTGLBtDJOnFrOCVNKB295MbVacktD/2WIiO0/ipkVA5cDC9y9FVhiZg8DVwNfSM3r7nen3N1qZj8Bfi+uskruuDv1LQd4fdse3tjW0tPKSx2wUjZmBCdOLePDZ8zoad3NqSoZOhPP1WrJPQ39lyEizq/V84FOd1+VkrYUuKAPjz0fSG8tyhDT3tHF2vpW3ti2J7q18Ma2PeyKujMhzME7cWoZ71s0lROnhIA3bVwRZkN4aTG1WnJPQ/9liIgzCJYAzWlpzUDpkR5kZh8DaoHrejl+PXA9QE1NzbGXUvpkV+uBniD3xrbQpbm2vpWDnaF5N2rEMOZPCsuKnTCljBOmlHHilDLKx44c5JL3g1otuaeh/zJExBkEW4GytLQyoKW3B5jZZYTrgBe7e0OmPO5+D3APQG1treekpNJjX3snq3e28Ob2FlZGtze3t9DQeqAnz8TS0ZwwpYwLj5vICVNKOXFKGbMqixkxVHY9P1ZqteSehv7LEBFnEFwFjDCzee6+OkpbRC/dnGb2buB7wHvd/bWYyphYnV3Oxl1tPUFu5fYWVu5oYcOuQ9fuRo8YxvxJpVx4XBXHTy7l+MllnDCllAmDvcLKQA9aUatlYGjovwwBsQVBd28zsweB28zsOsLo0EuBs9Pzmtk7gZ8A73f3F+IqYxJ0D1R5c3sLq3YcCnird7b0jMw0g5kTijluUinvWzSV4yeXctzkUmZMKGb4UNsWKI5BK2q1iBQsc4+vBzGaJ/gD4F3ALuAL7v5TM6sBXgdOdPdNZvY/wHnA/pSHP+Xu7znS+Wtra72urm6ASp9/2g50sHJHajfmHlZub2H33oM9eSpLRvcEueMml3L85FLmTSylaNTwQSx5Fu5Y0EtX5XT47PL4yyMiQ46ZveTutZmOxTrpyt0bgcsypG8iDJzpvq/pEFlo2X+QNTtbw62+lbU7W1m5o4XNjYe678aOGs78SaX8wUmTewLecZOGQFfmsdKgFRE5Blo2LU+4Ow2t7T2Bbs2OlvBzZys79hwapDJyuDGrspiF1eO44rTpUeuujOrxRYW5w7kGrYjIMVAQHGK6upytTfsOtey6g97OVpr3HerGLB41nLkTSzhnbiVzJ5Ywt6qEuRNLqKkYWzijMvtCg1ZE5BgoCA6S9o4uNu5qe1ugW1vf2jNABWBC8SjmTCzhvQun9AS6uRNLmFI+ZmhPMI+LBq2IyDFQEBxge9s7WLuzjTX1LT0Bb/XOVjbt2ktH16FBSdPGFTFnYgnvmDWBeZNKelp344u1OPRRaai9iPSTgmCO7G5r72nNrd5xaIDK1qZD3XTDhxkzJ4xl3sQS3rNgchToSpldVUzxaL0VIiJx03/eLHTvbfe2LsydrYetjzlm5DDmVJVQO3M8V1ZN7+nCnDGheOgsCi0iIgqCmXR0drGpce/bAt3a+jZaDxza0rC8aCRzJ5Zw8QmTmDephDlRF+a0cQU6ElNEpMAoCKa59ocv8MyaXbR3HhqcMrlsDHMnlvDB06p7At3ciSVUlozS4BQRkTymIJjmlOnjOW5yaU+gmzOxhLIxebjzgYiIHJWCYJpPXzxvsIsgIiIx0SgNERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJLAVBERFJrFiDoJlVmNlDZtZmZhvN7MO95FtgZv9hZg1m5pnyiIiIHKu4W4J3Ae3AJOAq4G4zOylDvoPAA8AnYiybiIgkTGy7SJhZMXA5sMDdW4ElZvYwcDXwhdS87r4SWGlmc+Mqn0heWfYAPHYbNG+B8mq46BZYeMVgl0ok78S5ldJ8oNPdV6WkLQUuiLEMIvlv2QPwq5vg4L5wv3lzuA8KhCJZirM7tARoTktrBkqP5aRmdr2Z1ZlZXX19/bGcSiQ/PHbboQDY7eC+kC4iWYkzCLYCZWlpZUDLsZzU3e9x91p3r62qqjqWU4nkh+Yt2aWLSK/iDIKrgBFmlrp1+yJgRYxlEMl/5dXZpYtIr2ILgu7eBjwI3GZmxWZ2DnAp8OP0vBaMAUZF98eY2ei4yioypF10C4wsOjxtZFFIF5GsxD1F4kagCNgJ/Ay4wd1XmFmNmbWaWU2Ubwawj0OtxH3AypjLKjI0LbwCLrkTyqcDFn5ecqcGxYj0g7kXzlz02tpar6urG+xiiIjIEGJmL7l7baZjWjZNREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSS0FQREQSK9YgaGYVZvaQmbWZ2UYz+/AR8n7WzLabWbOZ/cDMRg94AZc9AHcsgFvHhZ/LHhjwp0yEbF/XgX4f9D6LSCTuluBdQDswCbgKuNvMTkrPZGZ/AHwBuAiYCcwGvjKgJVv2APzqJmjeDHj4+aub9A/yWGX7ug70+6D3WURSxBYEzawYuBz4kru3uvsS4GHg6gzZPwp8391XuPtu4KvAtQNawMdug4P7Dk87uC+kS/9l+7oO9Pug91lEUsTZEpwPdLr7qpS0pcDbWoJR2tK0fJPMbEJ6RjO73szqzKyuvr6+/6Vr3pJduvRNtq/rQL8Pep9FJEWcQbAEaE5LawZK+5C3+/e35XX3e9y91t1rq6qq+l+68urs0qVvsn1dB/p90PssIiniDIKtQFlaWhnQ0oe83b9nypsbF90CI4sOTxtZFNKl/7J9XQf6fdD7LCIp4gyCq4ARZjYvJW0RsCJD3hXRsdR8O9x914CVbuEVcMmdUD4dsPDzkjtDuvRftq/rQL8Pep9FJIW5e3xPZvZzwIHrgMXAo8DZ7r4iLd+7gXuBdwLbgF8CL7j7F450/traWq+rq8t9wUVEJG+Z2UvuXpvpWNxTJG4EioCdwM+AG9x9hZnVmFmrmdUAuPtvga8D/wNsjG5fjrmsIiJS4EbE+WTu3ghcliF9E2EwTGraN4FvxlMyERFJIi2bJiIiiaUgKCIiiaUgKCIiiaUgKCIiiaUgKCIiiaUgKCIiiRXrZPmBZmb1hDmF6SqBhpiLM9hU52RIYp0hmfVWnftvhrtnXFy6oIJgb8ysrrfVAgqV6pwMSawzJLPeqvPAUHeoiIgkloKgiIgkVlKC4D2DXYBBoDonQxLrDMmst+o8ABJxTVBERCSTpLQERURE3kZBUEREEitvg6CZjTaz75vZRjNrMbNXzOw9KccvMrM3zWyvmf2Pmc1IOWZmdruZ7YpuXzczG5yaZMfM7jezbWa2x8xWmdl1KccKss7dzGyeme03s/tT0gq2zmb2eFTf1ui2MuVYIdf7SjN7w8zazGytmZ0XpRdcnVPe2+5bp5l9K+V4wdUZwMxmmtmjZrbbzLab2bfNbER0LN46u3te3oBi4FZgJiGY/xHQEt2vBJqBDwFjgG8Az6U89k+BlUA1MA14HfjUYNepj/U+CRgd/X48sB04rZDrnFKH/wSeAu6P7hd0nYHHgesypBdsvYF3ERa8ODP6u54W3Qq2zil1KAZagfMT8D4/Ctwb1Wsy8Bpw02DUedBfjBy/sMuAy4HrgWfSPlz7gOOj+88A16cc/0TqC50vN+A4YBtwRaHXGbgSeIDwxac7CBZ6nXsLggVb76jsn0hSnVPK/FFgHYcGLBZsnYE3gD9Muf8N4LuDUee87Q5NZ2aTgPnACkJraWn3MXdvA9ZG6aQfj34/iTxhZv9sZnuBNwlB8FEKuM5mVgbcBvxl2qGCrXOKvzezBjN72swujNIKst5mNhyoBarMbI2ZbYm6yYoo0Dqn+SjwI4/+u1PYdf4n4EozG2tm04D3AL9lEOpcEEHQzEYCPwHuc/c3gRJCkzpVM1Aa/Z5+vBkoyZf+dHe/kVCX84AHgQMUdp2/Cnzf3TenpRdynQE+D8wmdPvcA/zKzOZQuPWeBIwEPkj4bC8GTgH+hsKtMwBmVgNcANyXklzIdX6CELz2AFuAOuDfGIQ6530QNLNhwI+BduDPo+RWoCwtaxnhmmGm42VAa8o3sCHP3TvdfQmhb/wGCrTOZrYYuBi4I8PhgqxzN3d/3t1b3P2Au98HPA38IYVb733Rz2+5+zZ3bwC+SWHXuds1wBJ3X5+SVpB1jv5n/wfhC3wx4TrgeOB2BqHOeR0Eo+j/fcI3yMvd/WB0aAWwKCVfMTAnSn/b8ej3FeSnERyqWyHW+ULCYKdNZrYduBm43MxepnDr3BsHjAKtt7vvJrQKMv1DK8g6p7iGw1uBULh1rgCmA9+OvuDtAn5I+LITf50H+wLpMV5c/Q7wHFCSll5FaCZfThhhdDuHjzD6FOHC7DRgavQiDvlRVcBEwgCREmA48AdAG3BpAdd5LGH0WPftH4B/jepbkHWOyj4uen/HEL7oXBW918cVeL1vA16MPuvjCaOBv1rgdT47em9L09ILuc7rgC9En+1xwEOES1qx13nQX4xjeBFnEL4x7ic0kbtvV0XHLyYMHNlHGGU3M+WxBnwdaIxuXycakTWUb9EH5AmgidCX/hrwyZTjBVfnDK/BrUSjQwu5ztF7/SKhG6iJ8GXvXQmo90jgn6M6bwfuBMYUeJ2/C/y4l2OFWufFUX12E/YL/Bdg4mDUWWuHiohIYuX1NUEREZFjoSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoIiKJpSAoUuDMbNRgl0FkqFIQFMkzZlZsZj8ys1Yz22FmXzSzX5vZvdHxDWZ2q5n9wMyaCGsyYmZnm9kTZrbXzLaa2d3RXo0iiaUgKJJ//pGw99z7gXcSVtI/Ly3P5wjrL9YCf2VmJwP/CTwc5f8AYf3GH8RTZJGhSWuHiuQRMyshLBx8jbv/PEorJmxB9O/ufq2ZbQBec/dLUh73I+Cgu38iJW0x8Aowyd13xlcLkaFjxGAXQESyMoew08IL3Qnu3mZmy9Py1aXdPw2Ya2Z/nJLWvRv3HEBBUBJJQVAkv3QHrqN14bSl3R8G/D/gjgx5tx5roUTylYKgSH5ZAxwEzgDWA5jZWGABsPYIj3sZOMnd1wx4CUXyiAbGiOQRd28lDGa53cwuMrMTCS28YRy5dXg7cIaZfcfMTjGzuWb2R2b23RiKLTJkqSUokn9uBooJIz1bCV2ck4D9vT3A3ZeZ2fnA14AngOHAOuChAS+tyBCm0aEiec7MRgMbgW+4+z8OdnlE8olagiJ5xsxOAU4gjBAtBT4f/fzFYJZLJB8pCIrkp88BxwEdwKvA+e6+ZVBLJJKH1B0qIiKJpdGhIiKSWAqCIiKSWAqCIiKSWAqCIiKSWAqCIiKSWAqCIiKSWP8fft8JGtClGNEAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "prob = [result.predict([b, 3.4, 2.5, 1.0]) for b in sorted(df.gre.unique())]\n", "ax = plt.figure(figsize = (7, 5)).add_subplot()\n", "ax.plot(sorted(df.gre.unique()), prob)\n", "ax.plot(df.groupby('gre').mean()['admit'],'o')\n", "ax.tick_params(labelsize=12)\n", "ax.set_xlabel('gre', fontsize = 14)\n", "ax.set_ylabel('P[admit]', fontsize = 14)\n", "ax.set_title('Marginal Effect of GRE', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Institution