{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "hide_input": true, "slideshow": { "slide_type": "skip" }, "tags": [ "hide-cell" ] }, "outputs": [], "source": [ "import numpy as np\n", "import scipy as sp\n", "import matplotlib.pyplot as plt\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib as mp\n", "import sklearn\n", "from IPython.display import Image\n", "\n", "%matplotlib inline" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Low Rank Approximation and the SVD" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Today, we move on. \n", "\n", "However, let's look back and try to put the modeling we've done into a larger context." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Models are simplifications" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "One way of thinking about modeling or clustering is that we are building a __simplification__ of the data. \n", "\n", "That is, a model of the data that is simpler than the data.\n", "\n", "In particular, instead of thinking of the data as thousands or millions of individual data points, we think of it in terms of a small number of clusters, or a parametric distribution, etc, etc." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "From this simpler description, we hope to gain __insight.__" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "There is an interesting question here: __why__ does this process often lead to insight? \n", "\n", "That is, why does it happen so often that a large dataset can be described in terms of a much simpler model?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "I don't know." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" }, "tags": [ "hide-input" ] }, "source": [ "
\n", " \n", "\"Figure\"\n", " \n", "
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "skip" } }, "source": [ "By self-created (Moscarlop) - Own work, CC BY-SA 3.0, Link" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "However, I think that William of Ockham (c. 1300 AD) was on the right track.\n", "\n", "He said:\n", "\n", "> Non sunt multiplicanda entia sine necessitate" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "or, in other words:\n", "\n", "> Entities must not be multiplied beyond necessity.\n", "\n", "by which he meant:\n", "\n", "> Among competing hypotheses, the one with the fewest assumptions should be selected.\n", "\n", "Which has come to be known as \"Occam's razor.\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "William was saying that it is more common for a set of observations to be determined by a simple process than a complex process.\n", "\n", "In other words, the world is full of simple (but often hidden) patterns." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "From which one can justify the observation that \"modeling works suprisingly often.\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Data Matrices" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now we'll consider a (seemingly) very different approximation of data, applicable to data when it is in matrix form." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "$${\\mbox{$m$ data objects}}\\left\\{\\begin{array}{c}\\;\\\\\\;\\\\\\;\\\\\\;\\\\\\;\\end{array}\\right.\\;\\;\\overbrace{\\left[\\begin{array}{ccccc}\n", "\\begin{array}{c}a_{11}\\\\\\vdots\\\\a_{i1}\\\\\\vdots\\\\a_{m1}\\end{array}&\n", "\\begin{array}{c}\\dots\\\\\\ddots\\\\\\dots\\\\\\ddots\\\\\\dots\\end{array}&\n", "\\begin{array}{c}a_{1j}\\\\\\vdots\\\\a_{ij}\\\\\\vdots\\\\a_{mj}\\end{array}&\n", "\\begin{array}{c}\\dots\\\\\\ddots\\\\\\dots\\\\\\ddots\\\\\\dots\\end{array}&\n", "\\begin{array}{c}a_{1n}\\\\\\vdots\\\\a_{in}\\\\\\vdots\\\\a_{mn}\\end{array}\n", "\\end{array}\\right]}^{\\mbox{$n$ features}}$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "\n", "\n", "\n", "\n", "\n", "\n", "
Data TypeRowsColumnsElements
Network TrafficSourcesDestinationsNumber of Bytes
Social MediaUserstime binsNumber of Posts/Tweets/Likes
Web BrowsingUsersContent CategoriesVisit Counts/Bytes Downloaded
Web BrowsingUserstime binsVisit Counts/Bytes Downloaded
" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Matrix Rank" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's briefly review some definitions.\n", "\n", "We'll consider an $m\\times n$ real matrix $A$.\n", "\n", "The __rank__ of $A$ is the __dimension of its column space.__ \n", "\n", "The dimension of a space is the smallest number of (linearly independent) vectors needed to span the space.\n", "\n", "So the dimension of the column space of $A$ is the __smallest number of vectors that suffice to construct the columns of $A$.__" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Then the rank of $A$ is the size of the smallest set $\\{\\mathbf{u}_1, \\mathbf{u}_2, \\dots, \\mathbf{u}_p\\}$ such that every column $\\mathbf{a}_i$ can be expressed as:\n", "\n", "$$\\mathbf{a}_i = c_{i1}\\mathbf{u}_1 + c_{i2}\\mathbf{u}_2 + \\dots + c_{ip}\\mathbf{u}_p\\;\\;\\;\\;i=1,\\dots,n.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The largest value that a matrix rank can take is $\\min(m,n)$.\n", "\n", "However it can happen that the rank of a matrix is __less__ than $\\min(m,n)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now to store a matrix $A \\in \\mathbb{R}^{m\\times n}$ we need to store $m n$ values.\n", "\n", "However, if $A$ has rank $k$, it can be factored as $A = UV$,\n", "\n", "where $U \\in \\mathbb{R}^{m\\times k}$ and $V \\in \\mathbb{R}^{k \\times n}$.\n", "\n", "This only requires $k(m+n)$ values, which could be much smaller than $mn$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "$$ \\mbox{$m$ data objects}\\left\\{\\begin{array}{c}\\;\\\\\\;\\\\\\;\\\\\\;\\\\\\;\\end{array}\\right.\\;\\;\\overbrace{\\left[\\begin{array}{ccccc}\n", "\\begin{array}{c}a_{11}\\\\\\vdots\\\\a_{i1}\\\\\\vdots\\\\a_{m1}\\end{array}&\n", "\\begin{array}{c}\\dots\\\\\\ddots\\\\\\dots\\\\\\ddots\\\\\\dots\\end{array}&\n", "\\begin{array}{c}a_{1j}\\\\\\vdots\\\\a_{ij}\\\\\\vdots\\\\a_{mj}\\end{array}&\n", "\\begin{array}{c}\\dots\\\\\\ddots\\\\\\dots\\\\\\ddots\\\\\\dots\\end{array}&\n", "\\begin{array}{c}a_{1n}\\\\\\vdots\\\\a_{in}\\\\\\vdots\\\\a_{mn}\\end{array}\n", "\\end{array}\\right]}^\\mbox{$n$ features} =\n", "\\overbrace{\\left[\\begin{array}{cc}\\vdots&\\vdots\\\\\\vdots&\\vdots\\\\\\mathbf{u}_1&\\mathbf{u}_k\\\\\\vdots&\\vdots\\\\\\vdots&\\vdots\\end{array}\\right]}^{\\large k}\n", "\\times\n", "\\left[\\begin{array}{ccccc}\\dots&\\dots&\\mathbf{v}_1&\\dots&\\dots\\\\\\dots&\\dots&\\mathbf{v}_k&\\dots&\\dots\\end{array}\\right]$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Low Effective Rank" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In many situations we may wish to __approximate__ a data matrix $A$ with a low-rank matrix $A^{(k)}.$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "To talk about when one matrix \"approximates\" another, we need a norm for matrices. \n", "\n", "We will use the __Frobenius norm__ which is just the usual $\\ell_2$ norm, treating the matrix as a vector.\n", "\n", "The definition of the Frobenius norm of $A$, denoted $\\Vert A\\Vert_F$, is:\n", "\n", "$$\\Vert A\\Vert_F = \\sqrt{\\sum a_{ij}^2}.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "To quantify when one matrix is \"close\" to another, we use distance in Euclidean space:\n", "\n", "$$\\mbox{dist}(A,B) = \\Vert A-B\\Vert_F.$$\n", "\n", "(where the Euclidean space is the $mn$-dimensional space of $m\\times n$ matrices.)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Now we can define the __rank-$k$ approximation__ to $A$:\n", "\n", "When $k < \\operatorname{Rank} A$, the rank-$k$ approximation to $A$ is the closest rank-$k$ matrix to $A$, i.e., \n", "\n", "$$A^{(k)} =\\arg \\min_{\\{B\\;|\\;\\operatorname{Rank} B = k\\}} \\Vert A-B\\Vert_F.$$\n", "\n", "This can also be considered the best rank-$k$ approximation to $A$ in a least-squares sense." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's say we have $A^{(k)}$, a rank-$k$ approximation to $A$. \n", "\n", "By definition, there is a set $\\mathcal{U}$ consisting of $k$ vectors such that each column of $A^{(k)}$ can be expressed as a linear combination of vectors in $\\mathcal{U}$. " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let us call the matrix formed by those vectors $U$.\n", "\n", "So \n", "\n", "$$A^{(k)} = UV^T$$\n", "\n", "for some set of coefficients $V^T$ that describe the linear combinations of $U$ that yield the columns of $A^{(k)}$. \n", "\n", "So $U$ is $m\\times k$ and $V$ is $n\\times k$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "If we approximate $A$ by $A^{(k)}$, then the error we incur is:\n", "\n", "$$\\Vert A-A^{(k)}\\Vert_F.$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Hence, a rank-$k$ approximation $A^{(k)}$ is valuable if \n", "\n", "* $\\Vert A-A^{(k)}\\Vert_F$ is small compared to $\\Vert A\\Vert_F$, and \n", "* $k$ is small compared to $m$ and $n$.\n", "\n", "In that case we have achieved a simplification of the data without a great loss in accuracy." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Finding Rank-$k$ Approximations" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "There is a celebrated method for finding the best rank-$k$ approximation to any matrix: the __Singular Value Decomposition (SVD).__" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "> SVD is \"the Rolls-Royce and the Swiss Army Knife of Numerical Linear Algebra.”\n", "\n", "Dianne O’Leary, MMDS ’06" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The singular value decomposition of a rank-$r$ matrix $A$ has the form:\n", "\n", "$$A = U\\Sigma V^T$$\n", "\n", "where \n", "\n", "1. $U$ is $m\\times r$\n", "2. The columns of $U$ are mutually orthogonal and unit length, ie., $U^TU = I$.\n", "3. $V$ is $n\\times r$.\n", "4. The columns of $V$ are mutually orthogonal and unit length, ie., $V^TV = I$.\n", "5. The matrix $\\Sigma$ is an $r\\times r$ diagonal matrix, whose diagonal values are $\\sigma_1 \\geq \\sigma_2 \\geq \\dots \\geq \\sigma_r > 0$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ " \n", "$$ \\left[\\begin{array}{cccc}\\begin{array}{c}\\vdots\\\\\\vdots\\\\{\\bf a_1}\\\\\\vdots\\\\\\vdots\\end{array}&\\begin{array}{c}\\vdots\\\\\\vdots\\\\{\\bf a_2}\\\\\\vdots\\\\\\vdots\\end{array}&\\dots&\\begin{array}{c}\\vdots\\\\\\vdots\\\\{\\bf a_n}\\\\\\vdots\\\\\\vdots\\end{array}\\\\\\end{array}\\right] =\n", "\\overbrace{\\left[\\begin{array}{cc}\\vdots&\\vdots\\\\\\vdots&\\vdots\\\\\\mathbf{u}_1&\\mathbf{u}_r\\\\\\vdots&\\vdots\\\\\\vdots&\\vdots\\end{array}\\right]}^{\\large r}\n", "\\times\n", "\\left[\\begin{array}{cc}\\sigma_1&~\\\\~&\\sigma_r\\\\\\end{array}\\right]\n", "\\times\n", "\\left[\\begin{array}{ccccc}\\dots&\\dots&\\mathbf{v}_1&\\dots&\\dots\\\\\\dots&\\dots&\\mathbf{v}_r&\\dots&\\dots\\end{array}\\right]$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Npw, the SVD is _incredibly useful_ for finding matrix approximations.\n", "\n", "In particular, for an $m\\times n$ matrix $A$, the SVD does two things:\n", "\n", "1. It gives the best rank-$k$ approximation to $A$ for __every__ $k$ up to the rank of $A$.\n", "2. It gives the __distance__ of the best approximation $A^{(k)}$ from $A$ for each $k$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In terms of the singular value decomposition, \n", "\n", "The best rank-$k$ approximation to $A$ is formed by taking \n", "\n", " * $U' = $ the $k$ leftmost columns of $U$, \n", " * $\\Sigma' = $ the $k\\times k$ upper left submatrix of $\\Sigma$, and \n", " * $V'= $ the $k$ leftmost columns of $V$, and constructing \n", "\n", "$$ A^{(k)} = U'\\Sigma'(V')^T.$$\n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Furthermore, the distance (in Frobenius norm) of the best rank-$k$ approximation $A^{(k)}$ from $A$ is equal to $\\sqrt{\\sum_{i=k+1}^r\\sigma^2_i}$.\n", "\n", "That is, if you construct $A^{(k)}$ as shown above, then:\n", "\n", "$$\\Vert A-A^{(k)}\\Vert_F^2 = \\sum_{i=k+1}^r\\sigma^2_i$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Low Effective Rank" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Almost any data matrix $A$ that one encounters will usually be __full rank__,\n", "\n", "meaning that $\\operatorname{Rank} A = \\min(m, n)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "However, it is often the case that data matrices have __low effective rank.__\n", "\n", "By this we mean that one can usefully approximate $A$ by some $A^{(k)}$ for which $k \\ll \\min(m,n)$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "For any data matrix, we can judge when this is the case by looking at its singular values, because the singular values tell us the distance to the nearest rank-$k$ matrix." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Empirical Evidence\n", "\n", "Let's see how this theory can be used in practice, and investigate some real data." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "We'll look at data traffic on the Abilene network:\n", "\n", "\n", "\n", "Source: Internet2, circa 2005" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "scrolled": false, "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ATLA-ATLAATLA-CHINATLA-DNVRATLA-HSTNATLA-IPLSATLA-KSCYATLA-LOSAATLA-NYCMATLA-SNVAATLA-STTL...WASH-CHINWASH-DNVRWASH-HSTNWASH-IPLSWASH-KSCYWASH-LOSAWASH-NYCMWASH-SNVAWASH-STTLWASH-WASH
2003-09-01 00:00:008466132.029346537.015792104.03646187.021756443.010792818.014220940.025014340.013677284.010591345.0...53296727.018724766.012238893.052782009.012836459.031460190.0105796930.013756184.013582945.0120384980.0
2003-09-01 00:10:0020524567.028726106.08030109.04175817.024497174.08623734.015695839.036788680.05607086.010714795.0...68413060.028522606.011377094.060006620.012556471.032450393.070665497.013968786.016144471.0135679630.0
2003-09-01 00:20:0012864863.027630217.07417228.05337471.023254392.07882377.016176022.031682355.06354657.012205515.0...67969461.037073856.015680615.061484233.016318506.033768245.071577084.013938533.014959708.0126175780.0
2003-09-01 00:30:0010856263.032243146.07136130.03695059.028747761.09102603.016200072.027472465.09402609.010934084.0...66616097.043019246.012726958.064027333.016394673.033440318.079682647.016212806.016425845.0112891500.0
2003-09-01 00:40:0010068533.030164311.08061482.02922271.035642229.09104036.012279530.029171205.07624924.011327807.0...66797282.040408580.011733121.054541962.016769259.033927515.081480788.016757707.015158825.0123140310.0
..................................................................
2003-09-07 23:10:008849096.033461807.05866138.03786793.019097140.010561532.026092040.028640962.08343867.08820650.0...65925313.021751316.011058944.058591021.017137907.024297674.083293655.017329425.020865535.0123125390.0
2003-09-07 23:20:009776675.031474607.05874654.011277465.014314837.09106198.026412752.026168288.08638782.09193717.0...70075490.029126443.012667321.054571764.015383038.025238842.070015955.016526455.016881206.0142106800.0
2003-09-07 23:30:009144621.032117262.05762691.07154577.017771350.010149256.029501669.025998158.011343171.09423042.0...68544458.027817836.015892668.050326213.012098328.027689197.073553203.018022288.018471915.0127918530.0
2003-09-07 23:40:008802106.029932510.05279285.05950898.020222187.010636832.019613671.026124024.08732768.08217873.0...65087776.028836922.011075541.052574692.011933512.031632344.081693475.016677568.016766967.0138180630.0
2003-09-07 23:50:008716795.622660870.06240626.45657380.617406086.08808588.515962917.018367639.07767967.37470650.1...65599891.025862152.011673804.060086953.011851656.030979811.073577193.019167646.019402758.0137288810.0
\n", "

1008 rows × 121 columns

\n", "
" ], "text/plain": [ " ATLA-ATLA ATLA-CHIN ATLA-DNVR ATLA-HSTN \\\n", "2003-09-01 00:00:00 8466132.0 29346537.0 15792104.0 3646187.0 \n", "2003-09-01 00:10:00 20524567.0 28726106.0 8030109.0 4175817.0 \n", "2003-09-01 00:20:00 12864863.0 27630217.0 7417228.0 5337471.0 \n", "2003-09-01 00:30:00 10856263.0 32243146.0 7136130.0 3695059.0 \n", "2003-09-01 00:40:00 10068533.0 30164311.0 8061482.0 2922271.0 \n", "... ... ... ... ... \n", "2003-09-07 23:10:00 8849096.0 33461807.0 5866138.0 3786793.0 \n", "2003-09-07 23:20:00 9776675.0 31474607.0 5874654.0 11277465.0 \n", "2003-09-07 23:30:00 9144621.0 32117262.0 5762691.0 7154577.0 \n", "2003-09-07 23:40:00 8802106.0 29932510.0 5279285.0 5950898.0 \n", "2003-09-07 23:50:00 8716795.6 22660870.0 6240626.4 5657380.6 \n", "\n", " ATLA-IPLS ATLA-KSCY ATLA-LOSA ATLA-NYCM \\\n", "2003-09-01 00:00:00 21756443.0 10792818.0 14220940.0 25014340.0 \n", "2003-09-01 00:10:00 24497174.0 8623734.0 15695839.0 36788680.0 \n", "2003-09-01 00:20:00 23254392.0 7882377.0 16176022.0 31682355.0 \n", "2003-09-01 00:30:00 28747761.0 9102603.0 16200072.0 27472465.0 \n", "2003-09-01 00:40:00 35642229.0 9104036.0 12279530.0 29171205.0 \n", "... ... ... ... ... \n", "2003-09-07 23:10:00 19097140.0 10561532.0 26092040.0 28640962.0 \n", "2003-09-07 23:20:00 14314837.0 9106198.0 26412752.0 26168288.0 \n", "2003-09-07 23:30:00 17771350.0 10149256.0 29501669.0 25998158.0 \n", "2003-09-07 23:40:00 20222187.0 10636832.0 19613671.0 26124024.0 \n", "2003-09-07 23:50:00 17406086.0 8808588.5 15962917.0 18367639.0 \n", "\n", " ATLA-SNVA ATLA-STTL ... WASH-CHIN WASH-DNVR \\\n", "2003-09-01 00:00:00 13677284.0 10591345.0 ... 53296727.0 18724766.0 \n", "2003-09-01 00:10:00 5607086.0 10714795.0 ... 68413060.0 28522606.0 \n", "2003-09-01 00:20:00 6354657.0 12205515.0 ... 67969461.0 37073856.0 \n", "2003-09-01 00:30:00 9402609.0 10934084.0 ... 66616097.0 43019246.0 \n", "2003-09-01 00:40:00 7624924.0 11327807.0 ... 66797282.0 40408580.0 \n", "... ... ... ... ... ... \n", "2003-09-07 23:10:00 8343867.0 8820650.0 ... 65925313.0 21751316.0 \n", "2003-09-07 23:20:00 8638782.0 9193717.0 ... 70075490.0 29126443.0 \n", "2003-09-07 23:30:00 11343171.0 9423042.0 ... 68544458.0 27817836.0 \n", "2003-09-07 23:40:00 8732768.0 8217873.0 ... 65087776.0 28836922.0 \n", "2003-09-07 23:50:00 7767967.3 7470650.1 ... 65599891.0 25862152.0 \n", "\n", " WASH-HSTN WASH-IPLS WASH-KSCY WASH-LOSA \\\n", "2003-09-01 00:00:00 12238893.0 52782009.0 12836459.0 31460190.0 \n", "2003-09-01 00:10:00 11377094.0 60006620.0 12556471.0 32450393.0 \n", "2003-09-01 00:20:00 15680615.0 61484233.0 16318506.0 33768245.0 \n", "2003-09-01 00:30:00 12726958.0 64027333.0 16394673.0 33440318.0 \n", "2003-09-01 00:40:00 11733121.0 54541962.0 16769259.0 33927515.0 \n", "... ... ... ... ... \n", "2003-09-07 23:10:00 11058944.0 58591021.0 17137907.0 24297674.0 \n", "2003-09-07 23:20:00 12667321.0 54571764.0 15383038.0 25238842.0 \n", "2003-09-07 23:30:00 15892668.0 50326213.0 12098328.0 27689197.0 \n", "2003-09-07 23:40:00 11075541.0 52574692.0 11933512.0 31632344.0 \n", "2003-09-07 23:50:00 11673804.0 60086953.0 11851656.0 30979811.0 \n", "\n", " WASH-NYCM WASH-SNVA WASH-STTL WASH-WASH \n", "2003-09-01 00:00:00 105796930.0 13756184.0 13582945.0 120384980.0 \n", "2003-09-01 00:10:00 70665497.0 13968786.0 16144471.0 135679630.0 \n", "2003-09-01 00:20:00 71577084.0 13938533.0 14959708.0 126175780.0 \n", "2003-09-01 00:30:00 79682647.0 16212806.0 16425845.0 112891500.0 \n", "2003-09-01 00:40:00 81480788.0 16757707.0 15158825.0 123140310.0 \n", "... ... ... ... ... \n", "2003-09-07 23:10:00 83293655.0 17329425.0 20865535.0 123125390.0 \n", "2003-09-07 23:20:00 70015955.0 16526455.0 16881206.0 142106800.0 \n", "2003-09-07 23:30:00 73553203.0 18022288.0 18471915.0 127918530.0 \n", "2003-09-07 23:40:00 81693475.0 16677568.0 16766967.0 138180630.0 \n", "2003-09-07 23:50:00 73577193.0 19167646.0 19402758.0 137288810.0 \n", "\n", "[1008 rows x 121 columns]" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "with open('data/net-traffic/AbileneFlows/odnames','r') as f:\n", " odnames = [line.strip() for line in f]\n", "dates = pd.date_range('9/1/2003', freq = '10min', periods = 1008)\n", "Atraf = pd.read_table('data/net-traffic/AbileneFlows/X', sep=' ', header=None, names=odnames, engine='python')\n", "Atraf.index = dates\n", "Atraf" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "(1008, 121)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "Atraf.shape" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "As we would expect, our traffic matrix has rank 121:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [ { "data": { "text/plain": [ "121" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.linalg.matrix_rank(Atraf)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "However -- perhaps it has low __effective__ rank." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The `numpy` routine for computing SVD is `np.linalg.svd`:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "u, s, vt = np.linalg.svd(Atraf)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Now let's look at the singular values of `Atraf` to see if it can be usefully approximated as a low-rank matrix:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "hide_input": false, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEmCAYAAACTYry7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAmV0lEQVR4nO3de5xcdX3/8df7zOwuCYEkkAAxCZJyFSkipqCtFxQV8Ia19lew1rsp1gtW2oK1itbWX/1Z6+XhhaaIVKuA5SLUH4pUBWwtSrgTEIiAEAMk4RIgt92d+fSP75nNMJnN7pzdzezueT8fj3nMzjlnzvl+Z3fnPd/v95zvKCIwMzPbkazbBTAzs8nPYWFmZiNyWJiZ2YgcFmZmNiKHhZmZjchhYWZmI3JYmJnZiBwWZmY2IoeFtSVpP0kh6dxul2U0plp5iypLPVtJ+oCk2yVtzuv/wW6XqWwcFiUiqSLp3ZKulvSopAFJayXdIulsSa/rdhmnIknfzt/A3jOKba/Mt339TijatCDpJOALwBbg88AngGs73McsSavz1/67417IEqh2uwC2c0iqAN8DjgceB/4/sBrYA9gfeBNwCHBZ/pTfAM8CNuzssk5By4GTgXcDXx1uI0n7AccCD5J+FzY6r2ncR8Sagvv4OLAQCODI8ShU2TgsyuNkUlDcDLwkIp4WApJmAkc3HkfEAPDLnVrCKSoirpJ0F/BcSUdGxA3DbPpOQMDXI2Jw55VwynsGQNGgkHQo8AHgB8AC4DmS5kXE+vEr4vTnbqjy+N38/tzWoACIiE0R8ZPG4+H6xpuX5z+fL2m9pC2SVkh6Teu+lZya9zlvkfQbSV+SNFvSfZLua9n+mPwYH29XkXbPGY6kt0m6SNI9eX/3E5L+W9Kbh9m+uX4HSbog76qrSzpmB4f6l/z+3cPstwK8nfTJ9uyxlHGY/Rd6zSQdLelCSQ9J6pf0gKR/lvSMYfbzOkk/kvSgpK2S1uTdmn/WQVn/j6RrJG3I63urpA9L6mvZ7uOSAnhp/jgat9EeK/clUkh/CLglX/bcDvdRem5ZlMcj+f1B47S/ZwK/AO4Bvknqzvoj4FJJL28OHuDLwHuANaQum37gdcBRQA8wME5lauerwO3ANaTunz2BVwHflHRwRHx0mOftD/wcuAv4FjADeGIHx/lX4O+BN0k6LSI2taw/gdQNcmVE3DtOZRwTSW8nhdxWUvfjA8CBwLuA10p6fkTc37T9MuCfgYeA/wDWA3sBh5OC8CujOOangA/nz/028BTptfkUcJykV+StWoCr8vu3kf7ePlGgjm8ihc0XI+IOSbfmq44Erux0f6UWEb6V4Eb6JNUP1Elv7m8AnrmD7fcjfQo+d5jlAZzZsu64fPnlTctelC+7E5jTtLyX9OYYwH0t+zkmX/7xYcp2X5vnDFfe/ds8vxf4ESmkFu6gfp/q8DW+IH/e29qsuzRf98Y260Zdxh3Us6PXjPShoR9Y1eY1eBlQAy5pWX49KVj2arP/eaN4fV6Ql/F+YJ+m5VVS+ATw122ed1V6q+r4b3430tjbemBuy9/oBWP5fyrjzd1QJRERNwJvBh7O7y8C7pP0iKRLJL22w13+Gvi7lmNcQXojOKpp8Vvz+7+PiMebtu0nfcKcUBHxqzbL+kmtnSppwLmdh+n8k+zy/P5dzQslLSC1FB4mhcZ4lXEs3kNq1Z0aEb9pOfaPSS2N10rareV5g7RpCcbo+v/fkd//XUQ81PTcQeA00geZd7V7YkGfII13nBkRj+XLGi0Ld0N1yN1QJRIR35F0CalZ/kLSP8wLgdcDr5f0DdKn4tH0Cd8UEbU2yx8gfYJsaPxT/lebba8lvflMGEn7AqeT3nD3JXUnNVs4zFNvjoitHR7ux8CvgN+T9KyIuCNf/nbS/9q5sa2LZTzKOBaN39FLJP1Om/V7ARVSC+T6fNm3gM8CKyVdAFwN/HdErBvlMRtnIf24dUVE3CVpNbBE0pzmDxZFSHo28H5gJXBW03HWSHoEOEDS7hGxo65Fa+KwKJn8zeqH+a0x8PoHwDnAW4BLgO+OYlePD7N8kKefODE7v3+4TVlq+T/uhJD0W6RxlbnAT0l13kDqYtmP1OrpG+bpDw2zfFgREZLOBv4v6RPyaZJE+kS93cD2OJRxLPbM7/9yhO1mNX6IiH+StB74M9LZRR8EQtLVwF9GxIoR9tX4W3hwmPUPksJyNsP/fY1Wo1X2520+1NxK6rY7gtQVaqMwbbuhJJ2Tn8Vy2yi2fbGkGyQNSnpjy7q3Sro7v711uH1MVRFRi4jvAJ/LF71snA/R+OS2d+uKPKj2bF1O6o6A4T/MzB5measP5ft/Z0QcExEfiIiPRsTHgStGeG7R7xv+Oqmb5i2Sekmv5/7ATyJi1TiXsVmnr1njjLjZEaEd3K5uflJEfCMinp+X+dXA14AXA1dI2muEMjaOuc8w6xe0bFdIfhbZS/KHP2w+iyo/k+qYfJ2vt+jAtA0L4FzSdQWjcT/pjItvNy+UtAdwJun6g6OAMyXNHb8iTipP5vca5/3emN+/sM2659P+za3Rv7y4dYWkA4A5ozz2Afn9RW3WvaTNsjGLiIdJ/f3zSN