Rank:" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAdIAAAFWCAYAAADdQRz4AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA69klEQVR4nO3deXxU9fX/8dfJAmELiwQQMKKIWkBAiIjgVm1rtSBULFURV0TBta2t3bBq/WqtVX8FkcWlWMUFEXettSgqqwYFFBFUFgERgmAgYQ/n98ed6DgmJJNJZknez8fjPjL5zGc+c+5cyJnPXc41d0dERESqJi3RAYiIiKQyJVIREZEYKJGKiIjEQIlUREQkBkqkIiIiMVAiFRERiYESqSQFM7vIzDy0HF7G8yeHPf+jBMXoZnZTDY5f+hl0qKDf5LDPInJ5NqLvH83sczPba2YLQ21tzOx5M9sces111bwe15nZWdU5Zmjc761LOf1mRnwm28xstpmdWd0xlfHebma31vT7SHLJSHQAIhG2AcOA0RHtF4SeaxL3iL51HLA2ge8frgAoKzFsLn1gZr2B/wPuBJ4l+PwAbgROAi4C1gOrqjm264BZwPTqGnA/61KexcDloce5wB+B6WbWz93nV1dcIqBEKslnOnC+md3ooWohZtYAGAw8TfDHv1qYWX1331XZ/u4+r7reuxrsrkQ8Pwj9nODuKyLaF7n7MzUTWo0ob13Ksy3s85lnZnOAz4GLASVSqVbatSvJ5hHgYOD4sLafA+kEifQ7zOwYM5tmZmvNbIeZLTOz20LJN7zfTDObZWYDzOx9M9sFjAo919PM3jaznWa2JrQL8WYz84gxvrNr18xuCrV1MrOXzKzIzFab2Y1mlhbWL8vM7jGzD0N9vjSzF8zsyGr4vMpkZjOByaFfPwvFOTm0TicDJ4Tt+uwQes0hZjbFzArMbJeZLTSzn5cxdncze8bMvgr7zP8Qem4VwfYbGjb+5MgxIsbrbWb/C302xWY2IzQD3d+63BTN5+Huawlm8bkR732zmb1nZoVmtsnMXjezPhF9Sg8rnGlm94b6FZjZo2bWrIJ1axja1uvNrHs0MUvq0IxUks1q4C2C3btvh9ouAJ4BisronwssJPhDuw3oQrDr8lDgnIi+hwNjgL8CK4DNZtYSmAF8EXqf3cCvgA5RxPwM8C/gHmAAcDOwJtQGUJ9gl/StBLtSWxAk8XlmdqS7fxnFe33DzMr6/1sSmsmPAs4H/gCcFXrf9cAEYCJQEuoDsN7MDiKYqW0kWP8C4JfA02Y2yN2fD71nb2Am8Gmo31qgE9AtNNbPgZeBRcBNobaC/axDN+BN4COCvQ0O/B5408z6uPuictYlql3sZtYEOAD4LOKpdgTbbS3QKPQ+b5lZnrsvjuj7T+BF4DzgCODvBJ/jheW8Z4tQ/5ZAX3dfGU3MkkLcXYuWhC98+0f0MOASYAuQBRwI7AV+TDCTcuBH5YxhBF8Ozwf2AQeEPTcz1NYj4jW3ESTP9mFtDYANwX+P7/R14Kaw328KtV0c0e8D4L/7Wdd0oCFB4v9VGZ9Bhwo+q8mhfmUt14f1G17WeATHL2dGtD1IkPAOiGh/DVgY9vtbBF8SGu4nvlXAo5Xc7tOAr4FmYW3ZBMd6p1e0LuWMOTO0jhmh5RDgKYIvCYdWsF0ygGXAP8PaS//dPRzR/15gJ2AR/0ZuJfiCtxR4F8hJ9P8vLTW7aNeuJKOnCGZxA4ChwJcEs8bvMbNsM7vDzD4DdgF7CHYPG8FMKdwqd18Y0dYHmOvBrj8A3H0H8FIU8Ub2/ZDv70IcYmbzzexrgi8GxUBjgplNVWwEjiljeaSK4/2UYCZZaGYZpQvwKtA99Dk3BPoBU9x9exXfJ9KJwIvu/nVpg7tvBZ4nOCGqqvoR/FvYQ7D3YQAw2COOr5rZj8zsDTP7imC77CHYc1HWdonczh8Q/DttHdHeGZhD8IXjh+5e7oxcagft2pWk4+7bLLiMYxjBLtYp7r7PzMrq/i/gRwS7cxcSJKjewDiCGW249WW8/kCCxBdpQxQhb474fVf4e5vZAOBJ4GGC3b6bCGbHL5cRY2Xtcff8Kr62LK0Idm1fUM7zBxDM3NOo3jOXW1D2dvkSaB7DuIsIZrHpBLv77wCeMrOjShObmfUk2AavApeG4igBHqDs7VLWdqaMvicSfF6/cfeyDkdILaNEKsnq3wQzgDTg3LI6mFkWMJBgd+s/w9qPKmfMsu4ZuJ4giUSKnGXE4hzgU3e/qLTBzDIJkkiy+IrgmPQd5Tz/BUFS2kdwXLG6bAbalNHehu8nrmgUhX3RmG9mK4HXCXbHXxlqH0wwCz3L3feUvtDMmhPsbq6qiUBT4FEz2+vu3ztJTmoX7dqVZPUaMJXgcocl5fSpT/DHfU9E+0VRvM884Dgza1/aEDrj92dRjFGRhgR/sMMNI4g9WfyH4IShJe6eX8ayK7Q7dxbB5UkN9jPWLoLjzJXxJvCz0MlAwDcnBg0IPVct3P0NgpPChodt64YEM9BvvmCZ2SlE7Jav2tv5VQR7RZ4ws1/EOJ4kOc1IJSm5ewnlzETD+hSa2TzgN2a2nmCX6SVEN2O6GxgJvGpmNxMkgV+HflbXXe//Awwys3sIzuLsBVxDbLOeepGXaYRs9++fbVoZNwLvEJyxei/BCUPNga4EJ+hcEup3PUGCm2tmdxHs5j2U4CSuq0N9PiK4vKY/wS7aTe6+qpz3/SvQH5hhZncQfOY3ECS5W6qwHvtzI8EejBuAqwm2y3XAZDP7F8Gx0dHAuup4M3e/zsxKgMfMLM3dn6yOcSX5aEYqqe5cYAHBt//JBH+4r63si919E3AqwVnC/wbuA/5HMHsprKYY7yeoyvNL4AWC2e6AGMfPAeaWsTxWlcHc/XMgj+DY4m0EewTGE5zw83pYv3cJTuRZA4wlOMb4W7573PQPBGe+TiU4a/Wm/bzvYoKzYrcSHEN+hOAyp5M8uPSl2rj7hwTHqoeb2YHu/irBF5p+BF9wLiE4RvxpNb7nbwi+rE0xs/1+MZTUZe7V9aVbpHYws3TgPYKZ1KmJjkdEkpt27UqdZ2Z/JZiFrCY423I4wfHCMxIZl4ikBiVSkeC43I1A29DjxcAgd38loVGJSErQrl0REZEY6GQjERGRGCiRioiIxKBOHSNt2bKld+jQIdFhiIhIkliwYMEmd8+JZYw6lUg7dOhAfn51licVEZFUZmarYx1Du3ZFRERiENdEamYtzOwZMys2s9Vmdl45/S4ysxIzKwpbTg57fqaZ7Qx7blm81kFERCRcvHftjiO4FVNroAfwkpktKqco+Vx3P34/Y13l7g/UQIwiIiKVFrcZqZk1Irht0Wh3L3L3WQQ37x0WrxhERESqWzx37R4OlLj78rC2RQQ33S3L0Wa2ycyWm9loM4ucPd8een52+G5fERGReIpnIm3M9+92UQg0KaPvWwS3b2pFMIs9l+AOE6VuILh1UztgEvCCmXUs603NbISZ5ZtZfkFBQWxrICIiEiGeibQIyI5oywa2RXZ09xXuvtLd97n7BwT3JTw77Pn57r4tdLPhh4HZlFNg3N0nuXueu+fl5MR0qZCIiMj3xDORLgcyzKxTWFt3oKwTjSI5YDE8n/oWT4V7usJNzYKfi6cmOiIRESGOidTdi4HpwC1m1sjM+hHcrf6RyL5mdrqZtQ49PpLgrvXPhX5vZmanmVmWmWWY2VDgRODVeK1L3C2eCi9cA4VrAA9+vnCNkqmISBKId0GGUUADYCPwODDS3ZeYWW7oetDcUL9TgcVmVgy8TJCAbws9lwncChQAm4CrCW55VXuvJZ1xC+zZ8d22PTuCdhERSai4Xkfq7puBQWW0f05wMlLp79cD15czRgFwTA2FmJwK10bXLiIicaMSgamgafvo2kVEJG6USFPBqTdCZoPvtmU2CNpFRCShlEhTQbchMGAMND0IsODngDFBu4iIJFSduo1aSus2RIlTRCQJaUYqIiISAyVSERGRGCiRioiIxECJVEREJAZKpCIiIjFQIhUREYmBEqmIiEgMlEhFRERioEQqIiISAyVSERGRGCiRioiIxECJVEREJAZKpCIiIjFQIhUREYmBEqmIiEgMlEhFRERioEQqIiISAyVSERGRGMQ1kZpZCzN7xsyKzWy1mZ1XTr+LzKzEzIrClpOjHUdERKSmxXtGOg7YDbQGhgLjzaxLOX3nunvjsGVmFcepNZ7KX8P23XsTHYaIiISJWyI1s0bAYGC0uxe5+yzgeWBYIsZJNcu+3MYNTy/m3Pvns7l4d6LDERGRkHjOSA8HStx9eVjbIqC8meTRZrbJzJab2Wgzy6jiOLXCEW2aMP78Xny8fitnj5/Dms3bEx2SiIgQ30TaGCiMaCsEmpTR9y2gK9CKYPZ5LvDbKoyDmY0ws3wzyy8oKKhi6MnhtC5teHT4sWwq2sXg8XNYun5rokMSEanz4plIi4DsiLZsYFtkR3df4e4r3X2fu38A3AKcHe04obEmuXueu+fl5OTEtALJ4JgOLXjqir6kmTFk4lzmrfgq0SGJiNRp8Uyky4EMM+sU1tYdWFKJ1zpg1TBOrXBEmyY8PaovrZrU54KH3uE/H65PdEgiInVW3BKpuxcD04FbzKyRmfUDBgKPRPY1s9PNrHXo8ZHAaOC5aMepzdo1a8C0K/rSpW02I6e8xyPzVic6JBGROinel7+MAhoAG4HHgZHuvsTMckPXiuaG+p0KLDazYuBlgsR5W0XjxGslkkXzRvV4bHgfTjmiFaOf/ZC7X1uOuyc6LBGROsXq0h/evLw8z8/PT3QY1W5vyT7+MP0DnlqwlnN75/LXgV3ISFfRKhGRipjZAnfPi2WMjIq7SLLLSE/j72d3o1V2fca98RmbinYx9tyjycpMT3RoIiK1nqYttYSZ8dvTjuSmAZ3539INDHtwPoXb9yQ6LBGRWk+JtJa5qN8hjD33aBau+ZohE+eyvnBHokMSEanVlEhrof7d2vLwxb1Z9/UOBt83h083lnmJrYiIVAMl0lqq72EteWJEH3aXOGdPmMuC1VsSHZKISK2kRFqLdW3XlOkj+9KsQSZDH5jHjKUbEh2SiEito0Ray+Ue0JBpI/vSqVUTRjyygKn5axIdkohIraJEWge0bFyfx0f0oW/HA/jdtMWMe+NTFW4QEakmSqR1ROP6GTx44TEM7NGWO19dxs0vfMS+fUqmIiKxUkGGOqReRhr3DOlBy8b1eXDWSgqKdnH3kO7Uz1DhBhGRqlIirWPS0ozR/TvTOrs+t738MVuKdzNxWC+aZGUmOjQRkZSkXbt11IgTO3LXL7ozf+Vmzpk0j43bdiY6JBGRlKREWocN7tWeBy7MY0VBMYPHz2HVpuJEhyQiknKUSOu4Hx7RiscuO5ainXsZPH4Oi9d+neiQRERSihKpcHRuc6aN7EtWZjrnTJrH258UJDokEZGUoUQqAHTMacz0UX3JbdGQSya/y3ML1yU6JBGRlKBEKt9onZ3Fk5cfR8/c5lz7xEIeeHtFokMSEUl6SqTyHU0bZPLwJb05vWsbbn1pKbe/slRVkERE9kOJVL4nKzOde8/ryfl9cpn45gp+89Qi9pTsS3RYIiJJSQUZpEzpacZfB3alVZMs7n5tOZuLd3Pf0J40rKd/MiIi4TQjlXKZGdec2onbzzqKt5YXcO7989lcvDvRYYmIJBUlUqnQub1zmXB+Lz5ev5Wzx89hzebtiQ5JRCRpxDWRmlkLM3vGzIrNbLWZnVeJ17xuZm5mGWFtM81sp5kVhZZlNRu5/KRLGx4dfiybinYxePwclq7fmuiQRESSQrxnpOOA3UBrYCgw3sy6lNfZzIZS/nHcq9y9cWg5ovpDlUjHdGjBU1f0Jc2MIRPmMm/FV4kOSUQk4eKWSM2sETAYGO3uRe4+C3geGFZO/6bAX4DfxStGqdgRbZrw9Ki+tG6axQUPvcN/Plyf6JBERBIqnjPSw4ESd18e1rYIKG9GehswHviynOdvN7NNZjbbzE6utiilQu2aNeCpy4+ja9tsRk55j0fmrU50SCIiCRPPRNoYKIxoKwSaRHY0szygHzC2nLFuAA4F2gGTgBfMrGNZHc1shJnlm1l+QYFqyFaX5o3qMWV4H045ohWjn/2Qu19brsINIlInxTORFgHZEW3ZwLbwBjNLA+4DrnX3vWUN5O7z3X2bu+9y94eB2cAZ5fSd5O557p6Xk5MT80rItxrUS2fisF4MyWvPmBmf8MdnPmSvCjeISB0Tz6vrlwMZZtbJ3T8JtXUHlkT0ywbygCfNDCA91L7WzH7h7m+XMbYDVgMxSwUy0tO4Y3A3cprUZ9wbn7GpaBdjzz2arMz0il8sIlILxG1G6u7FwHTgFjNrZGb9gIHAIxFdC4G2QI/QUjrT7AXMN7NmZnaamWWZWUbozN4TgVfjsBpSBjPjt6cdyU0DOvO/pRsY9uB8CrfvSXRYIiJxEe/LX0YBDYCNwOPASHdfYma5oetBcz3wZekClB7Y3ODuu4FM4NZQ+ybgamCQu+ta0gS7qN8hjD33aBatKeQXE+ewvnBHokMSEalxVpdOEMnLy/P8/PxEh1Hrzfl0EyMeWUB2Vgb/vrQ3h7X63vlkIiJJwcwWuHteLGOoRKBUu76HteSJEX3YXeKcPWEuC1ZvSXRIIiI1RolUakTXdk2ZPrIvzRpkMvSBecxYuiHRIYmI1AglUqkxuQc0ZNrIvnRq1YQRjyxgav6aRIckIlLtlEilRrVsXJ/HR/Shb8cD+N20xYx741MVbhCRWkWJVGpc4/oZPHjhMQzs0ZY7X13GzS98xL59SqYiUjvEsyCD1GH1MtK4Z0gPchrX54FZKyko2sXdQ7pTP0OFG0QktSmRStykpRl/7t+ZVtn1ue3lj9lSvJuJw3rRJCsz0aGJiFSZdu1K3I04sSN3D+nOOys388uJ89i4bWeiQxIRqTIlUkmIs3q254EL81i5qZjB4+ewalNxokMSEakSJVJJmJOPaMXjI/pQvKuEwePnsHjt14kOSUQkakqkklA9DmrGtCuOIysznXMmzePtT3TPWBFJLUqkknCH5jRm+qi+5LZoyCWT3+W5hesSHZKISKUpkUpSaJ2dxdQrjqNnbnOufWIhD7y9ItEhiYhUihKpJI3srEwevqQ3p3dtw60vLeX2l5eqcIOIJD0lUkkqWZnp3HteT4b1OZiJb63g+qcWsadkX6LDEhEplwoySNJJTzNuGdiFVk3qc9dry9m8fTf3De1Jw3r65yoiyUczUklKZsbVp3bib2cdxVvLCzj3/vlsLt6d6LBERL5HiVSS2jm9c5lwfi8+Xr+Vs8fPYc3m7YkOSUTkO5RIJen9pEsbHh1+LJuKdjF4/ByWrt+a6JBERL6hRCop4ZgOLZg2si9pZgyZMJd5K75KdEgiIoASqaSQw1s34elRfWndNIsLHnqHVz5Yn+iQRESUSCW1tGvWgGlXHEfXttmMeuw9Hpm3OtEhiUgdp0QqKadZw3pMGd6HU45oxehnP+Tu/y7DXYUbRCQx4ppIzayFmT1jZsVmttrMzqvEa143MzezjLC2qMeR2qVBvXQmDuvFkLz2jHn9U/74zAfsVeEGEUmAeF/hPg7YDbQGegAvmdkid19SVmczG0rZMUY1jtROGelp3DG4G62aZHHvG5+yqWg3Y889mqzM9ESHJiJ1SNxmpGbWCBgMjHb3InefBTwPDCunf1PgL8DvYhlHajcz4/rTjuDmM7vwv6UbGPbgfAq370l0WCJSh8Rz1+7hQIm7Lw9rWwR0Kaf/bcB44MtYxjGzEWaWb2b5BQW612VtdWHfDow992gWrSnkFxPnsL5wR6JDEpE6Ip6JtDFQGNFWCDSJ7GhmeUA/YGws4wC4+yR3z3P3vJycnKiDltTRv1tbJl9yDF98vZPB983h043bEh2SiNQB8UykRUB2RFs28J2/dmaWBtwHXOvue6s6jtRNfTu25IkRfdhd4pw9YS4LVm9JdEgiUsvFM5EuBzLMrFNYW3cg8gShbCAPeNLMvgTeDbWvNbMTohhH6qiu7ZoyfWRfmjXIZOgD85ixdEOiQxKRWixuidTdi4HpwC1m1sjM+gEDgUciuhYCbQnOxu0BnBFq7wXMj2IcqcNyD2jItJF9Obx1E0Y8soCp+WsSHZKI1FLxLsgwCmgAbAQeB0a6+xIzyzWzIjPL9cCXpQtQeobQBnffvb9x4rwukuRaNq7P45f1oW/HA/jdtMWMe+NTFW4QkWpnFf1hMbMW0Q7q7purHFENysvL8/z8/ESHIXG2e+8+fjdtEc8u/IKL+nbgxv6dSUuzRIclIknAzBa4e14sY1SmIMMmIJqv8W5mh7v7iirGJFKt6mWkcfeQHrRsXJ8HZq2koGgXdw/pTv0MFW4QkdhVtrLR2UBlZpkGvFz1cERqRlqa8ef+nWmVXZ/bXv6YLcW7mTisF02yMhMdmoikuMok0tXAW+5eqRtAmtkKQKVlJCmNOLEjLRvX53fTFvPLifOYfMkxtGqSleiwRCSFVXiykbsfUtkkGurf1d11iqQkrbN6tueBC/NY9VUxg8fPYeWm4kSHJCIpLKqzds3sAjOrX0Z7PTO7oPrCEqlZJx/Riscu60PxrhLOHj+HxWu/TnRIIpKior385V9A0zLam4SeE0kZPQ5qxrQrjqNBvXTOmTSPt5arFrOIRC/aRGqUfQZvLt+vfyuS9A7Nacz0kX3JbdGQSya/y3ML1yU6JBFJMZU6a9fMPiBIoA68aWbhNXDTgYPR2bqSolplZzH1iuMY8e98rn1iIQXbdjH8hEMTHZaIpIjKXv4yLfSzK/ASQeH4UruBVcDT1ReWSHxlZ2Uy+eLe/HrqQm59aSkF23Zxw0+PVOEGEalQpRKpu98MYGargCfdfWdNBiWSCFmZ6Yw9tycHNFrCxLdWULBtF3ec3Y3M9HhX0hSRVFLZGSkA7v5wTQUikgzS04xbBnahVZP63PXacr4q3s19Q3vSqH5U/1VEpA6p8Ku2mW01s5ahx9tCv5e51Hy4IjXPzLj61E787ayjePuTAs57YD6bi3dX/EIRqZMq8zX7ar69afbVRFd3VyRlndM7lwMa1+eqx97j7PFzePiS3hzUomGiwxKRJFPh3V9qE939Raoif9VmLpn8LlmZ6Tx8SW9+cGB2okMSkWpSHXd/qfJZFGaWZWYNw5dYAhFJVnkdWjBtZF/S04whE+Yyb0WlK2aKSB0QbYnAg83sudDx0GKCXb7hi0itdHjrJjw9si+tm2ZxwYPvMGX+at0kXESAKM/aBR4FsgiOlW5Ax0ulDmnbrAHTrjiOa59YyJ+e+ZD3P/+aWwd1JStT9zUVqcuiTaRHA8e4+9KaCEYk2TVrWI+HLjqGMTM+Yczrn/DRF1uZcH4vcg/QkQ2RuiraY6SLgJyaCEQk6S2eCvd0Jf2W5vzqw7N48aT1rN2ynf5j3+aNjzcmOjoRSZBoE+kI4C9mNtDMOppZbvhSEwGKJIXFU+GFa6BwDeBQuIYuC/7M6z8poH3zhlw8+V3ufm05Jft0tEOkrok2kaYBrYBngOXAytCyKvRTpHaacQvs2fHdtj07aDn/b0wf1Zeze7VnzIxPuHjyu2xR8QaROiXaY6QPAwXAAHSykdQlhWvLbc/KTOfOs7vRM7c5Nz2/hP5jZzHh/F4c1b6sW/eKSG0T7Yz0SOAKd3/J3fPdfUH4UtGLzayFmT1jZsVmttrMziun3zlmtszMCs1so5k9bGbZYc/PNLOdZlYUWpZFuR4i0Wnafr/tZsZ5x+by1BXH4e4MnjCHJ9/9PI4BikiiRJtI3wEOieH9xhHcdq01MBQYb2Zdyug3G+jn7k2BQwlmzrdG9LnK3RuHliNiiEmkYqfeCJkNvtuW2SBoD9P9oGa8eM0J9O7Qghue/oDfP72YnXtK4hioiMRbtIl0PPD/zGy4mR1rZj3Dl/290MwaAYOB0e5e5O6zgOeBYZF93X2Nu28KayoBDosyVpHq020IDBgDTQ8CLPg5YEzQHqFFo3o8fElvrvrhYTzx7hp+MWEua7dsj3/MIhIXUdXaNbN9+3na3b3cK9PN7Ghgjrs3CGu7HjjJ3QeU0f94gpuIZwPbgZ+7+39Dz80EugAGLAP+5O4zK4pftXYl3l77aAO/fnIh6enGP885mpMO19VjIskkEbV2D9nPcmgFr20MFEa0FQJNyurs7rNCu3bbA3cSnBlc6obQ+7UDJgEvmFnHssYxsxFmlm9m+QUFBRWEKFK9fty5NS9cfTxtsrO46F/vMGbGJ+zTJTIitUpUidTdV+9vqeDlRQSzy3DZVFCj193XAf8Bnghrm+/u29x9V+hm47OBM8p5/SR3z3P3vJwczQYk/jq0bMQzo/oxqEc77n5tOcP/nU/h9j2JDktEqkmFl7+Y2QWVHczd/72fp5cDGWbWyd0/CbV1B5ZUYugMoMwZZ+lbE+zmFUlKDeqlc/eQ7hyd24y/vvgRA+6dxfjze9KlrS6REUl1FR4jNbPIGWM9IBMoPV6aBuwBdrn7fm/UaGZPECS94UAP4GWgr7svieg3FHgbWAPkAv8GvnL3s8ysGXAs8CawF/glwe7dnu6+38tgdIxUksGC1Vu4csp7bNm+m9t+fhSDe5VzaY2I1Li4HCN19yalC3AOsBg4geAuMFmhxwuBMq8JjTAKaABsBB4HRrr7klCJwaKwMoOdgTkEu4NnE5xQdFnouUyCS2EKgE0Ed6IZVFESFUkWvQ5uzovXHE/P3Ob85qlF/OmZD9i1V5fIiKSqaM/aXQpc4u5zI9qPAyYn+/WcmpFKMtlbso87/7uMiW+uoPtBzRg/tCdtmzWo+IUiUm0ScdZuB4IbekfaTrALVkQqKSM9jT+c/gMmnN+TzzYW0X/sLGZ/uqniF4pIUok2kc4HxphZu9KG0ON7gHnVGZhIXfHTrgfy3FX9OKBRPYY9OJ9xb3yqS2REUki0ifRS4ABglZmtMrNVBNd3tuLbY5giEqWOOY159sp+nHHUgdz56jIuf3QBW3fqEhmRVBDVMVIAMzPgxwQF7A34CPifRztQAugYqSQ7d+dfs1dx28tLad+8AROG9eLINvs9GV5EYlAdx0ijTqSpTIlUUsW7qzYzasp7FO3cy+1nHcWgo9tV/CIRiVp1JNJo70eKmbUAfkpwclG98Ofc/ZZYghGRwDEdWvDS1cdz1WPvc92TC3n/8y386WedqZcR7dEYEalpUSVSM+tDUEh+F5ADrAMODP2+ClAiFakmrbKzmHLZsfztlY95cNZKPlhXyH1De9GmaVaiQxORMNF+vb0TmEJQLH4ncArBzDQfuKN6QxORzPQ0RvfvzL3nHc3HX26j/9i3mfvZV4kOS0TCRJtIuwH3hk4sKgHqu/sGgrux3FTNsYlISP9ubXnuyn5kN8jk/AfnM+mtz6hL5zeIJLNoE+nusMcbgINDj4uAttUSkYiUqVPrJjx3ZT9+0rk1t738MaOmvMc2XSIjknDRJtL3gGNCj2cCt5rZhcAYghq8IlKDmmRlct/QnvzpjB/w3482MHDcbD7ZsN87EYpIDYs2kf4J+CL0+M8EhePHAs2BEdUYl4iUw8y47MRDmTL8WLbu2MPAcbN5cfEXFb9QRGqEriMVSWFfFu7kysfeY8HqLVzS7xD+cMaRZKbrEhmRykpE0XoRSSJtmmbx+GV9uKhvBx6avZLz7p/Hxq07Ex2WSJ1SYSI1s5fNrGllBzSzp82sdWxhiUhl1ctI46Yzu/DPc3rw4bqt/GzsLN5dtTnRYYnUGZWZkZ4GtDGzFpVZCOrwNqrZsEUk0sAe7Xj2yn40rp/BuZPm8eCslbpERiQOKlPZqLQwvYgkuSPaNOG5q/rxm6mL+OuLH/H+51u4Y3A3GtWPuhqoiFRSZf53/bAK466rwmtEpBpkZ2Uy8fxeTHjrM/7x6jKWfbmNCcN60TGncaJDE6mVKnXWrpk1JCgPOAjIBP4HXOPum2o0umqms3alrpn96Saufvx9du/dx51nd+P0ow5MdEgiSSWeZ+3eDFxEULD+cYLjoONjeWMRqXn9DmvJi1cfT8dWjRk55T1uf3kpe0v2JToskVqlson0LOBSdx/h7tcCPwMGmVl6zYUmItWhbbMGTL28D+f3yWXiWys4/8H5FGzbleiwRGqNyibSg4C3S39x93eAvai+rkhKqJ+Rzq2DjuKuX3Tn/c+/pv/Yt1mwekuiwxKpFSqbSNP5bsF6CBJptPczbWFmz5hZsZmtNrPzyul3jpktM7NCM9toZg+bWXa044jIdw3u1Z7po/pSPyOdcybN5eE5q3SJjEiMKpsIDXjUzML3B2UB95vZ9tIGdz+zgnHGESTk1kAP4CUzW+TuSyL6zQb6ufsmM2sMTARuBa6JchwRidClbVNeuOp4fj11IX95fgnvf76F2846iob1dImMSFVUdkb6MEGx+q/ClkeBNRFt5TKzRsBgYLS7F7n7LOB5YFhkX3dfE3FGcAlwWLTjiEjZmjbM5P4L8vjNjw/nuUVf8PNxc1i5qTjRYYmkpEp9BXX3i6vhvQ4HStx9eVjbIuCksjqb2fEEZwlnA9uBn1dlHBEpW1qacfWpneh2UDOufeJ9zhw7i7uGdOcnXdokOjSRlBLPovWNgcKItkKgSVmd3X2WuzcF2hNcw7qqKuOY2Qgzyzez/IKCgiqGLlJ7nXR4Di9cdTwdWjZixCML+Pt/PqZkn46bilRWPBNpEcHsMlw2sN+7Erv7OuA/wBNVGcfdJ7l7nrvn5eTkRB20SF1wUIuGPHXFcZzb+yDum/kZFz70Dl8V6RIZkcqIZyJdDmSYWaewtu5AZU4QygA6VsM4IlKOrMx0bj+rG3cMPop3Vm1mwNhZLFzzdaLDEkl6cUuk7l4MTAduMbNGZtYPGAg8EtnXzIaaWa4FDgb+D5gR7TgiEr1fHpPL01f0JS3NGDJhLo/OW61LZET2I9439h4FNAA2EpQaHOnuS0JJs8jMckP9OgNzCHbjzgaWAZdVNE6c1kGk1juqfXCJzHEdD+DPz37I9U8tZueekkSHJZKUKlW0vrZQ0XqR6JTsc8bM+IR/zviEzgdmM+H8XuQe0DDRYYlUm3gWrReROig9zfjVjw/nXxcdw9ot2+k/9m1e/3hDosMSSSpKpCJSoR8e2YoXrz6B9s0bcsnkfO5+bbkukREJUSIVkUrJPaAh00f1ZXDP9oyZ8QkXT36XLcWRJbhF6h4lUhGptKzMdP7xi27838+7Mu+zr+g/dhYfrI2sjyJStyiRikhUzIyhxx7MU1cch7szeMIcnnz380SHJZIwSqQiUiXdD2rGi9ecQO8OLbjh6Q+4YZoukZG6SYlURKqsRaN6PHxJb678YUeezF/DLybMZc3m7RW/UKQWUSIVkZikpxm/Pe1I7r8gj1Wbihlw7yxmLtuY6LBE4kaJVESqxY87t+b5q4+nTXYWF09+lzEzPmGfLpGROkCJVESqzSEtGzF9VF8G9WjH3a8tZ/i/8yncvifRYYnUKCVSEalWDetlcPeQ7twysAtvf1LAgHtnseQLXSIjtZcSqYhUOzPjguM68MSI49i1t4Sz7pvDtAVrEx2WSI1QIhWRGtPr4Oa8ePUJHJ3bjOufWsSfnvmAXXt1iYzULkqkIlKjcprU59FLj+Xykw5lyvzPGTJxHuu+3pHosESqjRKpiNS4jPQ0/nD6Dxg/tCefbSxiwNhZzPpkU6LDEqkWSqQiEjenH3Ugz13VjwMa1eOCh+Yz7o1PdYmMpDwlUhGJq445jXn2yn6ccdSB3PnqMkY8soDCHbpERlKXEqmIxF2j+hmMPfdobuzfmZnLNjLw3ll8/OXWRIclUiVKpCKSEGbGJccfwuMj+lC8u4RB42bz7PvrEh2WSNSUSEUkoY7p0IKXrj6ebu2acd2TC/nLcx+ye+++RIclUmlKpCKScK2ys5hy2bFcevwhPDx3NedMmsuXhTsTHZZIpSiRikhSyExPY3T/ztx73tF8/OU2+o99mzmf6RIZSX5xTaRm1sLMnjGzYjNbbWbnldPvQjNbYGZbzWytmf3dzDLCnp9pZjvNrCi0LIvfWohITerfrS3PXdmP7AaZnP/AfCa++RnuukRGkle8Z6TjgN1Aa2AoMN7MupTRryFwHdASOBY4Fbg+os9V7t44tBxRcyGLSLx1at2E567sx2ld2nD7Kx8z8tH32LZTl8hIcopbIjWzRsBgYLS7F7n7LOB5YFhkX3cf7+5vu/tud18HTAH6xStWEUm8JlmZ3De0J3864we8tnQDA8fNZvmGbYkOS+R74jkjPRwocfflYW2LgLJmpJFOBJZEtN1uZpvMbLaZnVw9IYpIMjEzLjvxUB699Fi27tjDoHGzeWHRF4kOS+Q74plIGwORNyUsBJrs70VmdjGQB/wjrPkG4FCgHTAJeMHMOpbz+hFmlm9m+QUFBVWNXUQS6LiOB/Di1SfwgwOzufrx97nlhY/YU6JLZCQ5xDORFgHZEW3ZQLn7asxsEPA34HR3/+b0PXef7+7b3H2Xuz8MzAbOKGsMd5/k7nnunpeTkxPrOohIgrRpmsXjl/Xhor4deGj2Ss66bw7vfb4l0WGJxDWRLgcyzKxTWFt3vr/LFgAz+ylwPzDA3T+oYGwHrFqiFJGkVS8jjZvO7MK483qyYetOzrpvDtc/tYiCbbsSHZrUYXFLpO5eDEwHbjGzRmbWDxgIPBLZ18xOITjBaLC7vxPxXDMzO83Msswsw8yGEhxDfbXm10JEksHPuh3I69efzOUnHcpzC9dxyj9m8sDbK7S7VxIi3pe/jAIaABuBx4GR7r7EzHJD14PmhvqNBpoCL4ddK/pK6LlM4FagANgEXA0McnddSypShzSun8EfTv8B/7nuRI4+uDm3vrSUM/75NnM+VREHiS+rSxc65+XleX5+fqLDEJFq5u689tEG/vrSR6zZvIMzjmrDn37WmXbNGiQ6NElyZrbA3fNiGUMlAkUk5ZkZP+nShtd+dRK//vHhzFi6kVPvmsnYGZ+wc09JosOTWk6JVERqjazMdK45tRMzfnMSPzyiFXe9tpyf3PMWr320QWUGpcYokYpIrdO+eUPGn9+LRy89lnoZaVz273wunvwuKwqKEh2a1EJKpCKSWhZPhXu6wk3Ngp+Lp5bb9fhOLXnl2hP4889+QP6qLZz2/97ib698TPGuvfGLV2o9JVIRSR2Lp8IL10DhGsCDny9cs99kmpmexvATDuX160/izO7tmPDmZ5xy10yeW7hOu3ulWiiRikjqmHEL7Nnx3bY9O4L2CrRqksVdQ7rz9Mi+5DSpz7VPLOSXk+axdP3WGgpW6golUhFJHYVro2svQ6+Dm/Pclcdz28+P4pMN2/jZmLe58bkP+Xr77moKUuoaJVIRSR1N20fXXo70NOO8Y3N54/qTGXrswTw6bzU//MdMHn/nc0r2aXevREeJVERSx6k3QmZEkYXMBkF7FTRrWI+/DurKi1efwGGtGvOH6R8waNxsFcOXqCiRikjq6DYEBoyBpgcBFvwcMCZoj0HnttlMvfw4/nlODxXDl6ipRKCISJiiXXsZ+/onPDRrJVkZ6Vz7o05c2LcDmemad9RGKhEoIlLNwovh9wwrhj9bxfClHEqkIiJl6JjTmMkXH8P9F+Sxc28JQx+Yz6gpC1j39Y6KXyx1ihKpiEg5zIwfd26tYviyX0qkIiIVUDF82R8lUhGRSiothj9l+LfF8C/6l4rh13VKpCIiUep32LfF8BesVjH8uk6JVESkClQMX0opkYqIxCC8GH6rJlnfFMP/6AsVw68rlEhFRKpBr4Ob8+yV/b4pht9/rIrh1xVKpCIi1SS8GP75fVQMv65QIhURqWbNGtbjloEqhl9XKJGKiNSQ8GL4G7cFxfB/M3URG7ftTHRoUo3imkjNrIWZPWNmxWa22szOK6ffhWa2wMy2mtlaM/u7mWVEO46ISKKZGQN7tGPGb07mipM68vyidZz6jzd54O0V7CnZl+jwpBrEe0Y6DtgNtAaGAuPNrEsZ/RoC1wEtgWOBU4HrqzCOiEhSaFw/g9+ffqSK4ddCcbuNmpk1ArYAXd19eajtEWCdu/++gtf+Gvihuw+IZRzdRk1EkoG787+lG7nlxSWs2byDM45qw59+1pl2zRpU/GKpVql2G7XDgZLS5BeyCKjMTPJEYElVxjGzEWaWb2b5BQUFVQhbRKR6RRbDf/3joBj+GBXDT0nxTKSNgcKItkKgyf5eZGYXA3nAP6oyjrtPcvc8d8/LycmJOmgRkZpSWgz/f78+iVOObMXdry3nx/e8qWL4KSaeibQIyI5oywa2lfcCMxsE/A043d1LDyREPY6ISDJr37wh9w0NiuHXz0hXMfwUE89EuhzIMLNOYW3d+XaX7XeY2U+B+4EB7v5BVccREUkVZRXDv/2VpRSpGH5Si9vJRgBm9gTgwHCgB/Ay0Nfdl0T0OwV4Cvi5u79V1XEi6WQjEUkVG7ft5I5XlvH0e2tpnV2fP57xA87s3hYzS3RotUqqnWwEMApoAGwEHgdGuvsSM8s1syIzyw31Gw00BV4OtReZ2SsVjRO/1RARqVllFsOfqGL4ySiuM9JE04xURFJRyT7nyXfXcOerH1O4Yw/n9zmYX//4cJo1rJfo0FJeKs5IRUQkSuUVw39svorhJwMlUhGRFBFeDL9Tqyb88ZmgGP6C1SqGn0hKpCIiKaZz22yevLzPN8XwB49XMfxEUiIVEUlBKoafPJRIRURSWMKK4S+eCvd0hZuaBT8XT63Z90tiSqQiIrVAx5zGTL74GO6/II+de0sY+sB8Rj66gLVbtlf/my2eCi9cA4VrAA9+vnBNnU2mSqQiIrVEZDH8N5Zt5Ed3v1n9xfBn3AJ7dny3bc+OoL0OUiIVEallarwYfuHa6NprOSVSEZFaqsaK4TdtH117LadEKiJSy4UXw3+vOorhn3ojZEbchDyzQdBeBymRiojUAZnpaQw/4VBmXH8SA3u0Y+KbKzj1rpk8t3Bd9Lt7uw2BAWOg6UGABT8HjAna6yDV2hURqYMWrN7CTc8v4YN1hfTu0IKbzuxC57aRt3qu/VRrV0REqqTXwc159sp+3H7WUXyycRv9x77N6Gc/5OvtuxMdWspRIhURqaPS04xze39bDH/KfBXDrwolUhGROk7F8GOjRCoiIoCK4VeVEqmIiHyjrGL4p6gY/n4pkYqIyPeUFsN/9boT6RUqhn96PIrhpyAlUhERKdehYcXwd9V0MfwUpUQqIiL7Fbdi+ClKiVRERCqlrGL4T79XNwvVh8tIdAAiIpJaSovhv7NyM0fnNkt0OAkX1xmpmbUws2fMrNjMVpvZeeX062pmr5rZJjP73lXBZjbTzHaaWVFoWVbz0YuISLjeh7QgM107NuP9CYwDdgOtgaHAeDPrUka/PcBU4NL9jHWVuzcOLUdUf6giIiIVi9uuXTNrBAwGurp7ETDLzJ4HhgG/D+/r7suAZWZ2WLziExERqYp4zkgPB0rcfXlY2yKgrBlpZdwe2vU728xOjjU4ERGRqohnIm0MFEa0FQJNqjDWDcChQDtgEvCCmXUsq6OZjTCzfDPLLygoqMJbiYiIlC+eibQIiLzZXTawLdqB3H2+u29z913u/jAwGzijnL6T3D3P3fNycnKiDlpERGR/4plIlwMZZtYprK07sKQaxnbAqmEcERGRqMQtkbp7MTAduMXMGplZP2Ag8EhkXwtkAfVCv2eZWf3Q42ZmdlqoLcPMhgInAq/Ga11ERERKxfvyl1FAA2Aj8Dgw0t2XmFlu6HrQ3FC/g4EdfDtb3QGUXiuaCdwKFACbgKuBQaEzfUVEROIqrpWN3H0zMKiM9s8JTkYq/X0V5eyqdfcC4JiaiVBERCQ6KkkhIiISA3P/XgW+WsvMtvHtLuJU1ZJgl3aqSvX4QeuQLLQOySHV1+EId6/KZZjfqGtF65e5e16ig4iFmeWn8jqkevygdUgWWofkkOrrYGb5sY6hXbsiIiIxUCIVERGJQV1LpJMSHUA1SPV1SPX4QeuQLLQOySHV1yHm+OvUyUYiIiLVra7NSEVERKqVEqmIiEgMalUiNbMWZvaMmRWb2WozO6+cfheZWUmoLGHpcnJ8oy0zrqtCt3zbZWaTK+j7KzP70swKzeyh0lrEiVbZdUjWbQBgZvXN7MHQv6FtZva+mZ2+n/5Jty2iWYdk3RZm9qiZrTezrWa23MyG76dv0m0DqPw6JOs2CGdmncxsp5k9up8+SbkdoOL4Y9kGtSqRAuOA3UBrYCgw3szKu3H4XHdvHLbMjFeQ+/EFQR3hh/bXycxOA34PnAp0ILg36801HVwlVWodQpJxG0BwffUa4CSgKTAamGpmHSI7JvG2qPQ6hCTjtrgd6ODu2cCZwK1m1iuyUxJvA6jkOoQk4zYINw54t7wnk3w7QAXxh1RpG9SaRGpmjYDBwGh3L3L3WcDzwLDERlZ57j7d3Z8Fvqqg64XAg+6+xN23AH8FLqrh8ColinVIWu5e7O43ufsqd9/n7i8CK4Gy/gAm5baIch2SUugz3VX6a2jpWEbXpNwGENU6JDUzOwf4Gpixn25Jux0qGX+V1ZpEChwOlLj78rC2RUB5M9KjzWxTaHfLaDNLpSpPXQjWrdQioLWZHZCgeKoqJbaBmbUm+PdV1r1zU2JbVLAOkKTbwszuM7PtwMfAeuDlMrol9Tao5DpA8m6DbOAW4DcVdE3K7RBF/FDFbVCbEmljoDCirRAoq4biW0BXoBXBLPZc4Lc1Gl31ilzX0scx1YuMs5TYBmaWCUwBHnb3j8vokvTbohLrkLTbwt1HEXyWJxDcz3hXGd2SehtUch2SdhsQzCwfdPc1FfRL1u1Q2firvA1qUyItArIj2rKBbZEd3X2Fu68M7fL6gODbytlxiLG6RK5r6ePvrWuySoVtYGZpBDee3w1cVU63pN4WlVmHZN8W7l4SOlTTHhhZRpek3gZQ8Tok6zYwsx7Aj4B7KtE96bZDNPHHsg1qUyJdDmSYWaewtu6UvysrnFPO/U+T1BKCdSvVHdjg7il7XJIk2wZmZsCDBCeuDXb3PeV0TdptEcU6REqqbREmg7KPLybtNihDeesQKVm2wckEJw59bmZfAtcDg83svTL6JuN2OJnKxx+p8tvA3WvNAjwBPA40AvoR7FroUka/04HWocdHAh8Cf0mC+DOALIIz/R4JPc4oo99PgS+BzkBz4HXgb4mOP8p1SMptEBbfBGAe0LiCfsm8LSq7Dkm3LQh2r51DsLswHTgNKAYGpso2iHIdkm4bhGJpCLQJW/4BTANyUmE7RBl/lbdBQjdSDXxoLYBnQ/9YPwfOC7XnEux2yA39/g9gQ6jfCoIpfGYSxH8T357ZV7rcFBl/qO+vQ+uwFfgXUD/R8UezDsm6DUKxHRyKe2co5tJlaKpsi2jWIRm3BZADvElwpuVW4APgstBzqbINKr0OybgNylmnm4BHU2k7VDb+WLaBau2KiIjEoDYdIxUREYk7JVIREZEYKJGKiIjEQIlUREQkBkqkIiIiMVAiFRERiYESqYiUy8xmmtm9iY5DJJkpkYqkIDObbGYeWvaa2edmNt7Mmic6NpG6RolUJHX9DziQoJbocGAAcF8iAxKpi5RIRVLXLnf/0t3Xuvt/gSeBnwCYWbqZPWhmK81sh5l9Yma/C90NhlCfyWb2oplda2brzGyLmf3LzBqW94ZmdqqZfW1ml9f86omkhqS4cayIxMbMDiUoGl56h5c0YB0wBCgAegOTgK8I7ghT6gSCm03/CDgImEpwJ6Xby3iPwQT1U4e7+9QaWRGRFKREKpK6fmpmRQR3FskKtf0awINbpt0Y1neVmfUkuFlxeCLdCox0973AUjN7CjiViERqZiOAO4GzQ7NfEQlRIhVJXW8BI4AGwGUE97kcU/qkmV1BcOz04FCfTGB1xBgfhZJoqS+AYyP6DAQuB05097nVuQIitYGOkYqkru3u/qm7f+Du1xDce3E0gJn9Evh/wGSC+2D2IDgRqV7EGJE3+3a+/3dhMcHu30tDNwsXkTBKpCK1x83ADWbWFjgemO/u97r7e+7+KcGMtSpWAicTnMg0SclU5LuUSEVqCXefCSwB/kxwwlBPMzvdzDqZ2WjgpBjGXgH8kOCEJiVTkTBKpCK1y93ApcDzBGfgPga8S3Ct6V2xDOzunxHMTH8KTFQyFQmYuyc6BhERkZSlGamIiEgMlEhFRERioEQqIiISAyVSERGRGCiRioiIxECJVEREJAZKpCIiIjFQIhUREYmBEqmIiEgM/j9XLe5fQTurqwAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "prob = [result.predict([600, 3.4, b, 1.0]) for b in range(1,5)]\n", "ax = plt.figure(figsize = (7, 5)).add_subplot()\n", "ax.plot(range(1,5), prob)\n", "ax.plot(df.groupby('rank').mean()['admit'],'o')\n", "ax.tick_params(labelsize=12)\n", "ax.set_xlabel('Rank', fontsize = 14)\n", "ax.set_xlim([0.5,4.5])\n", "ax.set_ylabel('P[admit]', fontsize = 14)\n", "ax.set_title('Marginal Effect of Rank', fontsize = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Logistic Regression in Perspective" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "At the start of lecture I emphasized that logistic regression is concerned with estimating a __probability__ model from __discrete__ (0/1) data. \n", "\n", "However, it may well be the case that we want to do something with the probability that amounts to __classification.__" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "For example, we may classify data items using a rule such as \"Assign item $x_i$ to Class 1 if $p(x_i) > 0.5$\".\n", "\n", "For this reason, logistic regression could be considered a classification method." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In fact, that is what we did with Naive Bayes -- we used it to estimate something like a probability, and then chose the class with the maximum value to create a classifier." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's use our logistic regression as a classifier.\n", "\n", "We want to ask whether we can correctly predict whether a student gets admitted to graduate school.\n", "\n", "Let's separate our training and test data:" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "X_train, X_test, y_train, y_test = model_selection.train_test_split(\n", " df[train_cols], df['admit'],\n", " test_size=0.4, random_state=1)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now, there are some standard metrics used when evaluating a binary classifier.\n", "\n", "Let's say our classifier is outputting \"yes\" when it thinks the student will be admitted." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "There are four cases:\n", "* Classifier says \"yes\", and student __is__ admitted: __True Positive.__\n", "* Classifier says \"yes\", and student __is not__ admitted: __False Positive.__\n", "* Classifier says \"no\", and student __is__ admitted: __False Negative.__\n", "* Classifier says \"no\", and student __is not__ admitted: __True Negative.__" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "__Precision__ is the fraction of \"yes\"es that are correct:\n", " $$\\mbox{Precision} = \\frac{\\mbox{True Positives}}{\\mbox{True Positives + False Positives}}$$\n", " \n", "__Recall__ is the fraction of admits that we say \"yes\" to:\n", " $$\\mbox{Recall} = \\frac{\\mbox{True Positives}}{\\mbox{True Positives + False Negatives}}$$" ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Precision: 0.586, Recall: 0.340\n" ] } ], "source": [ "def evaluate(y_train, X_train, y_test, X_test, threshold):\n", "\n", " # learn model on training data\n", " logit = sm.Logit(y_train, X_train)\n", " result = logit.fit(disp=False)\n", " \n", " # make probability predictions on test data\n", " y_pred = result.predict(X_test)\n", " \n", " # threshold probabilities to create classifications\n", " y_pred = y_pred > threshold\n", " \n", " # report metrics\n", " precision = metrics.precision_score(y_test, y_pred)\n", " recall = metrics.recall_score(y_test, y_pred)\n", " return precision, recall\n", "\n", "precision, recall = evaluate(y_train, X_train, y_test, X_test, 0.5)\n", "\n", "print(f'Precision: {precision:0.3f}, Recall: {recall:0.3f}')" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now, let's get a sense of average accuracy:" ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "PR = []\n", "for i in range(20):\n", " X_train, X_test, y_train, y_test = model_selection.train_test_split(\n", " df[train_cols], df['admit'],\n", " test_size=0.4)\n", " PR.append(evaluate(y_train, X_train, y_test, X_test, 0.5))" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "slideshow": { "slide_type": "-" } }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Average Precision: 0.584, Average Recall: 0.221\n" ] } ], "source": [ "avgPrec = np.mean([f[0] for f in PR])\n", "avgRec = np.mean([f[1] for f in PR])\n", "print(f'Average Precision: {avgPrec:0.3f}, Average Recall: {avgRec:0.3f}')" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Sometimes we would like a single value that describes the overall performance of the classifier.\n", "\n", "For this, we take the harmonic mean of precision and recall, called __F1 Score__:\n", "\n", "$$\\mbox{F1 Score} = 2 \\;\\;\\frac{\\mbox{Precision} \\cdot \\mbox{Recall}}{\\mbox{Precision} + \\mbox{Recall}}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Using this, we can evaluate other settings for the threshold." ] }, { "cell_type": "code", "execution_count": 21, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" } }, "outputs": [], "source": [ "import warnings\n", "warnings.filterwarnings(\"ignore\")\n", "def evalThresh(df, thresh):\n", " PR = []\n", " for i in range(20):\n", " X_train, X_test, y_train, y_test = model_selection.train_test_split(\n", " df[train_cols], df['admit'],\n", " test_size=0.4)\n", " PR.append(evaluate(y_train, X_train, y_test, X_test, thresh))\n", " avgPrec = np.mean([f[0] for f in PR])\n", " avgRec = np.mean([f[1] for f in PR])\n", " return 2 * (avgPrec * avgRec) / (avgPrec + avgRec), avgPrec, avgRec\n", "\n", "tvals = np.linspace(0.05, 0.8, 50)\n", "f1vals = [evalThresh(df, tval)[0] for tval in tvals]" ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEWCAYAAABrDZDcAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAAsTAAALEwEAmpwYAAA0UUlEQVR4nO3dd3hUZfr/8fedngBJgARCQkloAqGpEZSiYFtAFFR2xbr2Rdeyrv5WXde2frfYdkXFde2uunZF1gIqKkUQCdJC7yT0mpCQnvv3xxxwCClDyLTM/bquuZiZ88xzPmeGzD2nPUdUFWOMMaErzN8BjDHG+JcVAmOMCXFWCIwxJsRZITDGmBBnhcAYY0KcFQJjjAlxVghMUBGXV0Vkn4j86ON5fyEiv/blPJ35/p+I7BaR7Q147UYROdsbuarN5zsRub6Br601o4gME5G840tn6mOFIAQ5f3jFIlLodkt1pr0gIqtEpEpErvZz1JoMAc4B2qvqAG/NREQeEpE33Z9T1ZGq+rq35llLjg7AnUAvVU2pNu1yt8+v2PnMDn+mvsxpgpsVgtB1vqo2d7ttdZ5fDNwM/OTHbHXpBGxU1SJ/B/GRTsAeVd1ZfYKqvnXo8wNGAlvdP9NjnZGIRDRCXhOErBCYI6jqJFWdDpTU11ZEzhORhSJSICK5IvKQ27QYEXlTRPaIyH4RmS8ibWvp5x4RWSciB0RkuYhcWEu764CXgNOcX70Pi8jVIjK7WjsVka7O/ddEZJKIfOb0P09Euri1zRSRr0Rkr4jsEJE/isgI4I/AJc58FjttD2/+EJEwEfmTiGwSkZ0i8h8RSXCmpTsZfi0im53NOvfV8T4mOK/f5fT3J6f/s4GvgFQnx2v1fSa16C8iS0QkX0TeFZEYZ77DRCRPRO52Nju96sz30OexR0TeE5FWTvv6PtNOIvK98z5/KSJJbst4gYgsc173nYj0rOW9iHU+s30ishw4pYHLbI6BFQJzPIqAq4BE4DzgJhEZ60z7NZAAdABaAxOA4lr6WQcMddo/DLwpIu2qN1LVl51+5jq/eh/0MOelTr8tgbXAXwBEpAXwNTAVSAW6AtNVdSrwV+BdZz79aujzauc2HOgMNAeerdZmCHACcBbwQG1ffsAzuJa9M3AGrvf0GlX9miN/6V/t4fJW9ytgBJAB9HVyH5ICtMK15nEjcBsw1smRCuwDJjlt6/tMLwOuAdoAUcBdACLSHXgb+B2QDHwO/E9EomrI+iDQxbn9wpmn8TIrBKFrsvPrbL+ITG5IB6r6naouVdUqVV2C64/9DGdyOa4vi66qWqmqC1S1oJZ+3lfVrU4/7wJrgMbc/v+Rqv6oqhXAW0B/5/nRwHZVfVJVS1T1gKrO87DPy4F/qOp6VS0E7gXGV9u88rCqFqvqYlyb3I4qKCISDlwC3OvMfyPwJHBlA5azNk877+9e4H/8vPwAVcCDqlqqqsXAb4D7VDVPVUuBh4BxznLV95m+qqqrnX7ec5vPJcBnqvqVqpYDTwCxwKAasv4K+Iuq7lXVXODpRnkHTJ2sEISusaqa6NzGNqQDERkoIt86mzTycf1CPLQ54A1gGvCOiGwVkcdEJLKWfq4SkUWHChPQ262fxuB+tM1BXL/ewfXLdl0D+0wFNrk93gREAO6bSmqbr7skXL+eq/eV1sBcNakrxy5Vdd8M2An42O2zWAFU4lqu+j7T2uZzxHulqlVALjUvY6oz7ZBNNbQxjcwKgTke/wWmAB1UNQF4HhAAVS1X1YdVtReuX36jcW3yOIKIdAJeBG4BWqtqIpBzqB8PFAFxbv2l1NG2ulxcmyBqUt+wvFtxfWke0hGoAHYcw/wBduP6pV29ry3H2E9DVV/OXGCk24+ERFWNUdUtnn6mNTjivRIRwVWEa1rGbc60Qzoey8KYhrFCYI4gIlHOzkQBIp0dhLX9P2kB7FXVEhEZgGsb8aF+hotIH2fTRwGuL7vKGvpohuvLaJfzumtwrRF4ajGQKSL9ndwPHcNrPwVSROR3IhItIi1EZKAzbQeQXseyvw3cISIZItKcn/cpVBzD/FHVSlybUf7izL8T8Hvgzbpf6TXPO1k6AYhIsoiMce57+plW9x5wnoic5axB3AmUAnNqaXuviLQUkfbArce/SKY+VghMdV/i2gE4CHjBuX96LW1vBv4sIgeAB3D9ER+SAnyA6wtjBTCDGr7cVHU5rm3ic3F9+fYBvvc0rKquBv6Ma6fvGmB23a844rUHcJ2TcD6uzRprcO38BXjf+XePiNR0KO0ruDaVzAQ24DrKqqFfWrfiWrNZjyv/f53+/WEirrW8L53P9QfgUHH06DOtTlVXAVfg2im+G9f7fb6qltXQ/GFcm4M24Pq/+MbxLIzxjNiFaYwxJrTZGoExxoQ4KwTGGBPirBAYY0yIs0JgjDEhLugGmUpKStL09HR/xzDGmKCyYMGC3aqaXNO0oCsE6enpZGdn+zuGMcYEFRGp9Sxt2zRkjDEhzgqBMcaEOCsExhgT4qwQGGNMiLNCYIwxIc4KgTHGhDgrBMYYE+KC7jwC0zSUVVSxbGs+i3L3MyCjFZmpCf6OZEzIskJgjkv+wXKWbsl3bvvZXVhGu4QYUhNjST30b2IsiXGRLN9aQPamfSzYuI/FefspragCoH3LWL664wxio8Lrnd/6XYXc/eESHhidSZ/2VjyMaQxWCIJMfnE5b/6wiZLySu44uzthYZ5e0bFxVFYp72fnMmvNbpZuyWfz3oOHp3VsFUfb+Gh+2ryPz5duo7zy6GtdRIQJmWkJXHFqJ07u1JIwESa8uYBnvlnDH0b0qHPeVVXK3R8uYf7Gffxp8lI+vnmwz5ffmKbICkGQ2F1YyiuzN/DG3E0cKP35aoh3nntCg/ssKa9k1prdFJaWM6pPO6Ij6v5FvnZnIX/4YDE/bd5PWmIs/TokcOmAjvRJS6B3WjyJcVGH21ZVKbsLS9myv5it+0vYW1RKt7Yt6Nc+8ahf/uNObs8LM9dz4YlpdGvbotb5v/HDJuZv3Mc5vdry1fIdfLxwCxef3L7By2+McQm6K5RlZWVpKI01tHV/MS/MXM878zdTWlHFqN7tuGlYF96Yu4l3s3N58pf9junLsKyiillrdvHZkm18tXzH4aKSEh/DTcO6cMkpHYiJPPKLuqKyihdmreepr9cQGxnOQxf0Ymz/NFzXID9+ewpLOfPJGZyQ0oJ3bzy1xn5z9x7kF0/N5JT0Vrx69Slc+Nz3bMsv4du7htEs2n7PGFMfEVmgqlk1TbO/oABQUl7JrgOlbC8oYUdBCTsKStlRUMLmPQeZvnIHqjD2xDRuGtaFLsnNAXhkbG827z3IPR8toUOrOAZktKpzHvPW7+H9BXl8uWw7BSUVxMdEMLJPCuf1TSVM4Jnpa3lwyjImfbuWCWd04bKBHYmJDGfl9gL+3/tLWLolnxGZKfx5bCZtWsQ06vK3bh7NPSN7cO9HS/nwpy2Mq1bYVJV7P1qKAH+9qA9hYcID5/fi4n/N5fkZ645rrcgYY2sEfpV/sJx/fr2aN3/YREXVkZ9DVEQYKfExDD8hmRtO70z7lnE1vv7C575n38EyPr55MOlJzY5qs6+ojEc+Xc5HC7fQIjqCczNTGN23HYO7JhEV8fPRw6rK3PV7eHr6Gn5Yv5ek5tEMPyGZyYu2EB8TySNjezOqT7vGfxMcVVXKuOfnsHHPQb6584wjNjO9Nz+XP3y4hEfG9ubKUzsdfv62txcybdl2pt95Ro3vjzHmZ3WtEVgh8IOqKuW97Fwem7aK/QfL+OXJHTi5U0vaJsSQEh9D2/hoEmIjPdr0snF3EWOf+55WzaL4+KbBJMRFAq4v9s+XbufBKTnsP1jOzcO6cPPwrkdt9qnJvPV7mDh9DXPW7WFs/1QeOD+TVs2i6n3d8VqxrYDRz8zmV1nt+dtFfQHYUVDC2f+YQa928bx9w6lH7Bzeur+YM5/8jrN6tmXSZSd5PZ8xwcw2DQWQhZv38eCUZSzJy+eU9JY8dMGA4zqGPj2pGf++4mSueHkeN721gNevHcC+ojL+NDmHL5fvoE9aAm9cN5Ce7eI97nNg59b8t3NrDpZVEBflu/8iPdvFc+3gdF6ctYFxJ7fnpI4tue/jHMorq3j04r5HHSGUmhjLb07vwsTpa7h60F5OSa9589iKbQVs2F3k1TUaY4KZV9cIRGQEMBEIB15S1b9Xmz4M+ATY4Dz1kar+ua4+g3WNYE9hKX/7YiUfLMijTYto/jiqJ2P6pzbaDtcPFuRx1/uLGdotiUW5+ymrqOL353TnuiEZRIQHzwnkRaUVnP2PGSTERvKbMzpzx7uLuW9UT244vXON7YvLKjnzye9Iah7NJ7898nDS3YWlPPnlat6dv5kqhT+PyeSq09J9tCTGBBa/rBGISDgwCTgHyAPmi8gUVV1ereksVR3trRyBYE9hKb/891xy9x7kN2d05tYzu9G8kY90GXdyezbsLmTSt+sYkNGKRy/uS0YN+wwCXbPoCB48P5MJby7gzvcW069DItcOyai1fWxUOPeM7MHt7yzig5/y+FVWB0orKnl9zkaemb6W4vJKrh6UwcY9RTw0ZRkdW8Ux7IQ2PlwiYwKfN9f7BwBrVXU9gIi8A4wBqheCJq2wtIJrXpvPln3FvHndQAZ2bu21ed117gmc1yeVHiktgvpEq19ktuWsHm2YtWY3j4/rS3g9y3JBv1Rem7ORx6etIiYynCe/XMWmPQcZfkIy953Xi65tmlNUWsEvn5/LLf9dyAc3nUaPFM83lRnT1Hlzm0EakOv2OM95rrrTRGSxiHwhIpk1dSQiN4pItohk79q1yxtZj8nanQf43TsLWbY1v852pRWV3PifbJZtLeC5y0/yahEAEBF6pcYHdREA13JMuvwkvvr96XSv4wQz9/YPnp/JrgOl3Pb2QiLDw3jtmlN49ZoBdG3jOty2WXQEL1+dRbPocK57LZudB0q8vRjGBA2v7SMQkV8Cv1DV653HVwIDVPVWtzbxQJWqForIKGCiqnarq19/7yPYdaCUsZO+Z8v+YiLChN+d3Y0JZ3Q5ajt8ZZXy27d+Yuqy7fzjV/246CQ7A9bb3pi7EUQYf0oHImvZL5KzJZ9fPj+X7ikteOeGUz0a38iYpqCufQTeXCPIAzq4PW4PbHVvoKoFqlro3P8ciBSRJC9mOi4l5ZXc+EY2e4pK+c+1AxjVpx1PfLmacc/PZd2uwsPtVJU/TV7K1GXbeWB0LysCPnLlaelceWqnWosAQO+0BCaO78+SvP3c+f4iqqqC6/BpY7zBm4VgPtBNRDJEJAoYD0xxbyAiKeIcNiMiA5w8e7yYqcGqqpS73l/Mws37eeqS/pzePZmnLz2RZy87kY17ijjv6Vm8+v0GqqqUx6et4u0fc7n1zK517ug0/nFuZgr3jerJ50u38/iXq/wdxxi/89rOYlWtEJFbgGm4Dh99RVWXicgEZ/rzwDjgJhGpAIqB8erjM9wqKqv4Imc7nVrH0bd9Yq3tnvp6NZ8u2cY9I3swovfPx6OP7pvKgPRW3P3hEh7+33LemreZtTsLuXxgR35/TncfLIFpiOuGZLB+dxH/+m4dzaMjuHlYl0Y7lNeYYBPSZxYv31rAHz5cTM6WAgDO6tGGO87pTu+0I0/w+nBBHne+v5hLsjrw94v71PiFoaq8Oz+XRz5dzpk92/LUJf3rPdrF+Fd5ZRV3vb+YTxZt5dIBHXlkTGZQnXNhzLGwISaqKa2o5Nlv1vKv79aRGBfJ/aN7kbv3IC/O2kB+cTnn9GrL787uRmZqAvPW7+GKl+eR1akVr1874IjxeWpSUl5JdESY/boMElVVyhNfruK579Yx/IRknr3sJBvN1DRJVgjc/LR5H3d/sIQ1Owu56KQ07j+vFy2dcXQKSsp5dfZGXpq9ngMlFfwisy3zNuw9ahwf0/S8NW8T90/OoVdqPK9cfUqjj7BqjL9ZIQAOllXw5JereeX7DaTEx/DXi/owvJYzTPOLy3l59gZenb2BiHCpdWRP07R8s3IHv31rIa2aRfH6tafQtU395zAYEyysEADvZefyhw+WcMWpHbl7RA9axNT/676gpJyyiiqSmkc3JKoJQkvy9nPta/MPj9XUrW0L0pOa0S4+JuhP1DOhzQoBrm3BOVvz6zwyyBhwXQ3tutfns3rHz+eGREWE0alVHOlJzRjcpTW/HpRu+4FMULFhqIGwMLEiYDzSoVUcU28/ne0FJWzcU8TG3QfZtKeIDbuLWLOzkK+W76Bnu3ivDxlijK+ETCEw5liEhQmpibGkJsYyqMvPz5eUVzLk0W+Y9N06KwSmybCDpo05BjGR4VwzOIOZq3eRs6XuQQeNCRZWCIw5Rlee1okW0RE8991af0cxplFYITDmGMXHRHLVoE58kbOdtTsL63+BMQHOCoExDXDN4