17jT745cM8ZbzK2Olr1rgC+kUdHGNIRDweEZdHxLtJ/2t7jGJfjb+FY4Yp4yLg3rF0QUnaHfgMKbDPIYVZ6+1H+eYet+jAtA2LiLgGeLR5maT9Jf1A0vWSfirpkHzb+yLiFrZ9Oms4jnSq46P5ANmVjD6AJhVJJ0t6haTtfueS9mHb9QHj3Sz/Rn7/EUlDn27zT92fGuY5vyS1SE5s/rQqaQbwxQ6OfV9+f0zzQknHMb4Dqa0a11ycBvw+6WycS4bZ9r78/pjmhQXK2Olr9iXSG+rnJG13OrWkXkkvall2vKR24d44Xuvpwq3Oye//RtL8pv1WgH8kvR99bYR9jORvSS2Xz0XEOyPiXa034Ix8W7csOlC2MYvlwCkRcbeko0nnhe+o22UhacC2YTUTM9i4MxwNnAo8JOm/gMa5/ktI3QkzSGfqXDieB42IqyUtB5aRBkYvIr1JvZbU3bCGlpCOiAFJXwA+CtyYD8pXgVfk24/2St6vkAaX/z0/7m+Aw0iB/x3SdSET4Yek17dxVtiX8rObJqyMnb5mEfFLSe8gvYGvlPQD0jUlPaRxgxcB60hTwDScD2zJ/37uI7VCXwT8DmkQ/D9HKOPPJP0/4K+A2yRdCGwkXWdxGOkkiM+Mpr7tSPpt4L2k/9m/3cGmt5HGhJ4laUZEbC56zDIpTVhImkW6ivnf05gjMPLAYbsumaJ92d32WeBu4OWki6iOA3YhXax3FakL7tujPBOqU+8hffL9U+CU/JiXAH9NCuDtTh0ldf9tIrV4lpEGnM8nzfFz+2gOGhG3SHop6RTfV5H+3m8mXWPyOBMUFvlA99fYdmrxv+xg2/EsY0evWUT8m6SbSS2glwKvJL15ryF9aLig5SlnkP5ujszLuoV0CvXpwFfbnenV5pinS7oReB/phIoe0u//b4DP7iBUR6MxqH1qRGzcQRm2SLqbFISHky6+tBFoYt4bJgelidu+FxGH5X2Zd0bEgh1sf26+/YX545OBYyLiT/PH/wxcFRHnTXjhS0DSgaRPs+dHxMndLo+ZDW/ajlm0ys+nvlfSH8LQfEXPGeFpVwCvlDQ3H9h+JZ2doWKkMZHWsRKliQs/nz8crj/fzCaJaduykHQeadBwHukc/zNJFwN9lXSKXg/pE+3f5hclXUI6130L8FBEPDvfzztI3SWQrkL++s6sx3Qg6R9Is95eRTqXfh/SBWiLgO8Dr56g7i8zGyfTNixs8pB0LPAXpIug9iBduHcXaZzk86Pp6zaz7nJYmJnZiKbl2VDz5s2L/fbbr9vFMDObUq6//vr1ETG/3bquhoWkc0hfmbg2Ig5rs/6PSaflQZr3/j0RcfNI+91vv/1YsWKkaWrMzKyZpF8Pt67bZ0Ody46viL6X9BWghwOfZPgpE8zMbAJ1tWUREdfk10IMt/5nTQ+vJZ09Y2ZmO1m3WxadeCfpNMu2JC1T+g7oFevWjXZ6fTMzG40pERb5dAjvZNv4xXYiYnlELI2IpfPntx2fMTOzgib92VCSDid9acwJETFhX5RjZmbDm9Qti/zrJi8G/iQi7up2eczMyqrbp84OTcmRf//umaRpOIiIs4CPkb6R6yv5TLGDEbG0O6U1Myuvbp8NtcOZRvMvKhnzl9QM1upsGawzo6dCJRvvL4IzM5v+JnU31Hi58vaHOezMK7jr4SdH3tjMzLZTirBotCZqdc+DZWZWRCnColpxWJiZjUUpwqKSpWoOOizMzAopR1jILQszs7EoR1h4zMLMbExKERYeszAzG5tShEWWd0MN1utdLomZ2dRUirCouhvKzGxMShEWHrMwMxubUoSFxyzMzMamFGFRGRqzcFiYmRVRjrDIu6Hq4bAwMyuiFGFRbVzBXXNYmJkVUYqwyLPCYxZmZgWVIiyqnhvKzGxMShEWQ6fOeszCzKyQUoTF0EV5NV/BbWZWRCnCIst86qyZ2ViUIiw83YeZ2diUIiw8ZmFmNjalCIttYxYOCzOzIkoRFhWPWZiZjUkpwkISmTzdh5lZUaUIC0gX5rllYWZWTGnCIst8NpSZWVGlCYtqlnkiQTOzgroaFpLOkbRW0m3DrJekL0paJekWSUcWPVYlk8cszMwK6nbL4lzg+B2sPwE4ML8tA75a9EDVTAzWPd2HmVkRXQ2LiLgGeHQHm5wIfCOSa4E5khYUOVaWyWMWZmYFdbtlMZKFwANNj1fny7YjaZmkFZJWrFu3brv11UweszAzK2iyh4XaLGv7jh8RyyNiaUQsnT9//nbrK5k83YeZWUGTPSxWA4ubHi8C1hTZUdXdUGZmhU32sLgMeEt+VtTzgQ0R8WCRHWWZfFGemVlB1W4eXNJ5wDHAPEmrgTOBHoCIOAu4HHgVsArYBLy96LGqmag7LMzMCulqWETEySOsD+C943Gsiqf7MDMrbLJ3Q42biqf7MDMrrERh4ZaFmVlRpQkLj1mYmRVXmrCoeLoPM7PCyhMW8nUWZmZFlSYsqhWHhZlZUaUJi4qv4DYzK6w0YVH1FdxmZoWVJiwyj1mYmRVWmrDwmIWZWXGlCYtKljkszMwKKk9YCI9ZmJkVVJ6wcMvCzKyw0oSFv/zIzKy40oRFpeJTZ83MiipPWEjUPDeUmVkh5QkLd0OZmRVWmrDwmIWZWXGlCYuKp/swMyusVGHhloWZWTGlCYtqJmrhsDAzK6I0YVHJMiLwV6uamRVQorBI9x63MDPrXInCIlXV4xZmZp0rTVhUMwF43MLMrIDShEWlERY1h4WZWae6HhaSjpd0p6RVks5os362pP+QdLOklZLeXuQ4jbAY9JQfZmYd62pYSKoAXwZOAA4FTpZ0aMtm7wVuj4jnAMcAn5XU2+mxKu6GMjMrrNsti6OAVRFxT0T0A+cDJ7ZsE8BukgTMAh4FBjs90NCYhQe4zcw61u2wWAg80PR4db6s2ZeAZwFrgFuBUyOi476krNEN5TELM7OOdTss1GZZ67v5ccBNwDOAI4AvSdp9ux1JyyStkLRi3bp12+3ULQszs+K6HRargcVNjxeRWhDN3g5cHMkq4F7gkNYdRcTyiFgaEUvnz5+/3YE8ZmFmVly3w+I64EBJS/JB65OAy1q2uR84FkDS3sDBwD2dHqjqi/LMzAqrdvPgETEo6X3AFUAFOCciVko6JV9/FvBJ4FxJt5K6rU6PiPWdHmtoug+PWZiZdayrYQEQEZcDl7csO6vp5zXAK8d6HE/3YWZWXLe7oXYaT/dhZlZcacJiaIDbV3CbmXWsdGHhMQszs86VLizcDWVm1rnShIUvyjMzK640YTE03YfDwsysY6UJi6q/z8LMrLDShIXHLMzMiitNWHi6DzOz4koTFkPTfTgszMw6VqKwaLQsfFGemVmnShMW206d7XJBzMymoNKERebpPszMCitNWFR9nYWZWWGlCYvGqbN1h4WZWcdKExZuWZiZFVeasMg8N5SZWWGlCQu3LMzMiitNWFTcsjAzK6w0YeHpPszMiiscFpL2Hc+CTLS8YeFuKDOzAsbSsrhYUl+7FZJ2GcN+J4QkKpl8UZ6ZWQFjCYtVwPLWhZKeAfx0DPudMCksul0KM7OpZyxh8Q7geZLe31gg6QjgF8CvxliuCVGRWxZmZkVUiz4xIjZJ+gPgvyXdCMwDvgl8LiI+Nl4FHE/VTB6zMDMroKOwkHQFcBNwY35/J7AM+F6+r3dHxHnjW8TxU6nI032YmRXQacviRuAI4C3A3sAm4FagBnwHuEtSX0RsHc9Cjhe3LMzMihlxzELSvMbPEXFGRBwfEQuABcAbgUuBK4EXAz8HnpS0crQFkHS8pDslrZJ0xjDbHCPpJkkrJV092n23yiRfZ2FmVsBoWhZrJf1PRPxe88KIeBj4QX4DQNIMUsvj8NEcXFIF+DLwCmA1cJ2kyyLi9qZt5gBfAY6PiPsl7TWafbfjloWZWTGj7YaaL2kPUhBkwKqIuK91o4jYDPxPfhuNo/J93QMg6XzgROD2pm3eBFwcEffnx1g7yn1vx2MWZmbFjPbU2X2BB0ndTVcAv5J0t6S/kNQ7huMvBB5oerw6X9bsIGCupKskXS/pLe12JGmZpBWSVqxbt67twapZ5paFmVkBow2LHqAO/Ai4mHQtxRLg08ANY5j6Q22Wtb6bV4HnAa8GjgM+Kumg7Z4UsTwilkbE0vnz57c9WCbPDWVmVsRou6EeAo6OiNWNBfnYwenAqcAVkp4XEZs6PP5qYHHT40XAmjbbrI+IjcBGSdcAzwHu6vBYecvCF+WZmXVqtC2Lf28OCkhjBxFxGnAScDDw/rbP3LHrgAMlLcm7s04CLmvZ5lLgRZKqkmYCRwN3FDiWp/swMytoNGHxFDDsdRMRcSHwn8AfdXrwiBgE3kcaB7kD+E5ErJR0iqRT8m3uIJ1xdQup++vsiLit02MBnkjQzKyg0XRDrQJeSepyGs51pO6ojkXE5cDlLcvOann8GeAzRfbfrOJTZ83MChlNy+K7wOGSPrWDbRaz/cD0pFPNRD0mfTHNzCad0YTFZ0mDyadLulrS6/OL7wCQdDKpC+rmCSrjuKlkYrDmsDAz69SI3VARsVHSi4HzgJcBLwTqktYCuwG75pt+esJKOU4qmegf9JiFmVmnRnU2VESsi4iXk65z+DfgftJEgjNJs8++ISL+Y6IKOV48ZmFmVkxHs85GxJWkq7iRpIipNQDgMQszs2IKf1PeVAsKgEqWeczCzKyAsXyt6pRTyTzdh5lZEaUKi2qWUZt6DSIzs64rVVikK7gdFmZmnSpdWHgiQTOzzpUuLGoe4DYz61ipwqKayWMWZmYFlCosPGZhZlZM6cLCV3CbmXWudGHhMQszs86VKiw8ZmFmVkypwiJzN5SZWSGlCouqB7jNzAopVVhUsoxaPZiCcyCamXVVqcKimgkANy7MzDpTqrCo5GHhKT/MzDpTyrDwuIWZWWdKFRZVh4WZWSGlCgu3LMzMiillWPhaCzOzzpQyLNyyMDPrTKnCwmMWZmbFdD0sJB0v6U5JqySdsYPtfkdSTdIbix4rk8PCzKyIroaFpArwZeAE4FDgZEmHDrPdp4ErxnK8asVjFmZmRXS7ZXEUsCoi7omIfuB84MQ2270fuAhYO5aDVbJUXbcszMw60+2wWAg80PR4db5siKSFwO8DZ+1oR5KWSVohacW6devabuMxCzOzYrodFmqzrPWd/PPA6RFR29GOImJ5RCyNiKXz589vu01jzMLTfZiZdaba5eOvBhY3PV4ErGnZZilwvtIb/TzgVZIGI+K7nR7MLQszs2K6HRbXAQdKWgL8BjgJeFPzBhGxpPGzpHOB7xUJCoBKxWFhZlZEV8MiIgYlvY90llMFOCciVko6JV+/w3GKTrllYWZWTLdbFkTE5cDlLcvahkREvG0sx6rIp86amRXR7QHuncrTfZiZFVOqsKh6zMLMrJBShYWn+zAzK6ZUYVHNr+D2mIWZWWdKFRYeszAzK6ZUYeExCzOzYkoVFp7uw8ysmFKFhS/KMzMrplRh4TELM7NiHBZmZjaiUoVFoxvKp86amXWmVGHhloWZWTGlCouqv1bVzKyQUoVFnhUOCzOzDpUqLDzdh5lZMaUKi8aYRT0cFmZmnShVWAydDVVzWJiZdaJUYZENnQ3l6T7MzDpRqrCA1LrwmIWZWWdKFxaVTNQ8ZmFm1pFyhoXHLMzMOlLKsHA3lJlZZ0oXFtVMvijPzKxDpQuLSpZ5zMLMrEMlDAs8ZmFm1qHShUU1yzxmYWbWoa6HhaTjJd0paZWkM9qs/2NJt+S3n0l6zliOV8nk6T7MzDrU1bCQVAG+DJwAHAqcLOnQls3uBV4SEYcDnwSWj+WYvijPzKxz3W5ZHAWsioh7IqIfOB84sXmDiPhZRDyWP7wWWDSWA2aZPN2HmVmHuh0WC4EHmh6vzpcN553A99utkLRM0gpJK9atWzfsDqqZPJGgmVmHuh0WarOs7Tu5pJeSwuL0dusjYnlELI2IpfPnzx/2gB6zMDPrXLXLx18NLG56vAhY07qRpMOBs4ETIuKRsRzQV3CbmXWu2y2L64ADJS2R1AucBFzWvIGkfYGLgT+JiLvGesCKr+A2M+tYV1sWETEo6X3AFUAFOCciVko6JV9/FvAxYE/gK5IABiNiadFjeszCzKxz3e6GIiIuBy5vWXZW08/vAt41XsfzFOVmZp3rdjfUTuduKDOzzpUwLDzdh5lZp0oXFjN7KjyxeaDbxTAzm1JKFxaHLdyde9dvZMMmB4aZ2WiVLiyOWDwXgJtXP97dgpiZTSGlC4vDF89Gghvvf7zbRTEzmzJKFxa779LDAfNncdMDj428sZmZASUMC4Dn7juHmx54nPD1FmZmo1LSsJjLY5sG+PUjm7pdFDOzKaGUYXHE4jkA3OiuKDOzUSllWBy0927M7K1wkwe5zcxGpZRhUcnE4Ytmc9MDj3e7KGZmU0IpwwLSuMXtDz7BloFat4tiZjbplTYsjlg8h4FasHLNE90uipnZpFfasDhy37lkgguuu7/bRTEzm/RKGxbzd+tj2Yv35zsrVvOTO9d2uzhmZpNaacMC4M9fcSAH7T2LMy66xRMLmpntQKnDoq9a4bN/eATrn+rnY5fdRt3fc2Fm1lapwwLgtxfN5gMvO5BLb1rDu76xgsc29ne7SGZmk07pwwLgA8cewCdPfDb/dfd6XvXFn3LBdfdzx4NPMFCrd7toZmaTQrXbBZgMJPEnL9iPIxbP5f3n3cDpF90KQG8145B9duPZz5jNUUvmcsJhC9ilp9Ll0pqZ7XyajjOvLl26NFasWFHoubV6cO/6jaxcs4GVa55g5ZoN3PabJ9iweYDdd6nyB89bxCsP3YcjFs9hRq+Dw8ymD0nXR8TStuscFiOLCK6951G+/Yv7+cFtDzJQC6qZOHif3dhzVh9zZvSwYM4uHLTXbhy49yz22LWX3fp6mLVLlUqmcSuHmdlE2lFYuBtqFCTxgv335AX778mGzYdxw68f47r7HmXlmid4fFM/v35kIz+4bQv9LWMcvZWM/feaxcF7z2LJvFksmjuDBXN2Ybe+Hmb0Vth9RpU9ZvZSrXjoyMwmN4dFh2bP6OGlh+zFSw/Z62nLB2t17ntkE6vWPsUTmwd4cusga5/Ywl0PP8kv7n2US29eQ7tGnARzZvSw2y49zOytMHtGD/vuMZNn7jmTubv20lPJ6KtmzJvVx9679zFnZlrWW8nYpSdDcsvFzCaew2KcVCsZB+w1iwP2mtV2/dbBGmse38KDGzazcWuNTf2DbNg8wCNP9fPIxq1s3Fpj49ZBHtvUz9V3rWPtk1tHPKYEM3sq7NpXpa8nBcjcmb08Y84MFszeJS2vprDp66nQV83oqaRbb1VUs20/91Yq9FYzeirKl2XM6K0ws6filo+ZOSx2lr5qhSXzdmXJvF1Htf3m/hpPbhmgv1Zny0CNdU/2s/bJLWzYPMBALRio1dnUX+OpLYNs6h+kf7DO1sE6j27s5+bVj7ftFite9oxZfVV27atSzYQEmUSm9HO1IvqqFXorGT3VjN7KtnWZRG8eWL3VjN5KhZ6qqOTPz8RQkPVWs6H99lSUb5+RGk9pWV81hVq1InqyjCxLU85XlEKumoddo71VyURPNaMnS+tS+d0aM+tU18NC0vHAF4AKcHZE/EPLeuXrXwVsAt4WETfs9ILuZDN6K0872+qAvXaw8TAGaylAtgzU6K/V2TpQZ6BWHwqbwXqd/sGgv1anfzDd0rI6/bU6m/trPLV1MIXS1kE2bR1ksB5EpLPGgvTzYD3YOlijf7DO5s3pvh5pXT3SsbbmYTYwWGdrrU69HgRpPztb1gi7LIVVJf+5kqUwSfdZCqF8m2qWQqt1m55qHlKZgHx/TfvKmrZvPCeTqGTkx28EZxoba2zXU9lWhkY51bT/nqEQzZ+X7yPLgzPLyI+joQBuPFd6ejmbg78Ro1Lzh4Knv16NckjbXh81PV9Nz3naBwtSa9hhPTV1NSwkVYAvA68AVgPXSbosIm5v2uwE4MD8djTw1fzeRlCtZFQrGbv2df0zwbAiIm89pSCrR1CvMxQwA7U6ERAEtXoMhd9gPajVgsF6UI90X6vXGRgMBur1fN8prBrhV68HA7W0n3oEtUag1bftp1YPBmtp3WCtTm1ofZ16/nMt324gD+CntgwyUEvhF7GtPIP5sWr5c+r5c+p52KbjRx68tB3Tmo5aQynT01uqjWBpbFvNw7jRKhwKwkZAaVuINXIoaw27LO1zWyg2ntvm2E2h1xxwjec3ArySb7+tYs1Bum1fjQ8RjQ8VfT0Zu1Qr9PVkQ+V4+n63fdBoDvhK40NG07aNDyK9eddxbzXjgPmzJqTruNvvIkcBqyLiHgBJ5wMnAs1hcSLwjUjn+F4raY6kBRHx4M4vro03KXUt9VV9zUojOAYbt1q9KVS2hV8jqLYFTGwLoEbLL5pCsb6tlZdueeg1hViQ1sO24zR+buxnW2uR/OfGMRgKykaw15vKG41jNrU2G/tubFtvlCPff6pVo+VaZzD/YNCuHkH6gNHYvvG6RPN2zWWrN5WxDjXqQ4Fdj6fXo/l1b5S58cGh0boeqkts+z0OHTP/3TY+KAzmH3gmskV9y8dfye7TMCwWAg80PV7N9q2GdtssBJ4WFpKWAcvyh09JujP/eR6wfrwKPAm4PpPfdKuT6zP5DdVp9qfHtJ9nDrei22HRrvOyNXJHsw0RsRxYvt0BpBXDXWQyFbk+k990q5PrM/ntjDp1+5zI1cDipseLgDUFtjEzswnU7bC4DjhQ0hJJvcBJwGUt21wGvEXJ84ENHq8wM9u5utoNFRGDkt4HXEE6dfaciFgp6ZR8/VnA5aTTZleRTp19e4eH2a5raopzfSa/6VYn12fym/A6TcuJBM3MbHx1uxvKzMymAIeFmZmNaNqGhaTjJd0paZWkM7pdniIkLZb0E0l3SFop6dR8+R6SrpR0d34/t9tl7YSkiqQbJX0vfzxl65NfJHqhpF/mv6cXTPH6/Hn+t3abpPMk7TLV6iPpHElrJd3WtGzYOkj6cP4+caek47pT6uENU5/P5H9zt0i6RNKcpnUTUp9pGRZN04icABwKnCzp0O6WqpBB4LSIeBbwfOC9eT3OAH4UEQcCP8ofTyWnAnc0PZ7K9fkC8IOIOAR4DqleU7I+khYCHwCWRsRhpJNOTmLq1edc4PiWZW3rkP8/nQQ8O3/OV/L3j8nkXLavz5XAYRFxOHAX8GGY2PpMy7CgaRqRiOgHGtOITCkR8WBj0sSIeJL0RrSQVJd/zTf7V+D1XSlgAZIWAa8Gzm5aPCXrI2l34MXA1wAioj8iHmeK1idXBWZIqgIzSdc0Tan6RMQ1wKMti4erw4nA+RGxNSLuJZ11edTOKOdotatPRPwwIgbzh9eSrj+DCazPdA2L4aYImbIk7Qc8F/g5sHfjWpP8vsCctF3zeeCvgOb506dqfX4LWAd8Pe9WO1vSrkzR+kTEb4B/BO4nTaezISJ+yBStT4vh6jAd3iveAXw//3nC6jNdw2JUU4RMFZJmARcBH4yIJ7pdnqIkvQZYGxHXd7ss46QKHAl8NSKeC2xk8nfRDCvvxz8RWAI8A9hV0pu7W6oJN6XfKyR9hNRd/a3GojabjUt9pmtYTJspQiT1kILiWxFxcb74YUkL8vULgLXdKl+Hfg94naT7SF2DL5P0b0zd+qwGVkfEz/PHF5LCY6rW5+XAvRGxLiIGgIuB32Xq1qfZcHWYsu8Vkt4KvAb449h2wdyE1We6hsVophGZ9CSJ1B9+R0T8U9Oqy4C35j+/Fbh0Z5etiIj4cEQsioj9SL+TH0fEm5m69XkIeEDSwfmiY0nT60/J+pC6n54vaWb+t3csaZxsqtan2XB1uAw4SVKfpCWk7835RRfK1xGlL407HXhdRGxqWjVx9Yl8vvnpdiNNEXIX8CvgI90uT8E6vJDUhLwFuCm/vQrYk3RGx935/R7dLmuBuh0DfC//ecrWBzgCWJH/jr4LzJ3i9fkE8EvgNuCbQN9Uqw9wHmnMZYD0SfudO6oD8JH8feJO4IRul3+U9VlFGptovC+cNdH18XQfZmY2ounaDWVmZuPIYWFmZiNyWJiZ2YgcFmZmNiKHhZmZjchhYTbBJH1IUkg6udtlMSvKYWE28Y7M76fLNCdWQr7OwmyCSbqdNO3C7PA/nE1RblmYTaB8FtqDgRscFDaVOSzMJtYRpP+zp3VBSZor6dJ8LOPz+YSRZpNWtdsFMJvmnpffD4WFpKOBC4A9gD+MiAu7UTCzTrhlYTaxnja4LelDwE+BJ0hfX+qgsCnBLQuziXUk8CSwXtKlwOtIX+v5nojY3NWSmXXAZ0OZTRBJu5CCYi1peum9gQ9ExL90tWBmBbgbymziPIfUeu8Dnglc6KCwqcphYTZxGoPbpwHfA94s6YPdK45ZcQ4Ls4nTGNxeQfoa2euBz0p6Q/eKZFaMxyzMJoikG4BDgN0ioiZpH+BaYC/g2Ij4n64W0KwDblmYTQBJvcBhwK0RUQOIiIdI36G+FbhM0gFdLKJZRxwWZhPjt4Ee4MbmhRFxO/AGYDbwfUnzulA2s465G8rMzEbkloWZmY3IYWFmZiNyWJiZ2YgcFmZmNiKHhZmZjchhYWZmI3JYmJnZiBwWZmY2IoeFmZmN6H8B6qLaUkBi3iYAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize=(6,4))\n", "plt.plot(range(1,1+len(s)),s)\n", "plt.xlabel(r'$k$',size=20)\n", "plt.ylabel(r'$\\sigma_k$',size=20)\n", "plt.ylim(ymin = 0)\n", "plt.xlim(xmin = -1)\n", "plt.title(r'Singular Values of $A$',size=20);" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This classic, sharp-elbow tells us that a few singular values are very large, and most singular values are quite small." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Zooming in for just small $k$ values, we can see that the elbow is around 4 - 6 singular values:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEmCAYAAACj7q2aAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAArJUlEQVR4nO3deZxkZX3v8c+3qpdZumftZodhEVAkgswIExUkuAGJ4BIT0VzjglyNIqg30VxvjGbxRonReNUgIqJGBQUVNCgSDaiJY5iBAYbVcWBgGIZZmBlmn+6u3/3jOdVTU1R3V52unuqe/r5fr3pV1alznvNUdXV963nOeZ5SRGBmZpZHodUVMDOzicshYmZmuTlEzMwsN4eImZnl5hAxM7PcHCJmZpabQ8TMzHJziJiZWW4OEatJ0pGSQtLVra5LPSZaffOaLM+zmqT3SrpP0o7s+V/a6jpZ4hCZRCQVJb1D0m2SnpLUJ2mtpLslXSnpvFbXcSKS9M3sg+1ddax7S7buq/dB1fYLkt4A/DOwE/gM8DFgUYNldElalb323296JSextlZXwPYNSUXgh8DZwCbg34BVwBzgGOCNwLOBG7NNHgeeA2ze13WdgK4ALgDeAfzLUCtJOhJ4KfAE6W9h9fmD8nVErM5ZxkeBQ4EATmlGpSxxiEweF5AC5C7gJRGxVzhImgacVr4fEX3AA/u0hhNURNwq6SHg+ZJOiYg7hlj17YCAr0RE/76r4YR3CEDeAJF0AvBe4MfAwcBJknoiYn3zqjh5uTtr8nhhdn11dYAARMT2iPiP8v2h+t4rl2e3r5G0XtJOSYsl/UF12Uouyfq0d0p6XNLnJM2U9IikR6rWPzPbx0drPZFa2wxF0lskXS9pRdaf/rSk/5T0J0OsX/n8jpN0bdblV5J05jC7+lJ2/Y4hyi0CbyV9E75yNHUcovxcr5mk0yRdJ2mNpN2SHpP0RUmHDFHOeZJ+KukJSbskrc66R/+sgbr+kaSfS9qcPd97JP2lpM6q9T4qKYDfy+5H+VLvvjKfI4X3+4G7s2XPb7AMG4JbIpPHhuz6uCaVNw/4b2AF8HVSt9gfAzdIelllIAGfB94FrCZ1/ewGzgNOBdqBvibVqZZ/Ae4Dfk7qRpoLnAt8XdLxEfFXQ2x3DPBr4CHgG8BU4Olh9vNV4O+BN0r6QERsr3r8HFJ3yi0R8XCT6jgqkt5KCr9dpG7Mx4BjgQuBV0laGBGPVqx/EfBFYA3wA2A9cADwPFJAfqGOfX4c+Mts228CW0mvzceBV0p6edYKBrg1u34L6f32sRzP8Y2kEPpsRNwv6Z7soVOAWxotz2qICF8mwYX0zWs3UCJ96L8WmDfM+keSvjVfPcTyAP666rFXZstvqlh2erbsQWBWxfIO0odmAI9UlXNmtvyjQ9TtkRrbDFXfY2ps3wH8lBRehw7z/D7e4Gt8bbbdW2o8dkP22B/WeKzuOg7zPBt6zUhfJnYDy2u8BmcBA8D3qpYvIQXOATXK76nj9fndrI6PAgdVLG8jhVIA/7vGdremj6qG3/PdpGN764HZVe/Ra0fz/+TLnou7syaJiLgT+BPgyez6euARSRskfU/SqxosciXwd1X7uJn0AXFqxeI/za7/PiI2Vay7m/SNdExFxG9rLNtNah21kQ501/IkjX/zvSK7vrByoaSDSS2LJ0lh0qw6jsa7SK3ASyLi8ap9/4zUMnmVpO6q7fqp0XKM+o4vvC27/ruIWFOxbT/wAdIXnAtrbZjTx0jHU/46IjZmy8otEXdnNYm7syaRiPi2pO+RmvcvJv0jvRh4NfBqSV8jfYuup895aUQM1Fj+GOkbZ1n5n/WXNdZdRPpQGjOSjgA+SPogPoLULVXp0CE2vSsidjW4u58BvwVeJOk5EXF/tvytpP+1q2NPV00z6jga5b/RSyS9oMbjBwBFUotlSbbsG8CngHslXQvcBvxnRKyrc5/ls6J+Vv1ARDwkaRVwlKRZlV848pD0XOBi4F7g8or9rJa0AXiWpBkRMVwXpdXBITLJZB9iP8ku5QO+rwOuAt4MfA/4fh1FbRpieT97n7AxM7t+skZdBrJ/6DEh6WjScZvZwC9Iz3kzqavmSFIrqXOIzdcMsXxIERGSrgT+L+kb9QckifQN/BkH1JtQx9GYm13/+QjrdZVvRMQ/SVoP/BnpbKdLgZB0G/DnEbF4hLLK74Unhnj8CVKIzmTo91e9yq2499X4snMPqfvvZFKXqo2Cu7MmuYgYiIhvA5/OFp3V5F2Uv+kdWP1AFmBzq5eTujVg6C85M4dYXu39Wflvj4gzI+K9EfFXEfFR4OYRts37u9FfIXX3vFlSB+n1PAb4j4hY3uQ6Vmr0NSufoTczIjTM5bbKjSLiaxGxMKvz7wNfBs4AbpZ0wAh1LO/zoCEeP7hqvVyys9pekt39SeVZXdmZXWdmj3m8SBO4JWJlW7JrNbncO9nTbbai6rGF1H4PlvuvD69+QNKzgFnU90HzrOz6+hqPvaTGslGLiCcl3Uhq3b0aeE320BVDbNKsOjb6mi0C5pNOfPi3BvYDQNbddBNwk6QCqbV1OrWfR9mdpA/uM0ndftV1PAx4eDRdWZJmAJeRgvzr1P4ycCSp69DHRZrALZFJQtIFkl6e/cNXP3YQe8Y3NLt5/7Xs+sOSBr8NZ9/SPz7ENg+QWjDnV367lTQV+GwD+34kuz6zcqGkV9LcA7jVymNGPkAKkfWkbsJaHsmuz6xcmKOOjb5mnyN90H5a0jNO+5bUIen0qmVnS6oV+uX9VZ/WXO2q7Pr/SOqtKLcI/CPp8+jLI5Qxkr8htXQ+HRFvj4gLqy/Ah7J13RJpArdEJo/TgEuANZJ+CZTHKhxF6paYSjpz6Lpm7jQibpN0BXAR6YDs9aQPr1eRvhmvZk9XTHmbPkn/DPwVcGd2MkAb8PJs/XpHLn+BdFD7O9l+HwdOJI3c/zZpXMtY+Anp9S2fpfa57GyrMatjo69ZRDwg6W2kD/Z7Jf2YNCamnXRc4nRgHWkqnLJrgJ3Z++cRUqv1dOAFpIPv/z5CHf9L0ieBvwCWSboO2EYaJ3Ii6eSLy+p5vrVI+h3g3aSTO/5mmFWXkY45PUfS1IjYkXefhseJTJYLqZvj3aRvxA+SvrXuJh3MvIl02m+hYv0jGX6cyNVD7OdWqs7pJ33DfB/p2/Iu0gfa50n99FtIZ3pVlyPSN8bfZvV8FPgkMI3Gxom8kHQ20MZsX78kdTOdSY1xFSM9vwZe7w+zZ7zJ8SOsW3cdh6tfo69Zts3vAFeTTtneBTxF+pD9InBW1brvzN4/K0itjqdIXVR/AXQ38Nq8IXuOW0iTKt6bvV5T6n1PDbFeedzRa+pY9/5s3dNa/b850S/KXlCzfU7SsaRvv9dExAWtro+ZNc7HRGzMSTqo+liM0oSPn8nuDnW8wMzGuZYeE5F0FWma57URcWKNx0X6HYFzSc3nt8TQM6Ta+HUpcIGkW0ndZweRzo45DPgR8J2W1czMRqXVLZGrSQcQh3IOaUK4Y0kHZof8rQYb124hTTD4CtKxkdeTzlj6C+D8cJ+q2YTV0pZIRPxc6Yd6hnI+8LXsQ2aRpFmSDo6IoUa82jgUET8lTSZoZvuZ8X6K76Gk0/XKVmXLnhEi2TTVFwFMnz59/rOf/ezqVczMbBhLlixZHxG9I6+5x3gPkVqjp2t2fUTEFWSjghcsWBCLF480jY+ZmVWStLLRbVp9TGQkq9h7GofDqH+gmZmZjbHxHiI3kiayk6SFwGYfDzEzGz9afYrvt0ijcnuy3xL4a9K0C0TE5aSR1OeSfn1tO2l6iFGJCH5492ruW72Fl51wIPPnzR5tkWZmk1arz84adpRydlbWu5u5zztWbuTiby1FwFf+62G+ceFCB4mZWU7jvTur6RY9/BSQjs739ZdYtGLMfhPJzGy/N+lCZOHRc1F2zld7W4GFR9f6TSQzM6vHpAuR+fNmM/+I2RzQ3emuLDOzUZp0IQLwrAO6CHCAmJmN0qQMkd7uTjZs3cVAyVM2mZmNxqQNkVLAxu1D/dicmZnVY3KGSFcnAOu27GpxTczMJrbJGSLdDhEzs2ZwiJiZWW6TMkR6yt1ZWx0iZmajMSlDZHpnG9M6im6JmJmN0qQMEUhdWg4RM7PRmbwh0uUQMTMbrckbIt2drPcxETOzUZnUIeID62ZmozN5Q6Srk03b+9jVP9DqqpiZTViTN0SysSIbtnrqEzOzvCZtiPR46hMzs1GbtCHiUetmZqPnEPHBdTOz3CZtiMzt6gBgvVsiZma5TdoQ6WwrMmtau1siZmajMGlDBDxq3cxstCZ3iHj+LDOzUZnUIdLT5VHrZmajMalDxC0RM7PRmfQhsn33ANt29be6KmZmE9LkDhGPWjczG5XJHSLZgENPCW9mlo9DBLdEzMzycojgqU/MzPKa1CEye1oHxYLcEjEzy2lSh0ixIOZM73CImJnlNKlDBDz1iZnZaDhE/FvrZma5tTxEJJ0t6UFJyyV9qMbjMyX9QNJdku6V9NZm7t+j1s3M8mtpiEgqAp8HzgFOAC6QdELVau8G7ouIk4AzgU9J6mhWHXq7O1m/dRcR0awizcwmjVa3RE4FlkfEiojYDVwDnF+1TgDdkgR0AU8BTZunpLerk76BYPOOvmYVaWY2abQ6RA4FHqu4vypbVulzwHOA1cA9wCURUaouSNJFkhZLWrxu3bq6K+ABh2Zm+bU6RFRjWXW/0iuBpcAhwMnA5yTNeMZGEVdExIKIWNDb21t3BRwiZmb5tTpEVgGHV9w/jNTiqPRW4LuRLAceBp7drAr0dHnUuplZXq0OkduBYyUdlR0sfwNwY9U6jwIvBZB0IHA8sKJZFXBLxMwsv7ZW7jwi+iW9B7gZKAJXRcS9kt6ZPX458LfA1ZLuIXV/fTAi1jerDjOmtNHRVnCImJnl0NIQAYiIm4CbqpZdXnF7NfCKsdq/JI9aNzPLqdXdWeOCR62bmeXjEMGj1s3M8nKIsGfUupmZNcYhQhq1vmHbbvoHnjGG0czMhuEQAXq6O4mAp7btbnVVzMwmFIcIqSUCsNbHRczMGuIQwb+1bmaWl0MEOCALkfVuiZiZNcQhgufPMjPLyyECTO0o0t3Z5rEiZmYNcohkPODQzKxxDpFMj+fPMjNrmEMk4/mzzMwa5xDJuDvLzKxxDpFMb3cnW3b2s7NvoNVVMTObMBwimfKodU/EaGZWP4dIxj+Ta2bWOIdIxiFiZtY4h0jG82eZmTXOIZKZM70DcEvEzKwRDpFMe7HAnOkdDhEzswY4RCr0etS6mVlDHCIVPGrdzKwxDpEKvd2dHidiZtYAh0iF8tQnEdHqqpiZTQgOkQq9XZ3s7CuxdVd/q6tiZjYhOEQqeMChmVljHCIVBn8m1yFiZlYXh0gFj1o3M2uMQ6SCu7PMzBrjEKkwa2o7bQU5RMzM6uQQqVAoiJ4ujxUxM6uXQ6SKfybXzKx+DpEqnvrEzKx+LQ8RSWdLelDSckkfGmKdMyUtlXSvpNvGsj6ehNHMrH5trdy5pCLweeDlwCrgdkk3RsR9FevMAr4AnB0Rj0o6YCzr1NPdwfqtuymVgkJBY7krM7MJr9UtkVOB5RGxIiJ2A9cA51et80bguxHxKEBErB3LCvV2dTJQCjZu3z2WuzEz2y+0OkQOBR6ruL8qW1bpOGC2pFslLZH05loFSbpI0mJJi9etW5e7Qr3dUwAPODQzq0erQ6RWf1H1FLptwHzg94FXAn8l6bhnbBRxRUQsiIgFvb29uSvkAYdmZvVr6TERUsvj8Ir7hwGra6yzPiK2Adsk/Rw4CXhoLCpUDhGPFTEzG1mrWyK3A8dKOkpSB/AG4MaqdW4ATpfUJmkacBpw/1hVyC0RM7P6tbQlEhH9kt4D3AwUgasi4l5J78wevzwi7pf0Y+BuoARcGRHLxqpO0zuKTG0vOkTMzOrQ6u4sIuIm4KaqZZdX3b8MuGxf1EcSPd0dDhEzszq0ujtrXOrt8qh1M7N6OERq8PxZZmb1cYjU4BAxM6uPQ6SG3q4pbNzeR99AqdVVMTMb1xwiNZRP892w1VOfmJkNxyFSg8eKmJnVxyFSw2CIbN3Z4pqYmY1vDpEaero6ALdEzMxGkjtEJB3RzIqMJz1d7s4yM6vHaFoi35XUWesBSVNGUW7LTWkvMmNKm0PEzGwEowmR5cAV1QslHQL8YhTljgv+rXUzs5GNJkTeBsyXdHF5gaSTgf8GfjvKerVcb3cn67f4FF8zs+HknoAxIrZLeh3wn5LuBHqArwOfjoiPNKuCrdLbPYVlj29udTXMzMa1hkJE0s3AUuDO7PpB4CLgh1lZ74iIbzW3iq3R2+WpT8zMRtJoS+RO4GTgzcCBwHbgHmAA+DbwkKTOiJjwn7693Z1s3dXP9t39TOto+Yz5Zmbj0oifjpJ6ImI9QER8qGL5gcDzSaFyMnAG6ThJSdJvIuK5Y1HhfaU8VmT9lt0cMdchYmZWSz2fjmsl/SoiXlS5MCKeBH6cXQCQNJUUKM9rZiVboXLU+hFzp7W4NmZm41O9X7F7Jc0hBUQBWB4Rj1SvFBE7gF9llwnN82eZmY2s3hA5Aniicn1JK4AvAp+NiP3uXFiHiJnZyOodJ9IOlICfAt8ljQU5CvgEcMf+OAXK3OmdFATrPB28mdmQ6m2JrAFOi4hV5QWSDgA+CFwC3CxpfkRsH4M6tkSxIOZM92m+ZmbDqbcl8p3KAAGIiLUR8QHgDcDxwMU1t5zA/DO5ZmbDqydEtgJDfpJGxHXAvwN/3KxKjReeP8vMbHj1hMhy4BUjrHM7cNzoqzO+9HR1sN4tETOzIdUTIt8Hnifp48OsczgQTanROFLuzorY756amVlT1BMinwIeAj4o6TZJr84GFQIg6QJSV9ZdY1THlunt6mT3QImnd/S3uipmZuPSiGdnRcQ2SWcA3wLOAl5MmtpkLdANTM9W/cSY1bJFKketz5zW3uLamJmNP3WdnRUR6yLiZcArgX8FHiVNwDiNNJvvayPiB2NVyVbZM+DQY0XMzGppaGbBiLgFuAVAkmI/P1hwwGBLxAfXzcxqyf3Lhvt7gAD0dqWfivdYETOz2kbz87j7vRlT2+goFhwiZmZDcIgMQxI9XR0OETOzIThERuBR62ZmQ3OIjMDzZ5mZDc0hMoLe7k7WuyViZlZTy0NE0tmSHpS0XNKHhlnvBZIGJP3hvqxfb1cnG7buYqC035+MZmbWsJaGiKQi8HngHOAE4AJJJwyx3ieAm/dtDVNLpBTw1DYPODQzq9bqlsippN9rX5H9xO41wPk11rsYuB5Yuy8rB/6ZXDOz4bQ6RA4FHqu4vypbNkjSocBrgMuHK0jSRZIWS1q8bt26plWwp8uj1s3MhtLqEFGNZdUHHz4DfDAiBoYrKCKuiIgFEbGgt7e3WfVzS8TMbBgNzZ01BlaRfouk7DBgddU6C4BrJAH0AOdK6o+I7++LCg62RBwiZmbP0OoQuR04VtJRwOOk32t/Y+UKEXFU+bakq4Ef7qsAAZje2cb0jqJDxMyshpaGSET0S3oP6ayrInBVRNwr6Z3Z48MeB9lXPFbEzKy2VrdEiIibgJuqltUMj4h4y76oUzWPWjczq63VB9YnBM+fZWZWm0OkDr1dbomYmdXiEKlDT1cnm3f0sat/2LOMzcwmHYdIHcpjRdZv9dQnZmaVHCJ18IBDM7PaHCJ1cIiYmdXmEKnDnu4sh4iZWSWHSB3mTndLxMysFodIHTraCsye1u4QMTOr4hCpk0etm5k9k0OkTj1dHrVuZlbNIVInt0TMzJ7JIVKn8tQnEdW/mWVmNnk5ROrU293Jjr4Btu321CdmZmUOkToNjhVxl5aZ2SCHSJ0GR6374LqZ2SCHSJ089YmZ2TM5ROrU2+UQMTOr5hCp0+xpHRQLcoiYmVVwiNSpUBBzp3c4RMzMKjhEGuDfWjcz25tDpAG93Z2eDt7MrIJDpAHlUetmZpY4RBpQbomUSp76xMwMHCIN6e3upG8g2Lyjr9VVMTMbFxwiDejp8qh1M7NKDpEGeNS6mdneHCINcIiYme3NIdIAh4iZ2d4cIg3o7myjs63gsSJmZhmHSAMk+WdyzcwqOEQa5KlPzMz2cIg0yKPWzcz2cIg0qMfdWWZmg1oeIpLOlvSgpOWSPlTj8TdJuju7/Jekk1pRz7Lerk6e2r6bvoFSK6thZjYutDREJBWBzwPnACcAF0g6oWq1h4GXRMTzgL8Frti3tdxbb3cnEfDUtt2trIaZ2bjQ6pbIqcDyiFgREbuBa4DzK1eIiP+KiI3Z3UXAYfu4jnvxWBEzsz1aHSKHAo9V3F+VLRvK24Ef1XpA0kWSFktavG7duiZWcW+DIeIztMzMWh4iqrGs5jzrkn6PFCIfrPV4RFwREQsiYkFvb28Tq7i33i63RMzMytpavP9VwOEV9w8DVlevJOl5wJXAORGxYR/VrSZ3Z5mZ7dHqlsjtwLGSjpLUAbwBuLFyBUlHAN8F/kdEPNSCOu5lSnuR7iltDhEzM1rcEomIfknvAW4GisBVEXGvpHdmj18OfASYC3xBEkB/RCxoVZ0hG3DoYyJmZi3vziIibgJuqlp2ecXtC4EL93W9huMBh2ZmSau7syak3u5O1jtEzMwcInl4/iwzs8QhkkNvdydbdvWzs2+g1VUxM2sph0gOPs3XzCxxiOTgUetmZolDJAePWjczSxwiObg7y8wscYjkMGd6B5JDxMzMIZJDe7FAd2cbtz64liUrN468gZnZfsohksOSlRvZsrOfu1Zt5o1fWuQgMbNJyyGSw6IVG1A2if2u/hJX/Py3RNScwd7MbL/mEMlh4dFz6WgrUBQUBDff+yR/9o072LTdP5lrZpNLyydgnIjmz5vNNy5cyKIVGzjtqDksWbmRy25+kKWPbeIzf3wypx09t9VVNDPbJ7Q/dsMsWLAgFi9evE/3efeqTVxyzVJWbtjGu3/vWbz3pcfSXnRDz8wmDklLGv2pDX/KNcnzDpvFDy9+Ma875TD+38+W80df/BWPbtje6mqZmY0ph0gTTe9s47LXn8T/u+D5LF+7lXM/+wtuWPp4q6tlZjZmHCJj4FUnHcKPLjmdZx/UzSXXLOX91y5ly86+VlfLzKzpHCJj5LDZ07jmooVc+rJj+f7Sx/n9z/6SOx/1eBIz2784RMZQW7HApS87jm//z99loBS8/vJf8fn/WM5Aaf87mcHMJieHyD6w4Mg53HTJ6Zx94kFcdvODvOnKRTyxeUerq2VmNmo+xXcfigiuv+NxPnLDMtqLBf7nGUcRiIVHz2X+vNmtrp6ZTXJ5TvH1YMN9SBJ/OP8w5s+bzYVfvZ1P3vwQAO1FcdkfnsR5Jx1CoaAW19LMrH5uibTIZ3/6Gz59y0NUvvozp7Yzf95s5s+bzYJ5sznp8FlMaS+2rI5mNrm4JTKBvOhZPXzh1uX09ZdoKxa48PSj2LB1N4tXbuRnD6wFUgvluYfMZMG82Sw4cg4LjpxNT/arimZm44FbIi20ZOVGFq3Y8IxjIhu37WbJyo0sXrmRJSuf4q5Vm9ndXwLgyLnTmD8vBcqCebPZvKOPXz/8lI+rmNmo5WmJOEQmgF39Ayx7fDOLHykHy0ae2rb3jMHFgvjjFxzOqUfO4ZBZUzlk1hQOnDHF83eZWd0cIpn9LUSqRQQr1m/jsh8/yI/vXTPkegXBgTOmcMisqRw6a2p2PSULmXSZMaWNOx7dVLNFZGaTi4+JTBKSOKa3i3eccTS3PrSWvv4S7W0FrvrTF3DAjCms3rRj8PL4pp2s3rSDu1Zt4sfL1rB7oLRXWVPbi+zsGyBIofPCY3o4aOYUOtsKdLYV6WgrpNvtVfcHL0U62wp0tBV4eN027lvzNAvmzWb+vDl7rdtWZ4toqC4+Mxuf3BKZ4Br50C2VgvXbdrE6C5bVm3bwo2VPsGTlpsF1Zk9rZ1pHG7v6B9jVV2LXQGnweMxoFAsaDJvK8OlsL9BRTPd39g9w12ObKEVa/7WnHMrxB3YzY2o7M6e2M2NKOzOmtmXX7XR3ttU8JdpBZJaPu7MykylERmvJyo286cpFg62Zb1y48BkfvKVSsHugxO6BUgqW/gF295fYlV1295f4zpLHuG7xqsEWzctPOJAXHtMzGEa7B7L1+wb22m5Xf3a/r8SjT21jzdO76q67BF2de0JlxpQ2ShHcsXITAxEUC+J1pxzKUT1dTGkvMLW9yJTBS4Ep7cWKZenxzmzZPas2sWiUJyw0I8wciLYvuTvLGlb5K41DfVAVCmJKIX3YMqV2OcWC+MFdqwfD6KIzjmn4Q6860L7+9tM47sBunt7Rx9M7+3h6R3923cfmHX08vbP/GY89sn4bA9kXo4FS8O3Fqxp+TapN6yjSXixQLIiCRLEABZVvi4LSa1TM7ktiV18/D2/YTkQK1d85dCa93Z10tBVoL6bWV0dbxaXGstWbdnDFz1fQPxC0FcUHXnE8xx7QRUFCYnD/5dvpkro7C2KwvhI8uGYLy1Y/zQvmzeaUebP32ldbVud6/j7jIRQdrOOLWyLWNOPhA6I6iP717afx3ENmsqNvgJ3ZJd1OraLy7crHb3twHb9cvp4ABJwybxYnHjKTgQgGSunEhoFSMBBBqRSUgorbaZ0V67eyYt22wXodPHMKs6d1sHugRF/WRVi+NKvLMC8J2osFOmsFW3Z7V98AD6zZQikLxYVHzaV3RidthQLtRdFWVMXtAu2FdN1WFO2FdP3E5p185T8fHgzFPzvzGI7u7UISgmeEYPm6MjSXr93CP/zoQfpLJdoKBT563gmccMjMwQBPFygWCmlZUXs/li27+7FNLF65kYVHz2HBvDko218jmhVm4+H/pszdWRmHyOTW7CCq1cXX7DIigv5S7AmXgRJ3rNzIpdcupW8gDUj9+1efyPEHdVMKKFUEWClSeEV2e6C053Yp4N/uXs0NS1cPhuLLTziQ3z1m7l772uu6xu2H129j1cY9k4bOnt5Od2c7/QMl+kpB/0CJ/oGgr5Su+yfoTNWFilbdnhZeRZBlrbuBUonNO/qB9JoeOKOT7inttBULdJSDtCjai6ml114sZJfyY+n2U9t286NlayiVUvfr+ScfwsEzp6ZQA8gCNt3X4PLK0Fu9aQfX3v4YA1kZb3nhkRzZM522LDjbiqJYKOy5P3hdqHhcLH9yC28865TH+7esP6yR18whYlbDePl22KwyWhWKlcFyx8qNvPubd9A3UKK9WOCf/ugknnPwDEqR1g/K4chgKAZ7gjIiuP+JLfzND+4bbIl88JzjObqni/5S1jqsaCH2l/ZcD0QwMFBiIOAXD63jtofWDYbqC4/pYcGRs4ms3uXwHQzm0p66lcP57lWbWPrY5sHn+5yDuzm6p2uwpdk/kI4j9g+U6BsI+srLS0FffwrevoES23cN7HXGZDkkUl0a+hM1xRNXX8quNb9pqEnmEDGbBMZToLW6jFaE6mjKicFA3RO25YCNgDsf3chbv3L7YIv18v8xn+ceMoOBLMQHykFaCvpLpb3vZ49/f+kqrl/yOKu/eim7nphgISLpbOCfgSJwZUT8Q9Xjyh4/F9gOvCUi7hiuTIeImQ1nPITZeKpLOcwe/tLFsWvN8oamuWhpiEgqAg8BLwdWAbcDF0TEfRXrnAtcTAqR04B/jojThivXIWJm1pglKzdy2onHNnxMpNUTK50KLI+IFRGxG7gGOL9qnfOBr0WyCJgl6eB9XVEzs/3Z/HmzGdi6Yeh5lIbQ6nEihwKPVdxfRWptjLTOocATlStJugi4KLu7VdKDI+y7B1jfaIVdxoSpi8sYv3VxGeO3Lsc3ukGrQ6TWAZzq/rV61iEirgCuqHvH0uJGz4d2GROnLi5j/NbFZYzfukhq+DhAq7uzVgGHV9w/DFidYx0zM2uBVofI7cCxko6S1AG8Abixap0bgTcrWQhsjognqgsyM7N9r6XdWRHRL+k9wM2kU3yvioh7Jb0ze/xy4CbSmVnLSaf4vrVJu6+768tl7PNyXEbzy2hWOS6j+WU0q5yWlNHycSJmZjZxtbo7y8zMJjCHiJmZ5TbpQkTSVZLWSlo2ijIOl/Qfku6XdK+kS3KUMUXSf0u6KyvjY6OoT1HSnZJ+mHP7RyTdI2lpnlP8sjJmSbpO0gPZ6/K7DW5/fLb/8uVpSZfmqMf7stdzmaRvSRriF1BGLOeSrIx7661HrfeWpDmSbpH0m+x62Dkphijj9Vk9SpJGPIVziDIuy/42d0v6nqRZOcv526yMpZJ+IumQRsuoeOx/SQpJPTnq8VFJj1e8X87NUw9JF0t6MHt9P5mjHtdW1OERSUtzlHGypEXl/z9Jpw5XxjDlnCTpV9n/8g8kzRhm+5qfYY2+X4Hy5F6T5wKcAZwCLBtFGQcDp2S3u0lTt5zQYBkCurLb7cCvgYU56/N+4JvAD3Nu/wjQM8rX9avAhdntDmDWKMoqAmuAeQ1udyjwMDA1u/9t0lxrje7/RGAZMI108sm/A8fmeW8BnwQ+lN3+EPCJHGU8hzQI7FZgQc56vAJoy25/YqR6DFPOjIrb7wUub7SMbPnhpBNqVo703huiHh8F/lcDf9NaZfxe9rftzO4fkOe5VDz+KeAjOerxE+Cc7Pa5wK05n8/twEuy228D/naY7Wt+hjX6fo2IydcSiYifA0+NsownIpsEMiK2APeTPsAaKSMiYmt2tz27NHyWg6TDgN8Hrmx022bJvvGcAXwZICJ2R8SmURT5UuC3EbEyx7ZtwFRJbaQQyDOm6DnAoojYHhH9wG3Aa0baaIj31vmkgCW7fnWjZUTE/REx0gwMI5Xxk+y5ACwijbfKU87TFXenM8J7dpj/t08DfzHS9iOUUbchyngX8A8RsStbZ23eekgS8EfAt3KUEUC51TCTOt6zQ5RzPPDz7PYtwOuG2X6oz7CG3q8wCbuzmk3SkcDzSS2JRrctZs3ftcAtEdFwGcBnSP+Mo/lpvAB+ImmJ0vQxjToaWAd8JetWu1LS9FHU5w2M8M9YS0Q8Dvwj8ChpWpzNEfGTHPtfBpwhaa6kaaRvh4ePsM1QDoxsXFN2fUDOcprpbcCP8m4s6e8lPQa8CfhIju3PAx6PiLvy1iHznqxr7aq6ul2e6TjgdEm/lnSbpBeMoi6nA09GxG9ybHspcFn2mv4j8Jc567AMOC+7/XrqfM9WfYY1/H51iIyCpC7geuDSqm9odYmIgYg4mfSt8FRJJza4/z8A1kbEkkb3XeVFEXEKcA7wbklnNLh9G6lp/S8R8XxgG6kp3DClQafnAd/Jse1s0jepo4BDgOmS/qTRciLiflKXzy3Aj4G7gP5hN5ogJH2Y9Fy+kbeMiPhwRByelfGeBvc/DfgwOcKnyr8AxwAnk74wfCpHGW3AbGAh8OfAt7MWRR4XkOOLT+ZdwPuy1/R9ZC36HN5G+v9dQuqi2j3SBqP9DAOHSG6S2kkv/jci4rujKSvr+rkVOLvBTV8EnCfpEdIMyGdJ+tcc+1+dXa8FvkeaXbkRq4BVFS2p60ihksc5wB0R8WSObV8GPBwR6yKiD/gu8MI8lYiIL0fEKRFxBqnbIM83TIAnlc06nV0P22UyliT9KfAHwJsi6/QepW8yTJfJEI4hhfxd2fv2MOAOSQc1UkhEPJl9CSsBX6Lx9yyk9+13s67l/ya15oc9yF9L1nX6WuDaHHUA+FPSexXSl6c8z4WIeCAiXhER80mB9tvh1h/iM6zh96tDJIfs28qXgfsj4p9yltFbPkNG0lTSB+ADjZQREX8ZEYdFxJGkLqCfRURD37wlTZfUXb5NOgDb0JlrEbEGeExSeQbQlwL3DbPJcEbzje5RYKGkadnf6KWkvt6GSToguz6C9AGRt043kj4kyK5vyFnOqCj9+NsHgfMiYvsoyjm24u55NP6evSciDoiII7P37SrSAd6GpiDX3j8H8RoafM9mvg+clZV3HOmEkDyz4L4MeCAiVuXYFtIxkJdkt88i5xeWivdsAfg/wOXDrDvUZ1jj79eRjrzvbxfSh8ETQB/pDfz2HGW8mHQc4W5gaXY5t8EyngfcmZWxjBHO6qijvDPJcXYW6XjGXdnlXuDDOfd/MrA4ez7fB2bnKGMasAGYOYrX4WOkD7ZlwNfJzrzJUc4vSEF4F/DSvO8tYC7wU9IHw0+BOTnKeE12exfwJHBzjjKWk35Sofx+HfasqmHKuT57be8GfgAc2mgZVY8/wshnZ9Wqx9eBe7J63AgcnKOMDuBfs+dzB3BWnucCXA28cxTvkRcDS7L32q+B+TnLuYR0ltVDwD+QzUgyxPY1P8Mafb9GhKc9MTOz/NydZWZmuTlEzMwsN4eImZnl5hAxM7PcHCJmZpabQ8RsjEl6fzZb7QWtrotZszlEzMZeefT+aKenMRt3PE7EbIxJuo80vcfM8D+c7WfcEjEbQ9lUMseT5gNzgNh+xyFiNrZOJv2f7dWVJWm2pBuyYyWfySbDM5tw2lpdAbP93PzsejBEJJ1GmvF1DvD6iLiuFRUzawa3RMzG1l4H1SW9nzS549Okn7p1gNiE5paI2dg6BdgCrJd0A2n69K8C74qIHS2tmVkT+OwsszEiaQopQNaSpuw+EHhvRHyppRUzayJ3Z5mNnZNIrf1OYB5wnQPE9jcOEbOxUz6o/gHgh8CfSLq0ddUxaz6HiNnYKR9UX0z6+eIlwKckvbZ1VTJrLh8TMRsjku4Ang10R8SApIOARcABpJ/c/VVLK2jWBG6JmI0BSR3AicA9ETEAEBFrSL9jvQu4UdKzWlhFs6ZwiJiNjd8B2oE7KxdGxH3Aa4GZwI8k9bSgbmZN4+4sMzPLzS0RMzPLzSFiZma5OUTMzCw3h4iZmeXmEDEzs9wcImZmlptDxMzMcnOImJlZbg4RMzPL7f8DsV7yn1zU3LQAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize = (6, 4))\n", "Anorm = np.linalg.norm(Atraf)\n", "plt.plot(range(1, 21), s[0:20]/Anorm, '.-')\n", "plt.xlim([0.5, 20])\n", "plt.ylim([0, 1])\n", "plt.xlabel(r'$k$', size=20)\n", "plt.xticks(range(1, 21))\n", "plt.ylabel(r'$\\sigma_k$', size=20);\n", "plt.title(r'Singular Values of $A$',size=20);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "This pattern of singular values suggests __low effective rank.__\n", "\n", "Let's use the formula above to compute the relative error of a rank-$k$ approximation to $A$:" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEgCAYAAABIJS/hAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAzPElEQVR4nO3dd5xcZb3H8c9vZ3Znsy11NwlJ6EWQmlCiIiAIAhawXUUsFEW8oIB6r6BXRLn3Kna8qIiISLMLIiJFFFAxSIKUQEBCQtkQ0tumbP3dP54zm8lkZvdM251dvu/Xa14zc8pzfjNzZn7zPOd5zjF3R0REJI6a4Q5ARERGDiUNERGJTUlDRERiU9IQEZHYlDRERCQ2JQ0REYlNSUNERGJT0hARkdhGbNIws9PMzDNuXWb2rJn9r5nVF1HeJWZW1EhHMzvZzD5ZzjKLleN9ybytHcpYys3MzjCzZ6LPeu1wxwNbP2MzSxa5/j7R+seWO7aRaji+N9F2q+l7nDOWCmznI9H+90DcdYra0avMu4F2oBl4O3BR9PjjQxjDycAbgW9mTb8auGMI48iUfl8y9QxHIOVgZjsAVwE3AqcDW4Y3orKZGd3PG9YoqstwfW9Opnq+x/liKRszawK+FD3dz8zMY5wiZDQkjUfcfWH0+G4z2wM408zOc/e+4QzM3dvZ/od7qGS+L7GYWcrdOwudV2rZMe0BJICfuPtfh2H7lTILWOzuq4c7kGJU4n0d5u/NdqotnjK6CJgC3A6cCOwCLBpspRHbPDWAh4ExwKTMiWZ2gJndamZrzGyzmf3NzF4/UEFmtruZXW9mi6N1FpnZ981sfMYy1wIfAqZlNAM9F83rr9aa2b9F8/bPsZ0/mNkjpcZbiIxmlX3N7E4z6wB+EWPe8Wb29yimdWZ2i5ntFbfsAeLJW270Ht8bLXpPVPa1Rb62OJ9pev09zOz3ZtZhZs+b2cVmNuh3JnotHWZ2RYzlZwFzM9ZtMbNfmdnLZnZknvIHfQ1Zr2M/M/uzmW0ys6Vm9qXMuIpYLufnOshn2GhmT5nZP8ysNmOd48ysz8zOyd5Oju2+KtruRjN7wcxOj+Z/ICq7I4p/t0LfL4v5PY7zWnPEXdB+NFAshWx/IGY2A7gAuAX4XjR5u9+mXEZj0tgZWAesSk8ws5nAA8AE4CPAO6P5fzSzWQOUtQPhH8b5wJsIVbljCJk57dLo+QrgNdHt7TnKujWK6/2ZE81sMqEaen0Z4s2UMLNk1i3X5/1b4D7gbcC3BppnZscDvwc6gPcAHwP2Bf5qZtMKLLtfjHIvBT4RLX4O4T2+dJDXn2/7cT7TtJuBPxGaCm4Bvkj4MudlZh8kfNaXufu5A9V2zcyAA4mShpntFz2eBsxy9/vyrFrIayCK/Y/R67gJ+DxwcQnLbfe+DvYZuvtG4BTgAKLPzszagOuA29z9u3liz/TLaBsnE5rzrjGz/422dSGh2XKvKPZM5fwex9lfsxW6Hw0YSxHbz+UrhJam/wTmR9NiJQ3cfUTegNMAJ+wkSWA8cAah3f7crGXvARYAdRnTEtG0W6Lnl4S3Y8BtJoHDo+0elDH9WqA9x/LblAn8kLDz1mRMOz+KeWoh8cZ4X3LdbsuODTgvX9zZ8wg/aM8AyYxpuwDdwDfjlJ0n5kHLJSRWB46KUV7s7ef6TDPWPz1r2ceBu/JsK/0F7AY+HPN17xWtezTwQWAj4V9fXZz1Y+yX6dguzFr+h8AGYFyRy+XaZ+LuGxcAfdHneQewBJg0yPcmvd0PZkwbT/jerAJaMqZ/Ilp2pyLer2uJ9z0u9Hsw6H6UY5s5Yylk+wOUfUj0GXwrem7AeuBXcfa30VDTeIrwZq0GfgT8wN2vSM80szHAkYR/KX3pf92EN+qPwBH5CjazOjP7bFT13Rxt5y/R7NhVwQzXE/5FHp0x7QPAH919aanxZnk7YefIvJ2fY7mbByijf56ZNRIO2v7c3fsPqLv7YuBvUcyFlF1KuXFtt/0CP9PfZz2fD+yYZ1vfIvyDfJe7X52xPcuu8WWsk641fhS4EviYu/+7u3cN9KKK2C+zmwZ/BjQR/p0Ws9w272uBn+G3CcniNuA4QiJYmSPmXP6QUfYaYDkwx93XZyzzVHQ/IyO+sn2Pi9xfC9mPKrH9bN8E1hAdBPeQOZ7kFdQ8lf5xPJHwo/rvURNB2gTCv/TPE3aWzNu5wPgB2he/TPi3cAPwZuBQ4B3RvIK79RJ21OcIiQIz25uwA1yfsUwp8Waa7+5zs265DowvHaCMzHnjCYkr1/IvR3EXUnYp5caVq8xCPtPsg9OdOZZJOwV4grAPZjqS7T/HtJnAWkLz4w/c/bo8ZZfyGgCW5Xme3ZQRd7ns9zX2Zxj9QF0PpIBH3f2eHOvksybreVeeabDt+1DO73Ex+2sh+1Eltt/PzN5NqGV9C3AzG2dm4wg1l93MrGGwAEZD76n56R9DM/sT8BjwNTP7tYd21LWEqth3Ce2n23H3vtC8vJ33Ate5+3+nJ1joplYUd3czuwE438w+RkgeHWz7zy1WvMXGkKu4mPPWRM+n5FhuChnHkGKWXUq5ceXaflk/0wzHAHcBfzCzE929I5o+j/CnJpdZwJ3A/cD/mdlf3P03MbZV6GuYzLa9YiZH90uKXC77fY39GZrZFEJt42HgIAu9HC8fIPZyKOdnXsn9taLbN7M6wrEMCMdNch0X3Bf4x0ABjIaaRj8PXf/+A2gD/j2atpHwD/8A4OEc/77n5i+RBrb9ZwjhYFu2TkKPrTiuJ1T53wGcCvza3TdlvIZS4q2YKK55wLvNLJGebmY7Aa8lHBitmnIHEPczLdQTwFGErsF3mFkzgLtvyPX5RQfBDyJ0jf4ecAVwg5nlSzClvIZ/y3r+XsKflflFLreNuJ9h9Jp/QqgNHEtIHpdZjh6FZVa27/EQ7q85Yylx++cBu0b3b8i6/Xu0zKCfxWioaWzD3W81s4eAT5vZFe6+Gfgk4d/cnWb2I0LVbhKheSDh7hfmKe4O4ENm9jiwkPBD/9ocyz0JTIhqD3OBLe7+eJ74/mVmDxIy/jS2bZpKKzbeTAea2aQc0+dmtoUW6POE9tnbzOx7hOT3RUKvsG8UWWYly80l7mdaMHdfYGZHAX8mJI7j3X1DnsV3A8YCj0TPLyB8oW81s8Pc/YUBNlXoa/hI1KT5EKH30IeBS9x9bZHL5RLnM/wk4QD40e6+2swuJCTan5rZwdF3tRLK/T0eiv11oFgK3n70W/A54A53/06O+Y8QOmEMnsDjHC2vxhtbewntnmPecdG8CzKm7U04sLeckMXbCV0jT/QcPSSiaZOiddZEtxsJTQ0OnJaxXCPwU7ZWHZ/LV2Y0/ZxouW16UmUtM2C8Md6XfLdJmbGR0QMjo4yB5h0P/B3YTNhJfwvsFXf9AeIesFyK6z2VK/5BP9N86xN6tDw32LYItY326PW05InxPdF6UzKmNRGSyOP51itwv0zHti8hkW0mtHtfyrY9+ApdLufnOtBnSKhVdQL/nbXOXoReY9/P3s5g2yUcH7wha9pR0bJvrOT3eKDXGiPu7fajHO9lzlgK2X7W8lcQzqKw3e9lxjIvAvcO9v2yaGERGWXM7BLgC0CtD1C7jLucCIyyYxoiIlJZQ5o0zOwaM1tuZjkPrEV92r9jZgvN7DELI6NFRKRKDGnzlJkdQeiNcZ27Zw8YwsxOJJyd9kTgMOBydz9syAIUEZEBDWlNw93vZ/uBLplOIiQUd/c5wDgzmzo00YmIyGCqrcvtNMIR/LT2aNp2ox/N7CzgLICaMS2zkmPbmNxST1tzakgCFREZ6ebNm7fS3VsLWafakkauYdk528/c/SrCRXlITd3Ddz7zO9z0kdnM2ml8rsVFRCSLmT1f6DrV1nuqnYwTjQHTgZfirPjVd+6vhCEiUmHVljRuBT4Y9aKaDazz6Oyvg5mkZikRkYob0uYpM/spYcTmJDNrJxpQBODuV7L1soMLgU0UcE6g5RtGyyWjRUSq15AmDXc/ZZD5TjjFRsGWr6/Gyz+LiIwu1dY8VZQaM5YpaYiIVNyoSBrJGlPzlIjIEBgVSaM2UcPyDappiIhU2qhIGsmEsUJJQ0Sk4kZF0qhN1LB8vZqnREQqbVQkjWSNsbGrl45OXQpARKSSRkXSqE2Es4+otiEiUlmjImkkE+Fl6GC4iEhljYqkUVujpCEiMhRGRdJIqnlKRGRIjIqkkagx6pIaqyEiUmmjImkAtDWnVNMQEamw0ZU0VNMQEamoUZM0JrfUK2mIiFTYqEkaap4SEam80ZM0WupZv6WHLd29wx2KiMioNWqSRmt0uVddjElEpHJGTdJoSycNXVdDRKRiRk3SmNxSD2hUuIhIJY2apNFf09DBcBGRihk1SWN8Qx3JGmOZahoiIhUzaNIws1ozO8nMdhmKgIpVU2O0Nqd0IFxEpIIGTRru3g38Ati54tGUKIwKV/OUiEilxG2eWgS0VTKQcmhrqde1wkVEKihu0vgq8Dkza61kMKXS+adERCorGXO5o4EJwGIzmwMsBTxjvrv7h8odXKHamutZvbGLrp4+6pKj5hi/iEjViJs0Dge6gRXAbtEtk2+3xjBoawndbld0dDJt3JhhjkZEZPSJlTTcvap7TqVljtVQ0hARKb9R1YajUeEiIpUVt3kKM2sAzgCOJBzfWAXcC1zr7psqEl2Btp5/SklDRKQSYtU0zGwK8DDwHeBgoAE4BLgCmGdmkysWYQEmNqWoMZ1KRESkUgrpcjseeL277+Lur4mOcxwOjAMuq1B8BUnUGBObNCpcRKRS4iaNE4CL3P1vmRPd/QHgv4A3lzuwYmlUuIhI5cRNGk3AS3nmtUfzq4KuFS4iUjlxk8bTwAfyzHs/8FR5wimdRoWLiFRO3N5TXweuiw5430QYET4FeC/wRvInlO2Y2fHA5UACuNrdv5I1fyxwA7BjFN/X3f3Hcctva06xsqOTnt4+kolR1aNYRGTYxR3cd0PU5fZLwNUZs5YBZ7v7TXHKMbME8F3gWEKz1kNmdqu7P5mx2DnAk+7+1uhcV0+b2Y3u3hVnG60t9bjDqo1d/eM2RESkPAZNGtEP/b7AzYSEsRdhnMZq4Gl37ytge4cCC919UVT2z4CTgMyk4UCzmRnhWMlqoCfuBraOCu9U0hARKbM47TcOzAUOcvc+d1/g7n+L7gtJGADTgBcznrdH0zJdAexNOPD+OHBeru2Y2VlmNtfM5q5YsaJ/+tZR4epBJSJSbnEuwtRH+KFvLMP2LNcmsp6/CXgE2AE4ELjCzFpyxHWVux/s7ge3tm49Y7tGhYuIVE7cI8U/AM43s7oSt9cOzMh4Pp3tu/KeDvzGg4XAYuBVcTcwqSkkjWUaFS4iUnZxe081E06HvsjM7iD39TS+EKOch4A9ouuNLyH0vnpf1jIvAMcAf4l6a+1FuHJgLHXJGiY01qmmISJSAXGTxmczHp+RY74DgyYNd+8xs3OBOwldbq9x9yfM7Oxo/pXApcC1ZvY4oTnrM+6+MmacQDRWQ6cSEREpu7hdbss24MHdbwduz5p2Zcbjl4DjStlGuFa4mqdERMpt0GRgZnVmdrOZHTEUAZWDRoWLiFRGnN5TXYRR3yNmeHVbc4oVGzrp66uKq9CKiIwacRPB34DZlQyknNqaU/T0Oas3xRpELiIiMcU9EP4p4BYz6wBuYfveUxQx0K9i2tID/NZ39nfBFRGR0sWtaTxO6HJ7OfA80AV0Z9yq6i/95Jb0AD8dDBcRKae4NY0vsf3I7arV1pw+lYgOhouIlFPcLreXVDiOsmrtP2mhahoiIuVUcI8oM2sys53MrLYSAZVDfW2ClvqkahoiImUWO2mY2VvM7GFgHeG0HvtF0682s+xTgQy7tpZ6jQoXESmzWEnDzE4GfgusBD7DtmerXQx8qOyRlWhyS0oHwkVEyixuTeMLwI/d/Tjg21nz5hMu0lRV2prr1TwlIlJmcZPG3sDPo8fZvajWABPLFlGZpE9a6D5iOn2JiFS9uEljPTApz7ydgRV55g2b1uYUXb19rNvcPdyhiIiMGnGTxt3ARWY2LmOam1kKOBf4Q7kDK1X/qHA1UYmIlE3cpPE5YArwNHA1oYnqQsJlWacDl1QgtpJM7h+roaQhIlIusZKGuz8HzARuA44FeoEjgDnAYdE1MKrK1pqGelCJiJRL3NOI4O7twJkVjKWs2prT1wpXTUNEpFxGzDUyCtWYStJYl1BNQ0SkjEZt0oBoVLgOhIuIlM3oThrNKVaoeUpEpGxGd9JoqVfzlIhIGY3upNGcYvkGjQoXESmXUZ80NnX10tHZM9yhiIiMCrG73JrZ3sC7gBlAfdZsd/eqO9NtW/9lXztprq/ay3+IiIwYsZKGmX0QuIYwEnw5218TvCrbfyanL/u6vpPdWpuGORoRkZEvbk3j84TraZzp7msrF055ba1p6GC4iEg5xE0aU4CzR1LCAGiNahorNFZDRKQs4h4I/xvhmhojSkt9klSyhmXrVdMQESmHuDWNc4HfmNkq4C7ChZe24e595QysHMyMtpaURoWLiJRJ3KTRDvwTuCHPfC+grCE1ublep0cXESmTuD/0PwTeA9wCPMX2vaeqVltLiqdf3jDcYYiIjApxk8ZJwH+4++WVDKYS2prr+cszK4c7DBGRUSHugfCNwJOVDKRSWptTbNjSw+au3uEORURkxIubNH4MvK+SgVRK+mJMGqshIlK6uM1TzwOnmNndwB3k7j11TZyCzOx44HIgAVzt7l/JscxRwLeBWmClux8ZM87tTO6/7GsnO01sLLYYEREhftL4fnS/E3BMjvlOOM3IgMwsAXyXcJ3xduAhM7vV3Z/MWGYc8D3geHd/wczaYsaYU/+ocPWgEhEpWdyksUuZtncosNDdFwGY2c8IB9kzj5e8D/iNu78A4O7LS9lgW/r8U2qeEhEp2aBJw8zqgPOBm9z9oRK3Nw14MeN5O3BY1jJ7ArVmdi/QDFzu7tfliOss4CyAHXfcMe8GxzfUUpswlqmmISJSskEPhLt7F/BRYEwZtme5NpH1PAnMAt4MvAn4vJntmSOuq9z9YHc/uLW1Nf8GzWhtSqmmISJSBnF7T/0T2K8M22snXI8jbTrwUo5l7nD3je6+ErgfOKCUjba11OukhSIiZRA3aXwK+LSZvcXMctUW4noI2MPMdomavd4L3Jq1zG+B15tZ0swaCM1XC0rYZrjsq5qnRERKFvdA+C+BsYQf9B4zW862zUru7jsNVoi795jZucCdhC6317j7E2Z2djT/SndfYGZ3AI8BfYRuufPjv6TttbWkeOi51aUUISIixE8a91Cmq/O5++3A7VnTrsx6/jXga+XYHoQeVGs2ddPZ00sqmShXsSIirzixkoa7n1bhOCoqPSp8xYZOpo9vGOZoRERGrrjHNEa0zFHhIiJSvNhJw8z2M7NfmdkKM+sxs+Vm9gszK0evqopqbdaocBGRcojVPGVmhwD3AZsJvZ1eJlw3/K3Am83sCHefV7EoS5Q+lcgKjdUQESlJ3APhXwbmA8e4e/8VjcysGfhjNP+48odXHhMbU9QYGhUuIlKiuM1Ts4EvZyYMgOj5ZcBryh1YOSVqjEkaFS4iUrK4SWOw7rZl6Y5bSZNb6nUgXESkRHGTxoPAZ6PmqH5m1gh8BphT7sDKTaPCRURKF/eYxmeBe4Hnzew2YCnhQPibCScyPKoSwZVTW0uKR9vXDXcYIiIjWtzBff8ws9nAxYQzz04AVgN/Ai5198crF2J5tDbXs2pjJz29fSQTr4jhKSIiZRe3poG7Pwa8q4KxVFRbcwp3WNnRxZSx9cMdjojIiPSK+cu9dVS4elCJiBQrdk3DzI4ETgF2BLL/qru757p2eNVo06hwEZGSxR0R/lHg+8Aq4Bkg+5e3lGtsDIn0qHB1uxURKV7cmsangJuAM6LLv444k5pSmMGy9WqeEhEpVtxjGtOAH4/UhAFQm6hhQkOdahoiIiWImzTmAbtWMpChEK4VrpqGiEix4iaNTwDnm9kRlQym0tqaU6ppiIiUIO4xjd8BLcCfzWwTsCZrfqxrhA+3tuYUT7+8YfAFRUQkpyG/RvhwamtJsaKjk94+J1FT9R2+RESqziviGuFpbc319PY5qzd29V/NT0RE4itqRLiZ7WhmsQcGVovJ/WM1dDBcRKQYBScNM0sAi4H9yx9OZbU2p08looPhIiLFKPbcUyPygED6VCIrdCoREZGiFJs0RuRB8fRxDI0KFxEpziuqplFfm2DsmFo1T4mIFKngg9nu3mtmuwAvVSCeigsD/FTTEBEpRt6ahpntama1uea5+/Pu3l25sCpncku9ahoiIkUaqHnqGeCg9BMLrjOzqh/5PZC25pSuqSEiUqSBkkb2cYsa4P3AxMqFU3mtLSlWbOjEfUQeyxcRGVavmMu9prU119PV28faTSOydU1EZFi9ApOGruAnIlKswZJGjZnVmFkNkMielnmrcJxlM7klPSpcPahERAo1WJfbv+WY9mCOaR6jrKrQX9PQwXARkYIN9EP/xSGLYgi1RSctXKaahohIwfImDXevSNIws+OBywnNXVe7+1fyLHcIMAd4j7v/qlzbb6hL0pRKqqYhIlKEIT0WEZ0h97vACcA+wClmtk+e5S4D7qxEHG3NodutiIgUZqgPYB8KLHT3Re7eBfwMOCnHch8Hfg0sr0QQbS06lYiISDGGOmlMA17MeN4eTetnZtOAtwNXDlSQmZ1lZnPNbO6KFSsKCqKtWacSEREpxlAnjVxnx80emv1t4DPu3jtQQe5+lbsf7O4Ht7a2FhREW3OKZeu3aFS4iEiBhrqbbDswI+P5dLY/W+7BwM/MDGAScKKZ9bj7LeUKoq0lxZbuPjZ09tBSn/OcjCIiksNQJ42HgD2iU6svAd4LvC9zAXffJf3YzK4FbitnwoDQPAVhrIaShohIfLGbp8xsmpl9MzqOsMjM9o2mn29mh8Upw917gHMJvaIWAL9w9yfM7GwzO7uYF1CM9FgNHQwXESlMrJqGmb0a+AvQC/ydcMr0umj2ToReUe/Lvfa23P124PasaTkPerv7aXHKLFS6pqFutyIihYlb0/gGoWawC/AOtj2g/QAwu8xxVVR/TUMD/EREChL3mMbhwCnu3hENvMu0DJhS3rAqqzmVpL62hmXr1TwlIlKIuDWNvgHmTQI2lyGWIWNmGqshIlKEuEnjH8Dpeeb9G7nPhlvVJmtUuIhIweI2T10K/NHM7gJuIgzIe6OZnUcYvX1EheKrmLbmeha8vH64wxARGVFi1TTc/T7gZMKB8GsIB8K/ArweONndc11jo6q1NqdYoQPhIiIFiT24z91/D/zezHYH2oBV7v50xSKrsLaWFBs6e9jU1UND3Yi4fpSIyLCLVdMws/3Tj919obs/MJITBmw7KlxEROKJeyD8ETN71Mw+ZWZTKxrREJncPypcSUNEJK64SeMU4Hngy8ALZnanmZ1qZg2VC62y+msa6kElIhJb3APhP3f3twE7AJ8ExgHXAy+b2U/M7I2VC7Ey2po1KlxEpFAFXU/D3Ve6+/+5+2HAXoRrXxwL3FGB2CpqXEMtdYkalqmmISISW1EXYYqapQ6Nbm1ATzmDGgpmpm63IiIFKuTU6GZmx5rZdYTzTV0PNAPnMMLOPZUWrhWupCEiElfcU6N/jXDq86nAs8DXgevdfVEFY6u4tuYUi1duHO4wRERGjLij2s4AfkFIFA9UMJ4h1dZcz4OLVw93GCIiI0bcpDHV3bsqGskwaGtOsXZTN1u6e6mvzT7ju4iIZIvb5XbUJQzYejEmXcFPRCSevDUNM1sEvN3dHzWzxYQz2+bj7r5b2aOrsLaW9AC/TmZMGLHjFEVEhsxAzVP3AeszHg+UNEak9AC/FRqrISISS96k4e6nZzw+bUiiGWJbTyWi5ikRkTjinuX2YjPbIc+8qWZ2cXnDGhoTG+tI1JiuFS4iElPcwX1fAKbnmbdDNH/EqakxJjXV6fxTIiIxxU0aNsC88cCI/dWd3FKv5ikRkZgG6j11FHB0xqSPmtlbshYbA7wZeKLskQ2RtuYUS9aqeUpEJI6Bek8dCfxX9NiB03Ms0wU8CXyizHENmdbmeh55ce1whyEiMiLkbZ5y9y+6e4271xCap2ann2fc6t19prv/fehCLq+25hQrO7ro7u0b7lBERKperNOIRIljVEqPCl/Z0cnUsWOGORoRkeoW99xT/cysDajPnu7uL5QloiE2OT1WY72ShojIYOKeGr0G+G/go4RLveYyIs/4l65pqAeViMjg4jY7nU+42NI3CMc3/peQRBYTrq/xkUoENxS2jgpXDyoRkcHETRqnA18CLoue3+zuXwD2BpYAO1YgtiExqakOgNseW8q859cMczQiItUtbtLYFZjr7r2E64GPAXD3buDbhIs0jUiPtq8D4O/PruLUq+cocYiIDCBu0ljH1oPfLwF7ZcxLAhPKGdRQmrNoVf/jzu4+7n16+TBGIyJS3eImjX8C+0SP7wS+aGanmNm7gS8DD8fdoJkdb2ZPm9lCM7swx/xTzeyx6PaAmR0Qt+xizN51IqlkDUYYwfijvy7mh/cvorOnt5KbFREZkcx98MtkmNmxwK7u/gMzmwL8DpgVzX4eOMndH4tRTgL4F3As0A48BJzi7k9mLPNaYIG7rzGzE4BL3P2wgco9+OCDfe7cuYO+jnzmPb+GOYtWMXVsPb995CXu+9cKpo8fw3+8aS/euv8O1NQMdOotEZGRyczmufvBBa0TJ2nk2JABuwENhB/47pjrvYaQBN4UPb8IwN2/nGf58cB8d582ULmlJo1sf3lmBf97+1MsWLqeA6aP5bMn7s1hu04sW/kiItWgmKRR1EhvDxa6+2NxE0ZkGvBixvP2aFo+ZwJ/yDXDzM4ys7lmNnfFihUFhDC41+/Rym0fP5yvv/sAlm/o5D1XzeHDP5nLwuUdZd2OiMhIM9BZbo8opCB3vz/GYrnaeXJWdczsDYSkcXie7V0FXAWhphEzzNgSNca7Zk3nLftP5Ud/Xcz3732WN337fk45dAbnHbMnrdGlYkVEXkkGGhF+L/GuC54+hhxnRHg7MCPj+XRCb6xtCzTbH7gaOMHdV2XPH0r1tQnOecPuvOeQGXznnme48cEXuPnhJZx95G58+PW7MqZuRA6EFxEpSt5jGmZ2ZCEFuft9g27MLEk4EH4MYVDgQ8D73P2JjGV2BP4EfNDdH4iz7XIf0xjIsys6uOwPT3HXk8uY3JLiU8ftxTtnTiehg+UiMsIM2YHwUpjZiYQBgQngGnf/HzM7G8DdrzSzq4F3EnplAfQM9qKGMmmk/WPxav7n9gU8+uJaXjWlmXcfPJ0t3b3M3nUSs3YaP6SxiIgUo+JJw8wmAbOBicDv3H21mdUDXe4+bBekGI6kAeDu3PbYUi697QmWb+gCoMbgHTOncdw+U9h/+jgmt6QInc1ERKpLMUkj7lluDfgq8HGgjnAM4xBgNfBb4K/ApQVFOwqYGW89YAcWr+zgW3c/gwN9Dr9+eAm/mrcEgNbmFPtPG8t+08ey//Sx7DdtnA6ii8iIFfd6GhcB5xJOWng38GDGvN8BH+AVmDTSXrd7K9+791m6e/qoTdZwzYcOIVWb4PH2tTy2ZB2Pt6/jT08vJ12pmzq2nv2mRUlk+jj2mzaWxSs3MmfRKmbvOlHNWyJSteImjQ8DX3L3L0ejujMtJAz0e8WatdN4bvzw7O1+9DN//Ds6e3hiyToeX7KOx9rD/V1PLuuf398FrcY4/XU789rdJjJtXAPTxo+hKVXwtbJERCoi7mlEOoHj3f3PUdLoBg5294fN7Gjg9+4+bJe9G65jGqVat7mbJ5as4wf3L+K+f+UfoDiuoZbp48cwbdwYpo9viO7HMG18eD52TC2w9XQoqq2ISBwVO6ZB6B67L/DnHPMOIFyMSQo0dkwtr919EqnaBA8uXtXfvHXFKTOZ0FRH+5rNLFmzmfY1m1iydjPPrtjI/f9ayebubU+m2JxKMqGxjhfXbKLPIVljnHn4Lhy043ham+uY1JRiUlOKRtVYRKREcX9FfglcbGYPA3OiaW5mewKfIhqZLcXJ17w1c8ftawvuzuqNXSxZu3mbpPLXhSvpiyqNPX3OD+5ftN26Y2oTTGzamkRam+uY2JhiUlMdk5rDtOXrt/DM8g6O3LOVg3cesWe8F5EKids8NQa4C3gtYfzEzsAiwujuB4A3uXtX5cIc2Ehtniqnec+v4dSr5/TXVv7vvTOZOq6eFR2drOroYmVHJys3dIb79POOLlZv7OxPNtnGNdQypaWeiU11TGhMMbGxjomNdUxoCslmYlNdNC1Fy5hkf9diNZOJjAwVa55y981mdhTwPuBNhIPfqwg9pm50957CQpVyy1dbGUxvn7NmU0gi1/x1Mb+c244TDszvOL6ByWPrWdXRyeNr1rKqo4sNnbk/6tqEMb6hjjF1CV5cHZrJEjXGu2ZOZ99pLYxvrGNCQ124b6xjXEMtqWTuU7Ao6YhUr0FrGmZWB/wc+FbMkxIOOdU0yiO7tnLjh2dv96Pd2dPL6o1drOroCvcbQ01m1cYuVnd0Mff51Ty7YmOs7TWlkoxvrN2aTBrq6Ort4475L9Pb5yQTxoUnvIqZO46nZUwtLfW1tIxJ5k022a9FiUdkYBUbEW5mG4C3uvu9RcZWUUoa5VPqj2124rnujEPZZVITazaFJLNmYxerN0X3G7u3To/ul63fQnfvwPtkKlkTJZFkRjLZ+nzD5h5+PvcFenqd2oRx8VtfzaydxtOUStJcn6QxlaQ2MfhVAZR4ZLSrZNK4A7jX3b9SbHCVpKRRXUr5sZ33/BpO/eEcunv7SCZq+MJb92Hq2DGs39LN+s3drN/SE913s35zT87pgyUdgPraGppStTSlEjTVJ2lKJWlK1dIcPe7o7OF3j77UX+O54Ng9OXD6OBpTSZrqkzSnQvJpqEsMeJoYJR6pZpVMGq8GbgEuj+6XknXa9FfiuaekMkr5oXV35ixaxWk/fqg/8Vx0/KuYOq6eDVt66OjsoSO635DxuGNL9Lyzm44tPazb3J23g0CmGiMkkvStfuvjzu5e7ntmJX19TqLGOO11O/OqKS001iVoTCVpTCVoqEvSWBceN6aS4Xr1GUlISUcqqZJJI50Q8i3s7j5sgwCUNCRbyc1sz63m1Ksf7E88/33yvsyY0EDHlh42dvX0J6CNnds+7oieb+zs4eV1W/J2HMgnUWM01CVorEtSUwNL123BPSSn1+w2iRnjx9BQl6QplaAhlaSxLko8qa33jamQiBqi5PTEknXMWby6pMSj5DU6VXJw35eId0Emkaowa6fxJf24zdp5Ajd+pPDeaJm2Ob6TqOF775/J7q3NbOwKSWVjVy+bokSzqat36/TOXjZ19fBo+zpeWrsFCCfCfPKldTyzbEP/ssVc1WBKS4pxUS+3hroEY2qT0X2if1pDXYL62pCEGuoSvLRuM9+++xl6+kIC/fq79mfWzhPCOrUJUskaamJcT0aJZ3QY8utpVIJqGlKtSj6+k6c3W1+fs6Wntz/B9N9nJaJ7FizjL8+s7O9G/aqpzUwf38DmrrD85u4+NneFZTd39bKpu5feOO1yWVLJGsakk09tSDr1tVunbe7qZc6i1fR6aKp7x0E7sEtrU/+yY6Ll6zPWT6+bqq1hTG2CBUvX89Bza1RjKqMRcRGmSlDSkNGq3L3ZcnWjztbV0xclkB42d/Uy7/k1fO7m+fT09ZGoMc55w+5MHVvP5q5eNnf3saW7ly3dvWzu7o2m9bIlmp6etnTdZtZs6i72bdjO2DGh40I60aSTVH0yPE5tk4DC9JUdndz44Av9nRs+eeye7LPDWOqTWWVEtaf0fXZHh3IknmpJXkoaIrKdaviR2y55nXkYr542dpvEsqW7L0o4W5NQeto9Ty7jvn+t6K8x7T99LLu1NdGZTlo9WxPVlmi9zoxpPUXUntJS/UmlBgOWre8McRjsu0MLrc31pJI1pJI11CVrSCVDsknV1lCXCAkslTF9ydrN/N+fngnJq6aGL570avafPnbreulla2uoS+Ru+itX0lHSEJGqVammujh6evuYs3g1Z14betXVRp0bdm1t3C7BbMlIRJ3dfVvvu3t5rH0tTy7d0F/utHH1TGhM0dUTyujs6Qu37l66evtidf8eTG3CSCUTUUKqwd37E1d9beHvRSYlDREZtaqyxjTID3Zvn/cnlK4oofzzhTV8+leP0dPbR7Kmhv88fi9mTGigs6dva/Lp7tv2eUYZjy9Zx4IocSUMPnncXpzzht2Lej+UNEREKmy4k1epta5MShoiIq8Aw3lMQ1flEREZYUodh1SKwc/aJiIiElHSEBGR2JQ0REQkNiUNERGJTUlDRERiU9IQEZHYlDRERCQ2JQ0REYlNSUNERGJT0hARkdiUNEREJDYlDRERiU1JQ0REYhvypGFmx5vZ02a20MwuzDHfzOw70fzHzGzmUMcoIiK5DWnSMLME8F3gBGAf4BQz2ydrsROAPaLbWcD3hzJGERHJb6hrGocCC919kbt3AT8DTspa5iTgOg/mAOPMbOoQxykiIjkM9UWYpgEvZjxvBw6Lscw0YGnmQmZ2FqEmAtBhZk+XGNskYOUwl1ENMVRLGdUQQ7WUUQ0xVEsZ1RBDtZRRjhj2KnSFoU4almNa9vVm4yyDu18FXFWOoADMbG6hlz0sdxnVEEO1lFENMVRLGdUQQ7WUUQ0xVEsZ5Yqh0HWGunmqHZiR8Xw68FIRy4iIyDAY6qTxELCHme1iZnXAe4Fbs5a5Ffhg1ItqNrDO3ZdmFyQiIkNvSJun3L3HzM4F7gQSwDXu/oSZnR3NvxK4HTgRWAhsAk4fovDK0dRVahnVEEO1lFENMVRLGdUQQ7WUUQ0xVEsZwxKDuW93uEBERCQnjQgXEZHYlDRERCS2V3zSMLNrzGy5mc0vcv0ZZvZnM1tgZk+Y2XlFlFFvZv8ws0ejMr5YZCwJM/unmd1WzPpRGc+Z2eNm9kgx3fHMbJyZ/crMnorek9cUuP5e0bbTt/Vmdn4RcVwQvZfzzeynZlZf4PrnRes+EXf7ufYlM5tgZneb2TPR/fgiynh3FEefmQ3axTJPGV+LPpPHzOxmMxtXRBmXRus/YmZ3mdkOhayfMe/TZuZmNqmIGC4xsyUZ+8eJhZYRTf+4hdMZPWFmXy0ijp9nxPCcmT1S4PoHmtmc9PfMzA4tIoYDzOzv0ff1d2bWMsD6OX+nCt0/AXD3V/QNOAKYCcwvcv2pwMzocTPwL2CfAsswoCl6XAs8CMwuIpZPAjcBt5XwfjwHTCph/Z8AH44e1wHjSigrAbwM7FTgetOAxcCY6PkvgNMKWH9fYD7QQOgs8kdgj2L2JeCrwIXR4wuBy4ooY2/CIKx7gYOLjOM4IBk9vqzIOFoyHn8CuLKQ9aPpMwgdYZ4fbD/LE8MlwKcL+CxzlfGG6DNNRc/bCi0ja/43gIsLjOEu4ITo8YnAvUW8joeAI6PHZwCXDrB+zt+pQvdPd1dNw93vB1aXsP5Sd384erwBWED40SqkDHf3juhpbXQrqIeCmU0H3gxcXch65RT90zkC+BGAu3e5+9oSijwGeNbdny9i3SQwxsyShB//Qsb67A3McfdN7t4D3Ae8fbCV8uxLJxESKdH9yYWW4e4L3D32GQ/ylHFX9FoA5hDGPxVaxvqMp40MsI8O8L36FvCfA60bo4zY8pTxMeAr7t4ZLbO82DjMzIB/A35a4PoOpGsGYxlk/8xTxl7A/dHju4F3DrB+vt+pgvZPUPNUWZnZzsBBhJpCoesmoirucuBudy+0jG8Tvox9hW47iwN3mdk8C6dqKcSuwArgx1Ez2dVm1lhCLO9lgC9jPu6+BPg68ALh9DPr3P2uAoqYDxxhZhPNrIHwT3DGIOvkM9mjcUbRfVuR5ZTTGcAfilnRzP7HzF4ETgUuLnDdtwFL3P3RYrad4dyomeyaWM0p29sTeL2ZPWhm95nZISXE8npgmbs/U+B65wNfi97LrwMXFbHt+cDbosfvJuY+mvU7VfD+qaRRJmbWBPwaOD/rH1ks7t7r7gcS/gEeamb7FrDttwDL3X1eodvN4XXuPpNwtuFzzOyIAtZNEqrQ33f3g4CNhCpvwSwM/nwb8Msi1h1P+Ae1C7AD0Ghm74+7vrsvIDTh3A3cATwK9Ay40ghhZp8jvJYbi1nf3T/n7jOi9c8tYLsNwOcoMNHk8H1gN+BAwh+CbxRRRhIYD8wG/gP4RVRjKMYpFPHHhlDbuSB6Ly8gqp0X6AzCd3Qeocmpa7AVSv2dAiWNsjCzWsIHcaO7/6aUsqLmnHuB4wtY7XXA28zsOcKZg482sxuK3P5L0f1y4GbCmYnjagfaM2pJvyIkkWKcADzs7suKWPeNwGJ3X+Hu3cBvgNcWUoC7/8jdZ7r7EYRmgUL/SaYts+gszdH9gE0hlWRmHwLeApzqUSN2CW5igOaQHHYjJPFHo/10OvCwmU0pZKPuviz6g9UH/JDC9s+0duA3UbPwPwi18wEPyucSNX2+A/h5ETF8iLBfQvhjVPDrcPen3P04d59FSFzPDrR8nt+pgvdPJY0SRf9QfgQscPdvFllGa7o3i5mNIfzoPRV3fXe/yN2nu/vOhCadP7l77H/WGXE0mllz+jHh4GnsXmXu/jLwopmlz5x5DPBkoXFEiv0HB6FZaraZNUSfzzGENtzYzKwtut+R8MNQbCy3En4giO5/W2Q5JTGz44HPAG9z901FlrFHxtO3Udg++ri7t7n7ztF+2k44MPtygTFkXibh7RSwf2a4BTg6Km9PQoeNYs4W+0bgKXdvL2Ldl4Ajo8dHU8Sfkox9tAb4L+DKAZbN9ztV+P452JHy0X4j/BgsBboJO/KZBa5/OOE4wGPAI9HtxALL2B/4Z1TGfAboiRGjrKMosvcU4ZjEo9HtCeBzRZRxIDA3ei23AOOLKKMBWAWMLeF9+CLhR20+cD1RT5kC1v8LIeE9ChxT7L4ETATuIfwo3ANMKKKMt0ePO4FlwJ1FlLGQcMmB9D6at+fTAGX8Ono/HwN+B0wrZP2s+c8xeO+pXDFcDzwexXArMLWIMuqAG6LX8jBwdKFlRNOvBc4ucr84HJgX7V8PArOKKOM8Qi+ofwFfITrDR571c/5OFbp/urtOIyIiIvGpeUpERGJT0hARkdiUNEREJDYlDRERiU1JQ0REYlPSEBGR2JQ0RCrAzPaJTv997HDHIlJOShoilZE+fUo5zgcmUjWUNEQqYxbh/FclndpbpNooaYhUxizC6VSAcK0RC1c0fNnMjhxgPZGqpqQhUmbRyeEOJEoaZrZf9Hga4RxD9w1fdCKlUdIQKb89Cdc3mGtmHyRcKe+PhEtzLhnWyERKlBzuAERGoVnR/UeBtxLOhHrdMMYjUjaqaYiU30xgLeEiRT9QwpDRRElDpPxmAXcCnwA+YWbvGOZ4RMpGSUOkjKKD4AcBj7j794ArgBvM7JDhjUykPJQ0RMprN2As4cpoABcQroh2a3TpWJERTUlDpLzSB8EfAXD3PsL1zpcBvzezlmGKS6QsdLlXERGJTTUNERGJTUlDRERiU9IQEZHYlDRERCQ2JQ0REYlNSUNERGJT0hARkdiUNEREJLb/B3+tTMyle9ftAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "fig = plt.figure(figsize = (6, 4))\n", "Anorm = np.linalg.norm(Atraf)\n", "err = np.cumsum(s[::-1]**2)\n", "err = np.sqrt(err[::-1])\n", "plt.plot(range(0, 20), err[:20]/Anorm, '.-')\n", "plt.xlim([0, 20])\n", "plt.ylim([0, 1])\n", "plt.xticks(range(1, 21))\n", "plt.xlabel(r'$k$', size = 16)\n", "plt.ylabel(r'relative F-norm error', size=16)\n", "plt.title(r'Relative Error of rank-$k$ approximation to $A$', size=16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" } }, "source": [ "Remarkably, we are down to 9% relative error using only a rank 20 approximation to $A$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "So instead of storing \n", "\n", "* $mn =$ (1008 $\\cdot$ 121) = 121,968 values, \n", "\n", "we only need to store \n", "\n", "* $k(m+n)$ = 20 $\\cdot$ (1008 + 121) = 22,580 values, \n", "\n", "which is a 81% reduction in size." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Low Effective Rank is Common" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In practice __many__ datasets have low effective rank. \n", "\n", "Here are some more examples." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "__Likes on Facebook.__\n", "\n", "Here, the matrices are \n", "\n", "1. Number of likes: Timebins $\\times$ Users\n", "2. Number of likes: Users $\\times$ Page Categories\n", "3. Entropy of likes across categories: Timebins $\\times$ Users\n", "\n", "
\n", "\n", "
\n", "\n", "Source: [Viswanath et al., Usenix Security, 2014]" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "__Social Media Activity.__\n", "\n", "Here, the matrices are \n", "\n", "1. Number of Yelp reviews: Timebins $\\times$ Users\n", "2. Number of Yelp reviews: Users $\\times$ Yelp Categories\n", "3. Number of Tweets: Users $\\times$ Topic Categories\n", "\n", "
\n", "\n", "