AyiI8J4fsY6f0cx5rhZITCmAZKaRzP+lI5MXriFLfuL/R3HmONihcCYBrrh9M4AvDhzvZ+TGHN8rBAY00BpibFceGIab/+4md2Fpf6OY0yDWSEw5jhMGNaFssoqXv1+g7+jGNNgVgiMOQ5dkpszsncK/5mziYKScn/HMaZBrBAYc5xuHtaVA6UVvDF30+HnCksr+GblDh75dDmjJs7in1+t9mNCY+pmQ0wYc5x6pyVwevdkXpm9gbKKKuas283CzfupqFKiIsJoFRfFCzPXc93QDOI9GPXWGF+zNQJjGsEtw7uyp6iMp79ZQ1lFFTec3pm3rh/IkgfP5d9XnkxxeSWfLNzi75jG1MjWCIxpBAMyWvHF7UNJTYg96kp2fdsnkJkaz1vzNnPFqZ1s+GoTcGyNwJhG0rNdfI2XMxURLhvYkZXbD7Aod7/vgxlTDysExvjAmP5pxEWF8995m/0dxZijWCEwxgeaR0cwpn8q/1uylfxiO8zUBBYrBMb4yGUDOlFSXsVk22lsAowVAmN8pE/7BPqkJfD2j5sJtmuFm6bNCoExPnRop/FPm/f7O4oxh1khMMaHLuiXSjPbaWwCjBUCY3yoWXQEY05M49MlW8k/aDuNTWCwQmCMj102oCOlFVV8vDDP31GMAbxcCERkhIisEpG1InJPHe1OEZFKERnnzTzGBILeaQn0a5/Af22nsQkQXisEIhIOTAJGAr2AS0WkVy3tHgWmeSuLMYHmsoEdWb2jkAWb9vk7ijFeXSMYAKxV1fWqWga8A4ypod2twIfATi9mMSagjO6bSvPoCNtpbAKCNwtBGpDr9jjPee4wEUkDLgSer6sjEblRRLJFJHvXrl2NHtQYX2sWHcGFJ6YxZfFW/vHVakrKK/0dyYQwbxaCmoZYrL5B9CngblWt869AVV9Q1SxVzUpOTm6sfMb41V3nnsB5fdvx9PQ1nPvPmXyzcoe/I5kQ5c1CkAd0cHvcHtharU0W8I6IbATGAc+JyFgvZjImYCTERTJx/In894aBREWEce1r2dzwn2zy9h30dzQTYrxZCOYD3UQkQ0SigPHAFPcGqpqhqumqmg58ANysqpO9mMmYgDOoSxKf3zaUu0f0YPaa3Zz9jxlM+nYt5ZVV/o5mQoTXCoGqVgC34DoaaAXwnqouE5EJIjLBW/M1JhhFRYRx07AufH3nGQzr3obHp63iH3adY+MjEmzHMWdlZWl2dra/YxjjVXe9v5iPF27h01uH0LNdvL/jmCZARBaoalZN0+zMYmMC0H2jepIQG8k9Hy2lsiq4fqyZ4GOFwJgA1LJZFA+M7sXi3P28MXejv+OYJs4KgTEBakz/VIZ2S+LxaavYur/Y33FME2aFwJgAJSL8ZWwfKlV54JMcG5fIeI0VAmMCWMfWcdxxdne+XrGTqTnb/R3HNFFWCIwJcNcNyaBXu3genLLMLnxvvMIKgTEBLiI8jL9d1IfdhaU8NnXl4ecrKqtYsGkfz0xfw/gX5nL+M7MpLrMxi8yxi/B3AGNM/fp1SOTqQRm88v0GWsZFsXL7Aeat38OB0gpEIL11MzbsLmLG6l2M6J3i77gmyFghMCZI3Hlud6Yt286z366lU+s4RvdLZUjXJE7r0poWMRGc8pevmZqzzQqBOWZWCIwJEs2iI/jklsEUl1XSoVXcUdPP6dmWqTnbKa2oJDoi3A8JTbCyfQTGBJGk5tE1FgGAkX1SOFBawZy1e3ycygQ7KwTGNBGDuybRIjqCL3K2+TuKCTJWCIxpIqIjwjmzZxu+Wr6DChvC2hwDKwTGNCEje6ew72A58zbs9XcUE0SsEBjThJzRvQ2xkeG2ecgcEysExjQhsVHhDO+RzLRlO6iy4auNh6wQGNPEjOjdjl0HSlmweZ+/o5ggYYXAmCbmzB5tiIoI44ulNkid8YwVAmOamObREZzeLYmpOdts6GrjESsExjRBI3q3Y2t+CYvz8v0dxQQBKwTGNEHn9GxLRJjY0UPGI1YIjGmCEuIiOa1La6bmbLfNQ6ZeVgiMaaJG9m7Hpj0HWbHtgL+jmABnhcCYJurczLaECUy1zUOmHh4VAhEZIiLXOPeTRSTDu7GMMccrqXk0AzJa8YVd69jUo95CICIPAncD9zpPRQJvejOUMaZxjOzdjjU7C1m7s9DfUUwA82SN4ELgAqAIQFW3Ai28GcoY0zhG9E4hIkx4adZ6f0cxAcyTQlCmrsMOFEBEmnk3kjGmsbSNj+HqQem8m53Lotz9/o5jApQnheA9Efk3kCgiNwBfAy960rmIjBCRVSKyVkTuqWH6GBFZIiKLRCRbRIYcW3xjTH1uP7sbSc2jefCTHBuIztSozkIgIgK8C3wAfAicADygqs/U17GIhAOTgJFAL+BSEelVrdl0oJ+q9geuBV461gUwxtStRUwk943qyeK8fN7LzvV3HBOA6rx4vaqqiExW1ZOBr46x7wHAWlVdDyAi7wBjgOVu/bvvwWqGs/nJGNO4xvRP5b/zNvPo1JWM6J1CYlyUvyOZAOLJpqEfROSUBvSdBrj//MhznjuCiFwoIiuBz3CtFRxFRG50Nh1l79q1qwFRjAltIsLDYzIpKKngiS9X+TuOCTCeFILhuIrBOmd7/lIRWeLB66SG5476xa+qH6tqD2As8EhNHanqC6qapapZycnJHszaGFNdz3bxXHlqJ96at5mcLTYYnfmZJ4VgJNAZOBM4Hxjt/FufPKCD2+P2wNbaGqvqTKCLiCR50LcxpgHuOKc7rZtF8YDtODZu6i0EqroJSMT15X8+kOg8V5/5QDcRyRCRKGA8MMW9gYh0dXZIIyInAVHAnmNaAmOMxxJiI7l7RA9+2ryfD3/K83ccEyA8ObP4duAtoI1ze1NEbq3vdapaAdwCTANWAO+p6jIRmSAiE5xmFwM5IrII1xFGl6gNlWiMV118UntO6pjIo1NXkl9c7u84JgBIfd+7zv6A01S1yHncDJirqn19kO8oWVlZmp2d7Y9ZG9Nk5GzJ5/xnZzOqTzseH9eXuKg6DyA0TYCILFDVrJqmebKPQIBKt8eV1Lwj2BgTJHqnJfD7s7vz2ZJtjHhqFnPX2RbZUOZJIXgVmCciD4nIQ8APwMteTWWM8bpbz+rGuzeeighc+uIP3D85h6LSCn/HMn5Q76YhOLwjdwiuNYGZqrrQ28FqY5uGjGlcxWWVPD5tFa/O2UBaYiyPXdyXQV3t4L2m5rg2DYnIqcAaVX1aVScCa0VkYGOHNMb4R2xUOA+c34v3f3MakeFhXPbSPO6fnEOlHV4aMjzZNPQvwH0oiCLnOWNME5KV3orPbxvKtYMzeOOHTTw2baW/Ixkf8eRQAXE/pFNVq0TEDjEwpgk6tHZQWlHJv2esp3dqAuf3S/V3LONlnqwRrBeR20Qk0rndDthVLoxpwh48P5OsTi35wwdLWL61wN9xjJd5UggmAIOALc5tIHCjN0MZY/wrKiKM5644ifjYCG58I5t9RWX+jmS8yJMhJnaq6nhVbePcLlPVnb4IZ4zxnzYtYnj+ipPZWVDKrW8vpKKyyt+RjJfUWghE5AYR6ebcFxF5RUTynRFIT/JdRGOMv5zYsSX/N7Y3s9fu5tGptvO4qaprjeB2YKNz/1KgH65RSH8PTPRuLGNMoPjVKR246rROvDhrA58s2uLvOMYL6ioEFap6aESq0cB/VHWPqn6N62pixpgQcf/oXgxIb8XdHy5h5XbbedzU1FUIqkSknYjEAGfhumj9IbHejWWMCSSR4WFMuvwkYiLDefQL20TU1NRVCB4AsnFtHpqiqssAROQM7PBRY0JOcotobhjamW9X7WJx7n5/xzGNqNZCoKqfAp2Anqp6g9ukbOASbwczxgSeq07rRGJcJBOnr/F3FNOI6jx8VFUrVHVfteeKVLWwttcYY5quFjGRXD8kg29W7mRJ3n5/xzGNxJMTyowx5rBfD0onITaSp22toMmwQmCMOSaH1gq+XrGTpXn5/o5jGkGDCoGI9GjsIMaY4PHrwenEx0TYvoImoqFrBF82agpjTFCJj4nk+qGd+XrFDnK22FpBsKt1OGkRebq2SUCiV9IYY4LG1YPTeWnWeiZOX8OLV9V44SsTJOpaI7gGyAEWVLtlAzYUoTEhLj4mkuuGdOar5bZWEOzqKgTzgRxVfb36DTjgo3zGmAB29eB0WsRE2BFEQa6uQjAOWFTTBFXN8EoaY0xQSYiN5LohGXy5fIddwCaI1VUImqvqQZ8lMcYEpWsGZ9haQZCrqxBMPnRHRD70fhRjTDBKiI3kmkHpTF22nTU7bKtxMKqrEIjb/c7eDmKMCV7XDM4gLiqc575b5+8opgHqKgRay31jjDlCy2ZRXD6wI1MWb2XzHtuiHGzqKgT9RKRARA4AfZ37BSJyQERsr5Ax5gg3DO1MeJjwrxm2VhBs6hqGOlxV41W1hapGOPcPPY73pHMRGSEiq0RkrYjcU8P0y51rIC8RkTki0u94FsYY4z9t4mP4VVZ7PlyQx/b8En/HMcfAa4POiUg4MAkYCfQCLhWRXtWabQDOUNW+wCPAC97KY4zxvt+c3oVKVV6YadeuCibeHH10ALBWVderahnwDjDGvYGqznG73sEPQHsv5jHGeFmHVnGM6Z/Kf3/cxJ7CUn/HMR7yZiFIA3LdHuc5z9XmOuCLmiaIyI0iki0i2bt27WrEiMaYxnbzsK6UVlTxyvcb/B3FeMibhUBqeK7Go49EZDiuQnB3TdNV9QVVzVLVrOTk5EaMaIxpbF3bNGdk7xT+M2cTBSXl/o5jPODNQpAHdHB73B7YWr2RiPQFXgLGqOoeL+YxxvjIzcO6cqC0gjfmbvJ3FOMBbxaC+UA3EckQkShgPDDFvYGIdAQ+Aq5U1dVezGKM8aHeaQkMPyGZl2dv4GBZhb/jmHp4rRCoagVwCzANWAG8p6rLRGSCiExwmj0AtAaeE5FFIpLtrTzGGN+65cyu7C0q4+0fc+tvbPxKVIPrpOGsrCzNzrZ6YUwwGP/CXDbsLmLG/xtOTGS4v+OENBFZoKo1XkHILl5vjPGa353dnR0FpUz6dq2/o5g6WCEwxnjNqZ1bc+GJaTw/Yx1rd9rIpIHKCoExxqvuO68ncVER3PdxDsG2KTpUWCEwxnhVUvNo7hnZg3kb9vLhT1v8HcfUwAqBMcbrLsnqwMmdWvLXz1ewr6jM33FMNVYIjDFeFxYm/OXC3hQUl/O3L1bU2TZnSz6r7UpnPmWFwBjjEz1S4rluaAbvZefx44a9R03ff7CMez9ayuhnZjPhjQV+SBi6rBAYY3zm9rO6kZYYy30fL6WsogoAVeXjhXmc9eQM3svOpV+HRNbvLiJ3r13pzFesEBhjfCYuKoI/j8lkzc5CXpy1nvW7Crni5Xnc8e5iOrSK43+3DOGJcX0BmL12t5/Tho4IfwcwxoSWs3q2ZURmChOnr2Hi9DVEh4fxyJhMLhvYifAwQVVJiY9h9prdXDqgo7/jhgQrBMYYn3vwgl4smrSfrPSWPDC6F23iYw5PExGGdEviq+U7qKxSwsNqGtHeNCYrBMYYn2uXEMvce89EpOYv+aHdkvhgQR45W/Lp1yHRt+FCkO0jMMb4RW1FAGBw1yTA9hP4ihUCY0zASWoeTa928cxcbZem9QUrBMaYgDS0exI/bd5HUald2MbbrBAYYwLS0K7JlFcq8zbYFWy9zQqBMSYgZaW3JDoijFlrbD+Bt1khMMYEpJjIcAZktLJC4ANWCIwxAev0bsms3VnItvxif0dp0qwQGGMC1pBursNIba3Au6wQGGMCVo+UFiQ1j2a2FQKvskJgjAlYIsLQbknMXrubqiq7zKW3WCEwxgS0IV2T2FtUxvJtBf6O0mRZITDGBLSh3Wy4CW+zQmCMCWht4mM4oW0LZq2x4Sa8xQqBMSbgDe2WxPyN+yguq/R3lCbJCoExJuAN6ZZEWUUVP248+lrH5vhZITDGBLyBGa2JCg9jtm0e8gqvFgIRGSEiq0RkrYjcU8P0HiIyV0RKReQub2YxxgSv2KhwstJb2ollXuK1QiAi4cAkYCTQC7hURHpVa7YXuA14wls5jDFNw9BuyazcfoAHPskhd+9Bf8dpUry5RjAAWKuq61W1DHgHGOPeQFV3qup8oNyLOYwxTcCVp3XiV1ntefvHzQx74jvueHcRq3cc8HesJsGbhSANyHV7nOc8d8xE5EYRyRaR7F27bBuhMaGoeXQEj43rx8w/DOfqQelMzdnOuf+cyfWvZ/PT5n3+jhfUvFkIarogaYPOEVfVF1Q1S1WzkpOTjzOWMSaYtUuI5f7RvZhzz5ncflY3sjft5aLn5vDy7A3+jha0vFkI8oAObo/bA1u9OD9jTAhp2SyKO87pzvd3n8mwE5J5Ytoqtu634aobwpuFYD7QTUQyRCQKGA9M8eL8jDEhqFl0BI+M6U2VKv/32XJ/xwlKXisEqloB3AJMA1YA76nqMhGZICITAEQkRUTygN8DfxKRPBGJ91YmY0zT1KFVHLcM78rnS7czc7XtRzxWohpcQ7tmZWVpdna2v2MYYwJMaUUlI56aBcDU3w0lOiLcz4kCi4gsUNWsmqbZmcXGmCYhOiKchy7IZMPuIl6cud7fcYKKFQJjTJNxRvdkRvZO4dlv19pJZ8fACoExpkm5f3QvBOHh/9mOY09ZITDGNCmpibHcdlY3vl6xg+krdvg7TlCwQmCMaXKuG5JB1zbNeeh/yygpt2sY1McKgTGmyYmKCOPPF2SSu7eY575b5+84Ac8KgTGmSRrUNYnRfdvx7xnr2GJnHNfJCoExpsm6d1RPAB6futLPSQKbFQJjTJOVlhjL9UMzmLxoK4ty9/s7TsCyQmCMadJuGtaVpObRPPLpcoJtJAVfsUJgjGnSmkdHcNe53VmwaR+fL93u7zgByQqBMabJ+2VWB3qktOBvX6yww0lrYIXAGNPkhYcJ94/uRd6+Yl6bs9HfcQKOFQJjTEgY3DWJs3u24dlv1rK7sLTGNht3F/GXz5bzxdJtIbU/wQqBMSZk3DuqJyXllfzzq9VHPL+zoIT7Pl7K2f+YwYuzNnDTWz9x4xsL2J5f4qekvmWFwBgTMrokN+eKUzvx9o+bWb3jAPnF5Tw2dSWnP/4t787P5bKBHZl775n8cVQPZq3ZxTn/mMFb8zZRVdW01w7swjTGmJCyr6iMYU98R5sW0ew8UEp+cTlj+qfy+3O606l1s8PtNu0p4t6PljJn3R4GZLTibxf1oUtycz8mPz52YRpjjHG0bBbFHWd3Y83OQk7smMhntw1h4vgTjygCAJ1aN+Ot6wfy2Li+rNxWwMiJs3hp1vomue/A1giMMSFHVdleUEK7hFiP2u88UML9k3OYtmwHN57emXtH9kBEvJyycdkagTHGuBERj4sAQJsWMfzr8pO56rROvDBzPX+anNOk9htE+DuAMcYEg7Aw4eELMomLiuD5GesoLqvksXF9iQgP/t/TVgiMMcZDIsLdI06geXQ4T3y5muLySiaOP5GoiOAuBsGd3hhjfExEuOXMbtw/uhdf5Gznxjeyg37YCisExhjTANcNyeDvF/VhxupdXPnyPGav2U15ZZW/YzWIbRoyxpgGGj+gI7FR4dz70VKueHkeiXGRnN2zLSN7pzC4axIxkeH+jugRKwTGGHMcxvRP49xeKcxcs4upOduZtmw7HyzIo1lUOMN7tOHik9tzRrdkwsIC93BTKwTGGHOcYqPC+UVmCr/ITKGsooo563Yzbdl2pi3bwadLttGpdRxXntqJX57cgYS4SH/HPYqdUGaMMV5SVlHF1GXb+c+cjWRv2kdMZBhj+6dx5WmdyExNoLiskm35xWzLL2Hrfte/RaUVjO6bSp/2CY2apa4TyqwQGGOMDyzbms8bczcxedEWSsqriI+JoKCk4qh2EWFCRZWS1akl1wzO4BeZbRvlXAW/FQIRGQFMBMKBl1T179WmizN9FHAQuFpVf6qrTysExphgln+wnPcX5LJxTxHtEmJplxBDu4RYUhNjaBsfQ1llFe/Nz+X1uRvJ3VtMakIMVw1KZ/wpHUiMi2rwfP1SCEQkHFgNnAPkAfOBS1V1uVubUcCtuArBQGCiqg6sq18rBMaYUFBZpUxfsYNXv9/I3PV7iIkM465zT+D6oZ0b1F9dhcCbO4sHAGtVdb0T4h1gDLDcrc0Y4D/qqkY/iEiiiLRT1W1ezGWMMQEvPEw4NzOFczNTWLGtgNe+30hqoufjIx0LbxaCNCDX7XEerl/99bVJA44oBCJyI3AjQMeOHRs9qDHGBLKe7eJ5dFxfr/XvzTOLazpotvp2KE/aoKovqGqWqmYlJyc3SjhjjDEu3iwEeUAHt8ftga0NaGOMMcaLvFkI5gPdRCRDRKKA8cCUam2mAFeJy6lAvu0fMMYY3/LaPgJVrRCRW4BpuA4ffUVVl4nIBGf688DnuI4YWovr8NFrvJXHGGNMzbw6xISqfo7ry979uefd7ivwW29mMMYYUzcbhtoYY0KcFQJjjAlxVgiMMSbEBd2gcyKyC9jk7xxukoDd/g7hgWDIaRkbTzDkDIaMEBw5PcnYSVVrPBEr6ApBoBGR7NrG7wgkwZDTMjaeYMgZDBkhOHIeb0bbNGSMMSHOCoExxoQ4KwTH7wV/B/BQMOS0jI0nGHIGQ0YIjpzHldH2ERhjTIizNQJjjAlxVgiMMSbEWSHwkIiMEJFVIrJWRO6pYXoPEZkrIqUicleAZrxcRJY4tzki0i9Ac45xMi4SkWwRGRJoGd3anSIilSIyzpf5nHnX9z4OE5F8531cJCIP+DqjJzmdNsOcjMtEZEagZRSR/+f2PuY4n3mrAMyZICL/E5HFznvp2UCeqmq3em64Rk9dB3QGooDFQK9qbdoApwB/Ae4K0IyDgJbO/ZHAvADN2Zyf91/1BVYGWka3dt/gGlhxXKBlBIYBn/r6M25AzkRcl7Dt6DxuE2gZq7U/H/gmQN/LPwKPOveTgb1AVH192xqBZw5ff1lVy4BD118+TFV3qup8oNwfAfEs4xxV3ec8/AHXhYB8zZOcher8TwaaUcNV6/yd0XEr8CGw05fhHJ5m9DdPcl4GfKSqm8H1txSAGd1dCrztk2RH8iSnAi1ERHD9oNoLVNTXsRUCz9R2beVAcqwZrwO+8GqimnmUU0QuFJGVwGfAtT7Kdki9GUUkDbgQeB7/8PTzPs3ZTPCFiGT6JtoRPMnZHWgpIt+JyAIRucpn6Vw8/tsRkThgBK4fAL7mSc5ngZ64rvS4FLhdVavq69ir1yNoQjy6trKfeZxRRIbjKgQ+3/aO59ep/hj4WEROBx4BzvZ2MDeeZHwKuFtVK10/vnzOk4w/4RpfplBERgGTgW7eDlaNJzkjgJOBs4BYYK6I/KCqq70dznEsf9/nA9+r6l4v5qmNJzl/ASwCzgS6AF+JyCxVLairY1sj8EwwXFvZo4wi0hd4CRijqnt8lM3dMb2XqjoT6CIiSd4O5saTjFnAOyKyERgHPCciY32SzqXejKpaoKqFzv3PgUgfv4/g+bXLp6pqkaruBmYCvjyQ4Vj+T47HP5uFwLOc1+DazKaquhbYAPSot2df7/AIxhuuXyzrgQx+3kmTWUvbh/DPzuJ6MwIdcV0WdFAgv5dAV37eWXwSsOXQ40DJWK39a/h+Z7En72OK2/s4ANjsy/fxGHL2BKY7beOAHKB3IGV02iXg2ubezJfv4TG+l/8CHnLut3X+dpLq69s2DXlAPbj+soikANlAPFAlIr/DtUe/zlUyX2YEHgBa4/r1ClChPh5V0cOcFwNXiUg5UAxcos7/7ADK6FceZhwH3CQiFbjex/G+fB89zamqK0RkKrAEqAJeUtWcQMroNL0Q+FJVi3yVrQE5HwFeE5GluDYl3a2utaw62RATxhgT4mwfgTHGhDgrBMYYE+KsEBhjTIizQmCMMSHOCoExxoQ4KwTmuIhIa7dRGbeLyBbn/n4RWe6F+T10rKO7ikhhLc+/VtOooeIaSXaRiCwUkS4NzBkpIn8XkTXOaJU/ishIZ9rGxjqxS0QuODQKpYgki8g8J/dQEflcRBIb0OcwERnk9niCH4Z9MD5k5xGY46Kus5P7g+tLGihU1SdEJB34tL7Xi0iEqtY7KJaPjQU+UdUHPWnsDPAleuSYLo8A7XCdGFUqIm2BMxo7qKpOAaY4D8/CNVLrr53HsxrY7TCgEJjjzMPv500Y77I1AuNN4SLyojMu+pciEgvgDC72V2fc+dtF5GQRmeEMODZNRNo57W4TkeXiujbBO2799nL6WC8itx16UkR+7/z6znFO6DuCuDzr9PkZrqHDq7cZBfwOuF5Evq2tXxFJF5EVIvIcrjF9Orj1EQfcANyqqqUAqrpDVd+rYX6TneVeJiI3Os+FO2srOSKyVETuqO39EJGrnWXqDzwGjHLWZmLd1zxE5CrndYtF5A3nufPd1iC+FpG2TgGfANzh9DPUfS1MRPqLyA9OXx+LSEu3z/RRZ81ntYgMrf2/hQk4/jhV2m5N84bb8BpAOq7hb/s7j98DrnDufwc859yPxPXLM9l5fAmuMybBNY5KtHM/0W0ec4BoIAnY4/RxMq7RFpvhGn53GXCi85pC59+LgK9wnZWZCuynhqEhqi1Hjf06y1cFnFrD6/sCC+t4nzbinPYPtHL+jcU1tEJrZ55fubVPrOP9uBp4tvp99/kAmcCqGubZkp9PKr0eeLL68tfwfiwBznDu/xl4yu0zPfT6UcDX/v7/aDfPb7ZpyHjTBlVd5NxfgOvL85B3nX9PAHrjGiURXF/S25xpS4C3RGQyrpEzD/lMXb+0S0VkJ64xVYYAH6tz+r+IfAQMBRa6ve504G1VrQS2isg3HixDbf1OATap6g8e9FGX20TkQud+B1yjg64COovIM7iG4f7SmV7b+1GfM4EP1BlqQH8eObM98K6zBhaFa4CyWolIAq4CdOgKYq8D77s1+cj5t/pnbQKcbRoy3lTqdr+SI/dJHRqvRYBlqtrfufVR1XOdaecBk3D9Ql4gIodeX1O/no4FfaxjqtTVb21jzqwFOopIizo7FhmGa3jt01S1H66iFaOuiwf1w/Ur+7e4RouF2t+P+gg1L/czuNYg+gC/AWI87K82hz6X6p+1CXBWCIy/rQKSReQ0OHy0TaaIhAEdVPVb4A+4LmfYvI5+ZgJjRSRORJrhGiCs+s7SmcB4Zxt8O2C4B/k86fcIqnoQeBl4WkSinOVqJyJXVGuaAOxT1YMi0gM41WmbBISp6ofA/cBJDXg/3E0HfiUirZ3+D11rNwHX6JQAv3ZrfwA4qoipaj6wz237/5WAz68vbBqfVW3jV6paJq5DOJ92Nj1E4Lroy2rgTec5Af6pqvullovAqOpPIvIa8KPz1EuqurBas49xbSZZ6vRf75dYbf06O1Xr8ifg/4DlIlKCa+2h+sXjpwITRGQJroJ4aDNTGvCq8+UPcC+uTWYevx/VlmGZiPwFmCEilbjWPK7Gte3/fRHZ4sw7w3nJ/4APRGQMrstxuvs18LyzQ3w9rvHvTZCz0UeNMSbE2aYhY4wJcVYIjDEmxFkhMMaYEGeFwBhjQpwVAmOMCXFWCIwxJsRZITDGmBD3/wFfU2g7OUAhQQAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "plt.plot(tvals,f1vals)\n", "plt.ylabel('F1 Score')\n", "plt.xlabel('Threshold for Classification')\n", "plt.title('F1 as a function of Threshold');" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Based on this plot, we can say that the best classification threshold appears to be around 0.3, where precision and recall are:" ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Best Precision: 0.462, Best Recall: 0.663\n" ] } ], "source": [ "F1, Prec, Rec = evalThresh(df, 0.3)\n", "print('Best Precision: {:0.3f}, Best Recall: {:0.3f}'.format(Prec, Rec))" ] }, { "cell_type": "markdown", "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" } }, "source": [ "The example here is based on\n", "http://blog.yhathq.com/posts/logistic-regression-and-python.html\n", "where you can find additional details." ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Tags", "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" }, "rise": { "scroll": true, "theme": "beige", "transition": "fade" } }, "nbformat": 4, "nbformat_minor": 1 }