\n", "\n", "Source: [Viswanath et al., Usenix Security, 2014]" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "__User preferences over items.__\n", "\n", "Example: the Netflix prize worked with partially-observed matrices like this:\n", "\n", "$$\\left[\\begin{array}{ccccccc}\n", " ~&~&~&\\vdots&~&~&~\\\\\n", " &~&3&2&~&1&\\\\\n", " &1&~&1&~&~&\\\\\n", " \\dots&~&2&~&4&~&\\dots\\\\\n", " &5&5&~&4&~&\\\\\n", " &1&~&~&1&5&\\\\\n", " ~&~&~&\\vdots&~&~&~\\\\\n", "\\end{array}\n", "\\right]\n", "$$\n", "\n", "Where the rows correspond to users, the columns to movies, and the entries are ratings.\n", "\n", "Although the problem matrix was of size 500,000 $\\times$ 18,000, the winning approach modeled the matrix as having __rank 20 to 40.__\n", "\n", "Source: [Koren et al, IEEE Computer, 2009]" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "__Images.__\n", "\n", "Image data often shows low effective rank.\n", "\n", "For example, here is an original photo:" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAOcAAADnCAYAAADl9EEgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAADfs0lEQVR4nOz913Oj6ZkeDl9IBJFBgDmTneN090zPaDQaxS1vkHfXctU67IGrbFfZ/45PXD5x7am3XGVbu95gSb9dWVpJM5rY05nsZk4gQSIQmSCA7wC+7r7wNNg9Gh98PtBbxSKJ8L5PuON1h8fT6XTw2+u312+v//cu7/+/B/Db67fXb6/+12+Z87fXb6//R6/fMudvr99e/49ev2XO316/vf4fvX7LnL+9fnv9P3r5X/Xmf/yP/7HTbrfh8Xjg9Xrh93c/3mw24fV64fF44PP54PF47DsejwedTqfnt14+nw8A0G634fV67W+fz2efPz09hc/ns8+02237nMfjsXvzM/ye3g+A/a/j4rN4H/2Mjknvw3u1Wi14PB60220MDg6i3W7j9PQUAEDUm2vE/zl/nYc7Jq/Xi06n0/MdPsddO3dMui7u/LgunBfnoPfz+Xzwer1oNpv2Hb1/MBjE/Pw8VldXUSqVUK/XEYlEsL29jfPnz8Pr9WJgYMBoodVqGW3wGZ1OB61Wq2d99VnuPvMzeh+On2vDcevFz3CeXNdWq2V0xz0/K0rh0m273e5ZM6VFoMsLPp8Pfr/f6OP09NRo2O/323harRYCgQDK5TKOjo4wOzuLdruNb3zjG56XR/Ia5uy3UJw0gL7EpETGRdAF1onxu1w43tNlaB2LPpPP08vdYFdw+P3+nu9wQflsJRR3LC6j8T76Ob0378V1043X+3LM+lq/Z/OZyswcszKnEtNZ66vEp+/p+rXb7R5mPz09RS6XQzKZ7CF2ALauShvKQDpHZWJXGPCZ/Fv3yxXo+j0dvyvUlIl1jkqnnKe7J5yTrr0+g8zHi0KIgk9p5vT0tGf+p6enJsz7Xa9lzn6SnTd3icxlHtWgHLgrmUhISsSUdu69uWj9mKefZuL9ddF56bhISKenp30lqmpNjkG1tSv5eX99bj+N4a4xmYyf431dYXJycmIaiczI351OB5VKxYghHA5jcHAQ0Wi0Z884Vt6Hn3eZkq9xTIVCAX6/v4codaxAV5twrIFAoEeLcv5KJ9R2yhA6d66LCgRdK1e4ufuie+fSrLs/am24e8814pq4VhZ/uDYco47P4/FgYGAAwWAQzWYTAwMDL42F1yuZU6Wx3+/vMQP1b2XCfoSnEspdADI68IKRXA3Gyatp009j6oa8bk79vs8x6ca75lY/AcPvq1RWM13v7zIa799qtWyNdXyuVnYtGRIKzWs+FwDW1tYwODiI8fFxBINBM8VdTdJvHfV9/h8KhZBKpeDxeDA+Pt5jiXDeNN+Usc5yFTqdjmkTvqe01s+qUetNtRkvrou6QOoKUYDpfV2Nr+uvrkyr1UKz2ewRTLwnzVgKEO6L3o/Czu/3Y3BwEJVKBZFIBGddr2RO1+RwN1AXkwPQhdDvU/KpJNbNdyWlbmQ/37SfCdLv6idAdEz9GEE3V81XChH6fu5cOEd9xlkmmSvkdN30fu5cOHd+jpqJEnhgYAAbGxvI5/PY2NhALBbD6OgoDg4O4PP5EAwGEYlEMDAw8JKJr5fLVB6PB2NjY4jFYqhWqz2+JP8ms6nlQ63urkU/OukniHWfVGjquJR2XFdAmcSlK/1uP1rQv7n3FBx8nVYCzVOPx4NyuYxms4lEIvHSWE9PTxEIBDA4OIhyuXymCwd8CbNWJ6EMoYSoxKySwjUlXFOVC+UuHtDfP3WlMSUVpWE/jaga0B1bP23mPp+XgjHUcroxLgGqO8Dv671ckOIsouvny6qgUSL2er2mKXd2dlAqlTA8PIypqSk0m03U63U0Gg0Ui0WcnJwgEAggEAggGAwiHA73mI7KcEBXE8RiMaTTaTx//rwHQOL69xsnmcN1LVxGcpmUQl8vV8CpBcPv0IJoNptoNBo4ODjAwsICwuFwjz/rCkHOwVUcnAP9Z37XZUqOCQCi0ahZBKqZ1dQdGBiwz511vZY5+xHOWb4lJ6QoKj/D7+ki00wAuhpA31ct1e9qt7uIKReHpoWOxSUK3tMletek0bkrwXBu3MhwONwjcFSj9fOtdA2oMV2i7udnu1qV/wcCAfh8PgwMDNi4yGQ3b97E1tYWyuUyYrEYSqUSACASiRhxnZycoFaroVgsIpfLwevtorOhUAiDg4O2fu12G6VSCScnJ4jFYhgcHESz2XzJ7+s3zn7muSL2ap24jMP90nv080vJXFwzajefz4f19XU8ePAAf/zHf2zP5VhUu1PQqzIgbbrAFhlKGVPHyHu5ioD3Iq16PB4Ui0WcdX0pn1MXWxeMC+Da+CrZ9R6uY8/7uGZNPx9FTV8SJAkIAE5OTnrGxGfQ3FOTq9ls9phe/cwhPlsJVC2BdruNaDSKarX6klnlMpGuV6fTQSgUgs/nM5OUIE+z2exZX1focR38fj8CgQD8fj9CoRCCwWAPsNNsNvHGG29gfX0dW1tbBgxVKhW7z8DAAAKBgAFF7XbbtE2j0UClUjGiHR0dRb1eR61WQ6vVwtjYGDqdLvDEeTK8xnXrZ/FQIOnaMBShviTwsrBW39Hd20Ag0OOScM/y+TxisRhWVlawtbWFubm5nvvpfRUEo3LQZ52envYwGICX/Fels370oGvVbDYRDAZRrVZx1vVan9NlMC4YN64fcSsh9XtdJVUwGDRp426sa1py0QOBAEKhUI9mdAlAJSgvLnqj0bAF6meG6X36aTI1r9RcVkneb1P4EwwGEQwGDfWkNK7VajY2MqkrNDhnAjyDg4MIBoP2XL/fj0ajgVgshlQqhUAggGaziVQqhVAohEKhYPMkMfKeZHa1fKgtZ2dnEQwG8eDBA6RSKZycnKBSqZiAcTWfC1xxbHy9n9bRMITura6jrjGvfkK2VqvhyZMnGBwcxIULFzA8PPwSAKeaXK05osyKq6gf3A+P4P70U0yK0fC1k5MTBIPB/zuf05VWXKB+TOf6mfp5V3Iqgbv+mGsCkVAHBgbg9XaD3gMDA+h0OkYcLnihRKFSkgtfq9V6xkzCIAGpYOKmUqiogPL7/T1+Qz83QNdBmZLmKAB7bXBwEPV6HScnJ4bsNZtN+5t+4uDgoIE6nC/vEQwGEQgEMDc3hx/+8IcYGRnBzMyM7WO5XEa1Wu0xt/oJWDJUJBJBpVLB6OgoPB4PPv/8c6RSKUQiEVt/F1xyfXBNeCADun6Z0oIyuvq0Ktj7WSVcy4cPH2Jvbw+3bt1Co9GwfeJ3VAhzrLrGdLkURVckn0ynGvssS4nj5vrTpSAGcNb1peKcHNhZ/p8Sf7+N7oek6eRUU7o+GKUVNSYlGombwIRqcdfX1PuqVuUmeDweYzD1Q1ykkc9QiapS3AUTdLP4OxgMWpwrEAiYacb4Gc3VdruNer1um1mtVuH3+xEOh82kp7By94VrND09jdnZWTx58gR37txBOBw24ePxeFCr1Xr2zJX6QJdZaLoPDAwgmUyaiZxMJu17rn+o91RhxteovRUcY5aNvu/6mWQa0oNLbz6fD7u7u3j06BGGhoaQzWZRqVR69tfrfZEQQDOTgp57cRbYx/Wh5aGWmioERbEVZa/X6yakHzx4gKOjI/zpn/7py0yF1zBnPzRTtZT6Vmoa6GK5qKv7v/p3XDw1gXhv+khMFeN79Dfc9Kx+jKE+qYsuq+lB/4/j9fv9hm7qhnLzXOHEZ/L+1GZerxeRSKRHe9K84zPU7xkcHDQTiExMs5N+prsXrVYLoVDICPVb3/oW/ut//a+4f/8+vva1ryEYDCIajZr1QF+90WjY83XsrVYL+XwehUIBxWIRc3NziEaj2NzcRCwWs7XW/VQB6zIXf3OtleApDHW/CJ5wbvR9E4nES4itz+fDyckJHj16hGq1im9961tYXV3F6OioMZOr8XhRUFMg+P3+l/xP1bAqzChUXKtP59xsNlGpVCwhZGBgAMfHx7h//35f3gO+ZCjF1Wj9/ExujAagXUZUJtDB64a4Zg21FTUKJSyJup9p7N5fQSuarmQCEgDNVjJ3IBDAycmJLSyf4fF4TGPR8fd4PBbgd81a3i8UCtk8OBeatQqvc90UhRwYGDCNwrmroHBNdxJOs9nE3NycmcrlchmpVArRaBShUAjRaBSNRgPtdhvlctlCLJwr58fEg+PjYzMRR0dH+4Y23EvHo2vNfVKhqCAS6YJCg/sQDAaRSCTMjFZU//T0FBsbG1hbW8OVK1cQiUQQiUQwNjZmlhD3nPdU35JmrWsZqTZXQcJ5qFuj1hTXpF6vo9ls2p4xkWFsbOwlXEWvVzKn+l7qwOvAXLNItZYuPu+nlzIICdLdWPWn3LigC76oVlcTl+Nzx0YGU3OV39Xke0pVXQua04FAAOFwGJFIxDapVqsZuMJxUdOROcmY1H5qQZDwuMEDAwM9/hLHq7E3ztFNt4tEIlhYWMDz588xNDRk6Ct9KfpiJMZisWgaTAVWIBDA0NCQjSsWixmB8+J7mgao7oa6FiRczS9VwU7BdHJy0gNYqaJQBgKAcrmMJ0+eIBKJ4PLly8jn84Yok/EVbFMASK0vVUSavabzVGZ1mVSFNLENWj6kG6/Xi3g8jmg0irOu16K1rlnLSXHzudD8fD+pyM+5MUfXtOWljMVJqYmrTKrjUDNbx6Ya3TV1+2l5PkNNIUpy3i8UCpn2U4bzer04OTkx85VzobZ0BYvOTRmS5lQ/wuQ6aCWEzskl4jt37uCDDz7Ao0eP0Ol0kEwm7TO6P15vN4mhVqv1aDSGSbgf7p5z3fhbTUcKFbVwlHgDgYDN1U0F7HQ6PaEwrg0tHxXqrVYLKysrKBaLeP/99024Tk5O9iCuSr8cG31NzQJSLa40oN9TAcT119ALtaUmrHDedHXC4TDOur40Wqub1Q/44MLrIJXwtZSKC8erH0JHqaqEzc+epS35bL2UQfl8NRn1uwQnuJEqSZUpABioo4AVP5tOp8035obqevSzAHjR71HTSMNF/M3XXL9T50dCn52dxcjICPL5PMbGxlAoFDA8PNzDUKoZFIFWja4WxsnJCTwej/nirtvjZoO5iL26MyRWPk/nQ8tKNbkm8HP++/v7ePbsGWZmZjA9PY39/X1Eo9Ee81f9eaU1FhLwfjp3pU13HqopNYWV2pKYQb1e77Ea6AZ5vd6vrjl1sVXC8nI1FBdTTS2V6krkZFASExE4XTQAPcFthc/PMpXP8oX1s/yMMizwQnLq91VKq2DSEIhr9utYlQjPMttVW/Z7hmo2XUvVvkAv4ai2HxgYwPXr1/E3f/M3iMfjKJVKFivmuihxNhoN1Ot101rUavTF1SXg+7qmZwlyFX5kNBVqrkl71n4qHQBAvV7H0tISAOD27dtoNBoIhUI4OTnB4OBgzzNVWLoWofqv+lwXGFV3T+dMMxyAuSIAeoStmskej+el/Fu9XtkJwSVeJSaXALjBNLc4KX5PCVy1HwfNzVcfTDWvaz7peHSMrgnK15QBqL25SPw8N9ENC7jmM/3fwcHBHqCHZu7g4GDPPGj2uvE5Rf/0ubo2+h1lSNd8dLW3asJ2u4033ngDgUAAS0tLmJiYQKFQ6DHbyURunqxqQY/H0xPbpDBmGMilG903fY/gCxlUn2eEKcKX4yOTqJlZrVaxubmJ3d1dXLt2DZFIxNBtZjm5FozLdOoycRz9rLGzlBMAQ/gZWeD96eMq3fGn1WohmUzirOuVzKnSQV9zJaVKdfXd3AXXS9FGXQB34vrD+/djSldg6IYos+rGqgmr8+Vn3DVQX85lHEWQdTyapaRSloFoJhtwE13GVWnL111z3A036Jg5v4mJCUxPT+NXv/oVotEowuEwjo6O0G63bRz6XKLPTOkDYDE69VX5Hc4/Eon09a11vPy+CpizmFSFsmveN5tN7O3t4cmTJxgaGsKFCxfQaDRMaMTjcaMDF1Dkb7WmgF6wja/r51yl4fF4LM9Yux6o76wWFOfCPYrH4zjreiVz6o31f7XD9YGq3gG8RLBcWDdv0WUo17/T56uJoUzVD5RSwlaGc6Upn6n3UoYA0KNl6Au7ppH6le69KQxUCzGg7qYTuoF4jkd/1IJQ4Eb9axVIg4ODuHbtGjKZDI6OjpBOp1Gr1Uy7cM1ptnL9FUThWNXy4Xtcd41D97tUeOt+qFZxrReXIZQOs9ksyuUybt++DZ/PZ4nkbhZVPzeL11nF4/3GzrEQyCLa3C9VlPdSq0bnAuCV9Zyv1Zx6uRJENYFO2OfzIRQKIZlMIpFIWNiAqBhNXy4cJ66E5UpmJRK1/fuNSxnCnYdK4n4MpBLRtQyIVPa7L5/L77ghEpoxyqRAL2EqrK++m66Bq21cC8U1+/jTbDZx69YtBAIBfPLJJ/D7/Uin0zg+PrZn81LgRy0ixlcJhHEPmefcbrextLRkaK/uAS+dX7/X3X3T57sC4eDgAJubm1hcXMTw8DAqlYolaNCNUI3o3vssYM61dJTWuN5EX2nCun4wL1Veern72+/6UkkIQG+XAt7YNV044cHBQYTDYYTDYXi93TIkbj5zOj0ej7VqYDkTpbLemwupjKqM7AIL7qT7bXQ/5uJ3CH/rRUnp+n86NtXoutG6KSRAXS8lOnfcej/eS813fs4FLPgsFUDNZhMjIyOYmprCr371K3znO9+xnFnGZYFeImu1WobEqkD0eDzGgPS5OU+atdwLHaMKK5dpXebj910ByKter+Pp06cAgMXFRXMPaLLrulP4ueup77v/q+WmgovmP81k7mE/QeTez6WVfs/W60sz56tMUE6ACxwKhRAOhxEMBgHAfgOwEiV+l7WDAJDP519qA0G/jfd37f1+E3fNH10MfY1/6zyUONW31O8yY4dCgaCIZiLpuNysGIX31VTScboM2Y8ANKNJrRZlVvVjBwcHcePGDfyP//E/kMlkkEqlMDAwgFqtZoRGQIOhEp/PZyY3/SuavzTpmCjASgudqzKJ9t5RZuFnzhLMXq8Xz549w+joqAEoq6uryGQyuHPnDpLJJE5OTkyDMzVO91fX1A3dcWzu/ivt0wXh+KkUlCcUoSYNKNrPS2nz/6rYmo4uB6GXTpwDjkQilh5G044TdpFRTpxwd6fTQblc7okfucitBnN1oq5J7I7TXXAlHH3P3RwX/OB8dFP18/l8HtFotIehuXYu0qcaRgEPVzPyt0u0/K2CgJeawfzcyckJLl++jGAwiF/96lf4/ve/bwxZq9V6cnLJmBxbuVxGNptFo9Gw2BwZlHNRUEmBEVfg6DxUMOlauUzVbDZxcHCA0dFRlEolLC8vY2xsDOfPnwfQ1WgM6JPW6BfqvdRf1rVUi8gVeFohxPcotCioSJfaIYKfJeCn43AZtt/12mJr3ugsYlPCikQiSCaTVmMI4CW0koMi8ECp1Gg0zImn7+AmK5NBSXSuNtFguG6yEozOyzUh+beaNfzfDVOoT6US/9NPP8U3v/lNG4MKAD6DG+3GddWvPssE48XYo2sBcIwMhKtJRtN2dnYWn3/+Ob773e/ad71eL2q1mlkxyjShUAjj4+OoVquGDDNxvl/s2WXGfoJG1921MNw163Q6mJ2dRSaTwe7uLlZWVlCv1/H1r38dfr8f1WrVwlfcD5deldZcJJbWkCvoiWQTQ+HrLFnk/9xHalcKKd6f1VP8cennrOu1zEnC0QXvR/RebzfbYXBw0Hw2Ehk1hFaT63f5N9A1gU9OToz41HRQZ1xNJwoKV1JrSpguOoAe09JlTN5bzVGNQVI46Bq0Wi0cHx/j4OAAhUIBo6OjPYShG877qHmoc9H1J7H1Qy/5XB2jfsfVrpzb9evX8fDhQ+zs7FjyNTUfy9RouvO+n3/+OWKxGEKhkNWXqlnu0ojLZKoFXYuFDKMmvDJmp9NBIpFAq9XC5uYmVldXcfXqVctyajab1n5FY8rKOK7Q5vgIckUiEbOITk9PrYnZ0NDQS0gsP0MFRHonettoNGyeXEPmZ9Pcdt2lftdvhNYq0bg+YSQSsXzTfpqJPxrPAmB9bFiu1Ol0TDIBvWYmpY6L5KrvwmeoCa1SSqW0a2pyPnpxwXXcLqrK19h5IJ/Pv7RmauKrRlYpqkTcL5yi4+0ndbX+0SVulewXLlxAIpHAp59+augmADNrlWhJQFtbWxgZGcHQ0BCi0WgPCtlPoLjxVrUcXKScc3JDU+59E4kE9vb2EIvFcOnSJfNz2UvK7/djaGgIXq8XyWQSyWQSsVjM+iJpdpPP50M4HEY0GkUikbB2Lxw7O0mEw2Gz6GgRMi9WaVOrW1RA0JqjABwaGkIikehpUXPW9aUzhHQRXf+GEwVedD0jQXMAbjUAiZXEryZCKBSyhHLgRX8ghmCUGVXK9iNuZVL+TyJ2CcA1b12mVybSjeH/FFKrq6s9DKzP6Uek/cw/N3Ti+mncDzXhXLie1gQFAH2fVCqFyclJPHz4sMcnpXuiVgKTtq9evYp4PG77omEWtWrUUlGLRa9Xmev9Lo+nC5w8fvwYBwcHuHr1qjUZozvk9/uNGX0+H6LRKCKRCMLhMOLxOOLxOJLJJKLRKILBoP0fj8fNZGXxeTweN4ZXDaf4SafTMQuv0WigWq2iUqlYphBjzqRrWhs0lWn9USD2u75U31rVVFwsZSb2s1FTS4lZUS4toibKx011N5fPJGjkoqJnMaZ+l/NQpgJ6O7uppldBpOYXTS9N2nc1QqvVwsjICBYXF18ak66l66e6YRj+r0zi7oM2kVJfTd93LQfe0+v14sKFC3j69CnW1tYwPT0Nn6+bU+v1es0EU19YXRRqIk3wUPdEEVndg7N8fddq4Htq5h8cHODJkye4dOkShoeH4fV6Ua/XDXhkZ3uuLf08xjx5H0WZ+TqVicZrqYmVTijclNHc3Gtqf61EoR/KZzA5gut81vWlACFdUL6uUptJBu5C0x/gIlMTauW4dl9TVJgTJOJGxlYEjq/xO6pt+jEsiUdNP77mai+gv8/pwuXKoM1m084RUbO5nx/L+ykBax0kx9UPBOsH5btr4M6XGobvX758Gf/7f/9vfPTRR5icnESr1bIKE6/Xa4yq92GH8uHhYavs17kpoKW+vI7tLB/VdRGUzhqNBpaXlxEIBPC9730Pe3t7Ni8KCoZwGAJSP573arVaPZr/5OQE1Wq1pxWoWlzAC5CRlh+tONItrRIV/NTCTHukRcXxqrvhZtDp9UrmVP9I/+dAyBwqPVwNq0ypWkb/1zxbPosaVBE23XTX1AZeZG24fqRLIPyMMqL6QdxI3ST+rzWHLroKdP02hc459n6JEjoPjl3NTD5fhQjLudS0VUFIIEd9ZVozfO7p6SkikQimpqawtLSE4+PjngoU7km/0Ajvlc1mbS4cr64xx0Zh0087ukyp2l33cXNzE1tbW/jmN7+JZDKJw8ND1Ot166Gr9MVODfT91AIgXbH1JyMMqkw4d45HaU9pw2UqmrcADCzi2LgOtBTVinITXvR6JXPSqSV07qakaU6hVrSTsPh5EjWZmptA5ubnlTho9lHa6325SOr7uTV46u+43+P/qqkUyFArwNVy7vh0HPwcW0aqQPF6vT0M65q8/UxcJWquu6tVXU1JH5P+kGpw7X3TarWwuLiIBw8eYHV11Y7z03sDL464i0ajqFQqKBaL+Pu//3tkMhncvXu3RyO6ZqmCQnqpm6GXCjv+Pj4+xtLSElKpFGZnZy0LqFwuG1ijrkq1WrXMNDW7eZXLZXQ6HTNh+b6LX7j045qfFHL0Pam4FChyTXnuH9cqGAxif38fZ12v1ZyKOgG9Z0LwoeqrkSnVX1SGcU1IDV7rpRpFkxj4bBKsIn0q8fjb9eX6mbn8bL+NcMEjPpvmE8fBz1YqFRwfH1tCsyZbuKEC97n9LtUmankoo3I8p6enNi4CEgTAdF2oeefm5jA8PIx79+5hYWHBTDgK40AggHq9bhL+5OQET548wS9/+Uv4/X688847PRrfdYNU0HCcLlPq/66V1m638fz5c5RKJXz3u9+Fx9PtkE7wjamDXFPXvNQ9ZzRgYGDAmFctAleDawyZgGa5XLZ15ueJ4qqv6gp5Vwip0P/ss8/wL/7Fv+i7918qzsmAuZqL6vhyM3ShlIhcrauS00Xy9H0lJiVel7jV79N7qDR0zRu+r1JXiZ0LSALnb+3vQ22p2t/n63Yan56efsnfVGJwpTPn5Zp/6oe5wJxr8moWC8dLJuVnVBDE43FMTk7i/v375n4wfZJjJQpfKBR6xqMZL2rqK5MoA7jCpx/Bcg14HRwcYG1tDZcvX8bExITNR81WPtfv96NSqfS0X+l0Olbx4/f7DYFVawfoBSFdy6XZbKJWq1kChtfrNWZUwUxa4rpwf/pVZXH+y8vL2N3dxVnXK5mzX58ZDgR4kaOoi0GgSL/fbyMooV1ic30x10dR6atmncfzcmNj9UFdptQxq3lKIufz3Hto+iA/S4JnGtz6+rqZiSoYuHZu8J4/imIC3SIBbWPBsSqTu+9p+xBlTlc7k5Dm5uZw//59rKys4MaNGzauWq1mGjMajWJtbQ3xeNyEsvtsJXZ9TbXEWX6na+55PB7rbhAKhXD9+nWjq3a7ewwGhYUqhUqlglQqZSY8QyPKlEpTKozpGrkCzePx9BRPUxAAL3oNk/b4ed1bXQ/eIxAIoFAo4PPPP8ft27dx1vXavrV8kCJRHKBqLP2hNFUpoQTkEpSalnyGa75x0sqY3BxXYisBu5vA77j+AImHC66CR+esRc0kUDJEIBBAsVhENpvF8fExBgcHezQb/Xedq1oPOn9aLNx8Net1Tvwex8CLhKnAkJs1BADT09NIpVJ4/Pgxbt682QPmMPOmXC4jFApZ9QoRVJ2D7jHwwixV4UdLw7We+DzVnmtra8hkMvj2t79tlS7a2iYYDPZgEmqJ1Wo1dDodY8pGo2E1rIwUUEiqoKGA1dRSrS/lHFSzusiymre6P8oftVoNKysriMfjuH79Os66XhvnVLTRJSCVFpQe/WxslzAUKFAt6tr9epE43fxZvueaVUoUet9+DOoyBy/6u67PyfsqE3OtmAZWr9d7No4brX6Qaj/dQPVD1bRXgdPpdPNnaXY2Gg0Eg0FjflaI6Nz6Na5KJBKYnp7GkydPUCwWrQiBfp0WWNN/5b67NOG6A8p06nMrfenfZLZsNovl5WXMzc1hcnLSGKLRaCCVSqHT6TZRY3iI601BpGePNptNPHv2DNvb24jFYjh37hyGhobss9rgW103taCUztz/WfbI/VMrSS+uhcfjwWeffYZCoYCvfe1rr0zhe2WGEDUGVT0BB2Y40DlWwqfEcSUMv6+pcCRoXQRlLF0EbjDQv/ZP/SpdDNf8ck1019wl4fbz0zSpmfPkvViXyu/X6/We3jqcqyKonLtmlWiPGTIUY2zUkAQ33D1Sv9lNBHEvNd/OnTuH09NTq4+kABkYGECpVLJ7MX1taGjIPueuuQo7NVl1P9Xq0T1kIsTTp0/h8XjM5CP6zHg6QxSVSsUSCCqVimUFEbw6OjpCqVTCo0eP8PTpUwsz1et163zvpuEpxqB0oe4d15NWBEOBAHqiC+QD/e729jYePXqEeDyOdDr9ypKx1zInN1EJiwTjaoezbGxlOGoA9558TReERMGFIEOrVlHtokyvGtP1M0j0rlnjSjzVcvpMnZPem2li0Wi0h9G0FYn6NZppouugjKuf42/XotFOBrwXP++aba7r0Gw2MTk5ieHhYUvna7VaPf1pVcAxzzSZTPY0SOZ6uWvomn+uWc09ovba2NjA1tYW3nzzTQwPD9s4Go0GwuGwCc52u3veyPr6uhXz83PHx8fI5/PGpGTU4+NjzM7Omk9K60DXRt0Vd6wqdPpFCsjk2olBFQmPiggGg7h8+bIJ/LOuL9Xgi4uhpqdqN5eA+XmVQi6jA3iJqJQo9f4ugekCKkHqAipzn8VQKtV1jmeZlC46SjNG70eEs1wu9/ixrrY8iwjc18lg+rcCZ+6c6AsSodS9dH1/NcWnpqawv7+P4+NjtFotDA4O9piz/M7AwAByuRyGh4d7xq73djWjIvq6dgq2eb1eFAoFLC0tYWpqCufPnzeCJiMCsDzW09NTO+aArTxrtZr5yePj40ilUmi320ilUojH46hWq8hkMqax2E9WwSalKV5kLmpCtZg0/5bM7gKltKyy2Sw2Njbw3nvv2QkBBJv6Xa9lTiUC1+bmYquDrVkpqiX0cFjtOvcqYuMiKXMpE6qZrIupNXOqfV0zj+U9LlO4WtI1q1XTuUCUx+NBOBy20iA+V+epwsc14dX64Hj4PTW/dBxqleRyuR5XQefr+kUKNDEf+MmTJ4jH42bJqJmvvuPq6ioODw97/DQVABrfVr9KLRoNS7VaLSwvL6NareLu3bvmqx4eHiKfz1uqXbvdtrI1AFhbW8P29jaGhoYwPDxshwTpc2dmZnqOaFhdXTXmoCviuhJcd0WZ9XJBSRdz4dwpML1eL+7du4fZ2VmcO3fO6PlVGUKv7b5HqaChB724iWTAWq1meYU8JId+lfqurv+lWlY1KgmNrylhu76Bvs/X+FtNX/2eaksXqNIN6Oe49zOxyaCVSqVnbLpurr/r/q1jUZDIZVzXz/Z4PBgdHe1hPFcD8Lt6z3a7jampKYyMjGBpack0v7oUHI/X220DUq/Xsb6+jmKx2Bdsc+/P0A3XkveiVt3e3sbKygquX7+OZDJpAiSRSCCRSCAejyMcDhsTrK+v4yc/+Ykl4JO+OA7Ou1wuW/vJcDiMZrOJv/u7v8P29rYlivB8GF1XV6i7pq2uqet78+IBw8FgEE+ePMHBwQHeeecde891Bd3rtXFOjXXyNd0ILj7zCuk8MzVOpT0ZQwel9+HrJycnPYFwXhpjOwsR43P6mVl8npq4HLNrFvN/SmB+XiWoS5QUDPV63Uwu17RUTexaJErInDs/4zK0q0FdVLof43Nf3HHTbJydncVHH32E/f39l7Qt0WYK6oWFBSwuLuLo6AixWKxHC+r6kMg1v1gFHwUZDyC6cuWK0Q6ZmZlASiPxeBz5fB5DQ0NmqdTrdSty51pWq1VMTk7a/oyNjSEQCGBzcxMTExMIh8NoNBooFAp29qmauP0sG643lZUKc64ba5Tj8TiKxSI+/vhj3Lx5E/F43Cw2lqqddb22npPMxYoQ7QOq0lk1YLvdDYZTe7oILwm3VqsZIetn1cxUUEVBFkpKPs8NtquPp0yopqRrsugCqymqQI37njIBfQhtAMaNVBBBpa3+VlNIkUzXpFJCUWZVzWUb7O3tBE9G10A71+b8+fMIBoP49a9/3cNEAF4yTXkobSKRwM7OTs84dY3csShj8vmrq6vIZrO4fft2TxEFM35c87LdbmN0dBTDw8N2SvfBwUEP4VO48gQ4zjEej+N73/sefD4fMpmMjTEWi6FaraJQKBgNKs24DNrpdGwN+VnSNxvVMan+17/+NYLBIG7evGl8oZbeWddrjwDUDVEiU2lOac8FYXtJV3qToZSQdNHVjHM1nNbHqQ+omk21kEo+N/CvQoTj6fdd3Yh+sTvXpKFWOnfuHDY3N3vK5fR+vFwt2c+30b1QDckwkcZP9XI1KBnSDUfxM61WC+fOncPs7CyePXtm5pfOc2BgwKo+crkcdnd3MTc3h5OTE2SzWYyNjfXV7Hymm9jh8/lwcHCApaUlzM/PY2xsrKcYgZUn3CtNTQSAsbGxnv3c29vDzMyMuU962DIBqFarhXQ6DZ/Ph6OjIxSLRWPeaDSK09NTHB8fo9PpWE9e1YxKE0pbBKkY6qHFtLy8jNXVVXz3u9+18I9aRK+6vnRrTC64Eole1BKa2qRIn6v6VYqrqev+pmlIaabahAFxDXC7JrPGOmnWcXyuluz3/H6+hmuK8ll8naCEJvQrU6pw4bh0biz9cgWAa8ozOZ0IseuH6lro/Fxfh8BELBbD9PQ0VlZWrNMdn0tBQFen0+nYIbZTU1PY2tqy+KG7B2quq7twcnKCx48fw+v14tatW6YlPZ5uFg3XQN0Ojv/09BTj4+Oo1WrY2tpCIpFAJBKxTKBAIGAAkq4Jy7bi8Tg6nQ62t7cxNzdn8Umfz2dtWCqVCsrlsu2TnhEDvOjQwb1krSg/U6lU8NFHH2FmZgZTU1OGx1DDuyaze70WrVW7up+fp58FeouHCf2rBiSB9ANheB++R6dZUWBKeTVnGUOk6awAkv7Q3NEQh7t5qmUVaOl3KSIJvNBGjAXW6/UegtK/XZPU9a/1fY5NtT39RB6cxFOc2RlALRDez43p8fJ4uv15arUa5ubmEIlE8OTJEwtfqCvA4mZ2GuD3R0dHcXh42CMkVcu7mAXQRVp3dnZw48YNawStQpn1mOoykcbq9TrGxsbg8XiwtrZmTcxPT7vNuTg+nau6RjxDNRqNYnd318xNreYJBoOIRCLWhYMAT7VaNdrk2lNDkwbb7Ta++OILOyqC9Em60zj0Wddr0/dcLekSEdALwFDCcRO4oJpXqoSq2pXPVAnLOkJXw/GzqlXI9G48jX+rBiXBuc6//tZ10HGr7+N+lkQZDAaRy+UwNzfXl7n1NRV8nU6nJ+OE91cgjqY8zbZms2kHD1HAkCH4N800zS1V8zISieD4+BgTExMYGxvD2toa6vV6j0XAsfDzJLZ2u3sWSywWw/HxMYaGhl7SzhRgnFc+n3+p96wCREwjVJri3En8sVgMR0dH2N/ft2ymcDiMarWKRCKBer0Ov99v3elJgwQvASAWi6HV6haPU6Pxmeq+EaUm/qKuDumA1lggEEAmk8GjR49w/fp1C/1olwbFTM66vhRz9hsEzRzgZZ+TrwG9+amu7a7Moza4+klqYuqi6YYpuKCmtTs23ku/q4JFn8339W/X99T3SVjlctmIS/uX6v04b3dj1Ad1582SJw1rkUE7nReJ4MooetQ5v6NuAPeFGU1A9+yPCxcu4Pnz59jc3MTCwsJLc+D3SYwUAIlEAgcHB6hUKha+UEtK92pjYwPlchnf+MY3evKXeV/2A1I3Q31sfpYJCOVy2SyHTqeDUqnU04ke6D3uQ2mAJ655vV4LzZDGXGHPObkKQn+3223cu3cPwWAQ586dM43Neygtf+XcWhfxVOakScnBq4nIyXMBOBmX4Fyfrx8y5kpgzbpQotb76xh0/K6W7Kf11C9TwaFjdL/DcQHdvruJRAITExNWB+h+vh/Tu3NxP8+iXh5zocfYu/cls2ozKbaGpHlL/5HmMAnF4/Hg6tWrSKVSePLkSQ+Yw/uzQoTghs6DBwppAoNqe6/Xi52dHWQyGVy7dg2jo6M9AqdSqVians6Na0zNSYBnZGQEfr8fq6ur1tqSQomJ8aRDRgd4L0VL4/E4CoUCqtWq0bOG15RulE6VL/iZ1dVVbG9v486dOy8VDLjIvyo093qtz6lZPJqArUTsIq7uPVRb6ST0/jYgybqgFNVJcKJqarnmqMtE/UASJWQ183icPKUw/RLGv9xQiFoVvJgjur29jc8++6zHnHfDCXzdFVAqtMhI6m8yPMXQFEMKJEACaV6vt+9ReNRWPAFa55RMJjE7O4utrS1rwcG5Urt4vV47OkOFrd/vRzwetyQGjt3r9VpnhSdPnuDk5ATXrl3rsZLoi7luk5r9CiCenJxgZGQEkUgE29vbRh/0WTudjmlL3ocYRafTsVI0WhGJRAKFQqHHV9UfF8NQJcT9bzQa+OKLLzA9PY2xsTGjYR2Du+dnXV+qKkVT5BSc0URsfl7/7nmQ1/uSxlATiRugCQYcvLtZLpMpo7nMr0LjLL8V6DIUW1gQBIhGo3ZqFTNU3J6telEIlctlbG9vIxgM4uDgwFLEuA4sU3LXhp/pd7JXu93GZ599hqWlpZ5KFT18lz8q8VV78W+OnTFZNb/5nYsXL+Lk5ATr6+s9QoTfU79LMYNWq2Wd5tg1HXiheR89eoS9vT28/fbbL5mXhULBzFnVMJrLqhYRzd9gMIhMJmNmrMfj6engrsALf1OIEfHudLq+fjgctjM+dU/74RL9MIfHjx+jXq/jjTfesM+o/wr0Huj0lZlTEVVutiKlrpTXBXSZhkyuk3QBGh7mqhtAqUbzQDWOXq7/yt9MntC8R24g4W9qA240N4zEyx9qUTKyNi3T+TIr5fd+7/ewuLiI1dVVIwQNRyjszteItlII8GJMTjvNub6vuwaa0UNG0jUg2OYG+RnzdE1b7getCCKqvHQsQ0ND1nOH389kMnj69Cnm5uasjQsT28nILOHiHJQJNM5J09zn8yGVSqHRaODw8NB8O632oPChj0wrqdVqWbiFYA+1qa6LCvd+bghp+vDwEM+ePcP169ftzJl2uzd/lnQFwDKjzrpe20OIkks3wN0I1ynmazohvsZ7UZqoxCXh8j01ZVwzkuOjLX/WuAmiqI/M+5BpAdjmcCFpGbjmCAmIBOKGgprN7mlYt27dwujoKPb29owg6vW6Bbz7aTISHD9PwiXTMu9Uicv1eV3hRQ2nTEpCp0B097TdbiMcDmN+fh73799HuVzuqSzhvbQvK2OzCtYlEgnk83krkP7iiy/QarWsax+1WrvdRqFQsOP91M1QMIYazufzGRLb6XQwPj4Ov9+PbDZrMU5qRlpDKuh5P64HmZdCmFqccVuXxvV/7mGn08HDhw+RTCYtsd01971eL46OjnqsEfrA/a7XJr73fFgkrwtsKBO65qt+n4ylfzM2RKnpakguqJvnq+Pg6/20pp51QQ1FYIVxQr5OzaGJ9hpjZayUz+P9yejlchkDAwPW0p/PSKVSCAaDPQnxXAfOkYTvjovzcbNVuIbaH4cX85Nd14DrFYlErHuA6x5wP69evYpOp4Nnz571CEBqTq6NahbFFkjslUoFhUIB2WwWt27dsvAFn8vTzSgY+o2Fa8O10+eMjIwgFothe3vb3CyCRpwnfVQX0wBeaD/SYSQSQTqdNsFBWuL6qdvFca2vr2N/fx83b96096hwuLeHh4d4+PAhDg4O0Gg0UCwWX8mcr9WcrmnK3/18SF1Y12fib31fF4Z5iDoZhdj182rGcdEUrOH4iFCq6UgC50Xp2Q8m53N1nizspfZ00TaPx4N0Om2MywqL09NTM1lPT0+NmdUK0OdRg5IAuB5nrbXeo9Vq9Y2V8m8yswIVvCfXtdlsYmZmBmNjY3jy5Ik1/wJg1gh93E6nY6Ejmmy8fyQSwebmJnZ2dnDz5k0sLi72MObAwIBpPBeld60A12riXNPpNGKxGDKZjL3ebHa773s8HvNjyWyuD01tT0uCne9HR0eRyWQQj8f77jN/V6tVPH78GPPz82YltFotE/jFYhGNRgO1Ws1ayXCNy+Uyzrq+lOakdFRfrV+OpjLOWUikEgoZivY539P4HJ1nXRwlRjUNaRZSAyvhkdi1Yp33ogmrGUYqmV0QaWVlBcfHxz0a2+vtnt2RTCYtjHF0dISBgQFrgsx1YeIAzUJdWxIRN5Dz0M/ovIHehA9qCCUe19WIRCIolUo9gkD3kZoxGAzi2rVryGaz1sQ5HA5jbGzM4oHJZNJO9tIYJJ/dbndzXre3t5FOp41RuBYsFnBDZCoQVRCpJuPfAwMDSKfTlm7H9aNw5+dplZHJXTpSxJi04Pf7cXh4+FJ1ES+/348nT56g2WziypUrPWvKAoiPPvoI/+2//Tdsb2+b20Rsox9+Yvc+853/c6m5qAvmShJKeP3NifdjLqp81Xau9uDf6jO50lUnp8SsII1qRgAvaQs3FKL3529FDdvttiGu+n0COdVqFfl83kyWYDCIo6Ojnt47PHyVfq36nv1MTTWlFK1WTaBgkVbYK/LJMiUNUSk6/Mknn+Ddd9/F4uIivF4vUqkUHjx4gGaziRs3bgDomsyJRALBYBBXrlxBIBDA9vY29vf3e5pdBQIB7Ozs4NmzZ1hcXDShxLkDXdQ0Fov1FEu4+6zIpro8nIPH47E84Gw2i2Qy2RNX5D3L5TKCwSDq9boJCWU0tt4hLnB6eopYLGaMGovFLMWPDH90dISVlRXcvHmz56Q9mvP7+/toNBool8vY2dnBhQsXEA6HEQqFUC6XrZyt3/VKzanIKxfG9V+UkFX6uxqV99PsIgVTFKwgUWpHNNd80wC8ak3XT3U3QO+hoSEdo97f9dUGBgYwPz/fY5oR2CBz8H/WDtKPZZhDQSkSaq1W60HCdW1VAKngIpMBLxhQU+4YYqEQYJijVCr1lIzxs0NDQ1hdXcVf/uVfGjo9Pj6OK1eu4PHjx+ZD68nlXJPR0dEeQItI7P379+H3+/HWW2/B4/GYtUAmoZDTPXLnTMGna6Jr0Wq1MD4+jlgsZtVAXAdF6qlRPR6PtSjh2rkaTMM16XQahUIB6+vr6HS62UeFQgGNRgP3799HIpHA3NycjZWa8+joCOVyGSMjI0gkEtjd3cXg4KAVjwPAH/3RH+Gs67VmrYY1uBlquqgPoIiWmi6qHQnq0PdRFFAZWr+v/pcypZsU4C6wChZdcAoaZUhtj+hqMj6L4RMmiT979qynukBjoMxyIfMNDAzYUfAcG79LQImdJNSMJlOrqUvTi+YX/6a/1O/9drub1ler1ay/keZ6djodTE9P44/+6I+wtbWFX/7ylzbWt956CysrK8hmsyZcaD5rqRSPOaCQYkfzu3fvIhgMIhwOo16vW93k8fGx+e5knr5EKj53u91GLpczS4BWGc/azOfztq8qYClwW62W+cykKzWR1VfXvUqlUuZfHh8fY2dnB7/61a+wvb2NW7dumQmtiof4xuDgIFKpFE5Pux0OK5UK1tbWcO3aNUxMTJzJe69NQnDNUxcIcjVeP/NQYXH3fZXeyojuApFRNObK1zX9i+9x7CoBlVFpgupvzlOltPpC6sSzwHdzc9MQWuCFeU8BxkZZrLjXcbmam88tl8s9jKaVFJpwwCRuvsZUQWYIaS8lAmSFQqHHPOTzGcZ6++23cf78efziF7+w+5w7dw7RaBS//OUvLZeVMcDDw0OUSiUcHx8bU/p83SMpVlZWrGcOnxcMBvHhhx/is88+w71792zNtMha1577zP15/vw5tra27HtqrieTSWSz2Z5SMbdgIBgM2n5p0gLnz8Ns1QIgzaTTaWSzWYyPj+PChQsoFAq4dOkSUqkUgBexVY6f5XONRsNynVdWVvD8+XMAwBtvvNGT8OBery22VoZxTQ1XU3IxXZPWNXc5AReJVVNRn6NZJOpw63fZREkZVCWiauR+cD3nq2Pi/x6PB/v7+9jc3ES9Xsfx8bGlyu3s7OAb3/iGlTzxou/FGkP6GJyHa7rqehJYqVarFrTmawoIuWYp8OKIADIg0CW0eDxuDE9mYPE0tTefPTExgc8++8zyVT0eD2ZmZvD//X//H+bn59Fut20u9+/fx5UrVyzWScF0//59lEolvPvuu7a27Xa3kmRkZASPHz+29iDxePwl+tL94bhOTk7w/PlzYwYX0U+n0/B4PDg8PEQymbSm29zHUCjUA575/X5rxq3RAMUo+Dd5YGhoCPl8HgcHB/D5fAYCURjSX+10OgiHw5iYmMDy8rKNJZFI4N1337Wqm88//xxvvPEG+l2vPY6BSBob+Wr8j9JTgRKdkGtmKkPyf90IFwThpWYmTRUeuqM1corGub6smjUuyun6vLxUUPj9fjNthoeHsbGxgcHBQWsgpSaZajcW9dKc16QJ18/impMYydCMWdKXYiKCChzC/zRTdW29Xq9B+ZwTwx78LDUJGcjj8WBkZMT2/5vf/CYePHiARqOB+fl5RKNRmxfBGI712bNnWFtbw1tvvYV4PG7j51inpqZMax8fHyMWi9kaq+/uoqmdTgfz8/NmCrouy/j4OEKhEHZ2djAxMWE0SMFFJgyHw8YsWuCtwo5j4DrzN03ner2O27dvG7B0enpqgoyf393dxdLSEorFIuLxuK1rrVZDJpPB+Pg47t+//zLj/Z/rtWYtF5YMQgdbf3pu6CC7quH4nmpSVwvydfprKtEp7aPRqJVFMZ1OQQX1YfjDAlkKFgoQamZNF1RgRs2+dDqNsbExExRDQ0M9R5Xz8+pj68HAfv+L4w5VEOhvV2Mw6b7T6eDRo0f42c9+ZmawAiIKilHS855MjuCz3dALP08Nmkwm7X70o+fn5zE8PIxPPvkEsVjMkEmGQjhGHtAzPDyMK1eu9BzmSyHSarVw9epVq+NkuRbnrplPFMQA7MBbWilq9rbbbQwNDSEajaJUKqHRaBgNqCDjvVlZw3gtaZfamPdUAe3zvehIz+eRMfl+u93G/v4+PvjgA3z88ceW4P/+++9jZGQE+Xwez58/RygUQiaT6Wmh6l6vPTyXIIiatjSzNMOkH4KrDrKrlVyzl/fgwrjaUs009RN04QhwaNjBJio+jV4KaNEacNFhBZJ8Ph/u3buHfD5vjY9VS1MTcdP5HZpVRBFV66l2VwRYzW9KXG4m/V/eQ4EMxQYYm8zlcibgtF6Sa65xWBI/hWO73T3Z6+rVq/jwww/t+6QBBUMePHiAUqmEP/iDP7DvBoNBnJycIBQKIZ/PW4nawMAAZmdn7aiEoaGhnvCH0iH9WI5bMQquQSQSweTkJEKhECqVCoBu577j42OrTqEw8vv9lu/M8bG8THEPdakCgQCePn2KQqGAN99808x4nkvT6XQzyB4+fIharYb5+XlcuHAB7XYb29vblgYZjUbNouhnPRnNnvkOYOVTSqzq+xBhdBlONaJqE5XQ+nmXqKghufg8yt31oxSFIzMzM0MBI22XolqOG0XmUhDBNRtVaPA1jd2qQFC/l2YsGUOFmboB+ptrrRk4tBAWFhaMgLV0TqtEKED9fj8mJiZQKpUQj8cNZY5EIqjVaj0ai/saDAYtC4rrwv1+44038JOf/AQrKysoFAqIRqN2/0ajgc3NTTx58gR37tzB1NSUrSXNVfa4ZdcG0snCwgI2NjYMFWXwX5kDAEqlkuXfujnVpEcSfbVatfWMxWK2X4or0JTnWjGNUF2nSqVi+1EoFPDo0SOMjY0hnU7j5OTEDn/iWMLhMKanp5FMJhEOh3F4eIhwOIxr165ZvWi9XkcikbBGYmddXyp9zwUuVKJrMSsJTLUimVFBIhISiVPNGH6f9juZkJKJ0okaQEESmmG8p2YFcdzq8GuYSMEcvu5m5rDdBRs3s60nk7YZ9uDYCfPzJCr6qJS0Kp1JNFqex832eDymocrlMrLZrPm/6kOrxvV6vRZAL5VKGB8fRzQahdfrxcjICA4PD5HL5YwQZ2dnLVGcz9/a2jK/t9FoYH9/H4FAAH/5l39plSs3btzA7u4uHj58iKWlJRQKBSwuLqJcLlvmF08EOzg4MCCEe8v1mZiYwMHBAZLJZE+zLQV9mHnFS+fO/4eGhrC3t2fastFoIJ1OI5FI9AhD0guRZ2aice9nZ2fRaDQQiURweHgIr9eL+/fvIxgMIplMolgsWoMzfpc4yMTEBDKZDBqNBhYWFiyWOzc3h1wuZzm1/XCZ34g5FYp2NR2ZVMt8tGeoSin+r/fmouvCqI/BZ5CYCe3zc5oHy8WhtlazlFpVfUr3fEkSCpmWjEWTMZ/PG2PRnKlWq6hUKnj69Clu3rxpC84qCGqjUCiEUqnUXfD/o0W0blFL8/h5Mi+17vLyMqanp3Hv3j0cHh4ilUqZaajrrfuSTqeRy+V6fNl4PG4Ez4KAYrGIjY0N7OzsoF6vY29vD61WC3/+53+OK1euoNVq4d69e/a8Bw8eIBaLYWpqCsViEevr6/joo49weHiIWCyGH//4x5a4HwwGEY/HraibnQ80u6rT6ViooVAoIJVKoVqtGrra6XQD/7FYzPZRTVTunc/nw/DwMLa2ttBsNk2YaiKIgksArBGbNuii6XlycmIFEmtra9ja2sL777+PdDqNo6MjbGxsIJVKIZFI9MSsT05OEI1GcenSJWQyGayvryOZTFooLRAI2FoRef6NmVOZSn1D+7IknRPJpZbQeB4XUlOvlAG0qkJ9RlcQqKnF0Anv7cYmudGBQMCS6jVWSp+QAIXm0lLQMMAeiUTQaDTMDKIwUWFFNJanW3HMTHLX9DT6Ogok+P1+M/f0GDkKlFwuh2vXruGNN96wqo5ms2knX6sZTgFHM4prQxeFROT1erG3t4fl5WUcHx/bWnBf2GC5VqshGo1iaGgIzWYTDx8+RKfTwf7+vplpzWb3lOzh4WETktR8nU73LFE2POPYCaZxnjSnc7kcgG5qH5FZPYxYUz9d2iSY5fF4kMvlMD09bRaVCmv1a6n9iLHwVLKDgwPMzMzA5/Ph/v37mJycNGR6aGgIm5ubeP78Od5//33kcjmsrq7i3LlzhsoODAwgn89byGZsbMzM5KOjIyvm/0rMSa3GzdT/lSh14mQ0EiaZjpvOxSTRqVnCzxJFU7NaNarra/K7LtDCI8hVKPB9rZ5QhuP9SDTqA2umjTI558wWFefPn+8xO5mTqWaax+OxcIS6DfpcCoxSqWTMn0qlEA6HDcDQ8JHuG7U1x0jtwaJkAhTxeByTk5M9Pi7vwVhhLpczTc4sp2KxiLGxMdy/fx9HR0coFAqYmJgwJnGFeafTMYCJQBL9PV0Dmq3MYjo8PLT7qpDXnrbqPvl8PiSTSRuTi6Tqpe4QewdxP/f29hCLxRCLxfD555+jVqvh3XffNdoeHBzE/Px8D+DHrLBEImGJDsRLTk5OEIvFMDMzY/cYGBjA48ePz+S/18Y5VVOqjazMpkim3ViYVOFm1wxRKchNchcRQI+Jos/igvYDe8jsSriKvmlWD6UnN1JNYb7GjBtKVy298ni6qV08NZm+UygUMuefTF0sFl8CnhQ041woULa2tjA9PW3zZFI181vdiond3V0kEokeAVepVHB8fIzt7W2Lv05PT1sObbFYNMajT7+2tmZ9f2KxGFZWVqzqg/723/7t31rCRLFYtM4H6iuyfEsZiZlTuo5kUFoGn332GUZHR3tcAA1N8SItcB9qtZq5Hcyh1aR6FUC8QqGQzZt7Wq/Xsb29jQ8++ADXrl2zeCyFAkN6rVYLqVQKqVQK+XzekGKmCrKCqdlsIp1Oo16vI5VKYWhoqIdn3Ou1Zq2rvVTKKZqmSCnQGyNSya5aVMMWKsXIKIpAKjKsjKk+K3+7YQlFZDkGDX/QjORnVUD4/X4Eg0GrRlAi4A+DysfHx7h+/Tru37+Pq1evmrZVBuIcdX2U0PSi1i6Xy1hYWDBBVq/XX9JQXq8XkUgEyWQS+/v7iEQiSCQS6HQ6ODo6wtOnT60B8tjYGOLxuJ0WpjFspgRSUBwcHKDVatnnCcy1Wi2sr6+bn8zcWdbQUtO7gocMRiFDRtL1IbAzNTWFoaEhPHr0yLoLnHWpwOZ9iRB3Ot381nw+37P3LgjJvQVgQunnP/85wuEwLly4YAzGqhM1jfmb5XOVSsW6u7PvcqVSsYoZCiAmwPfd/zPfEQJx4V5Xsisiq3A+J+xqRl4ax1RAxzVBKW35HDKP+qD8200mcKsvFPTRTaLfqv6v+h+5XA7Hx8fW8btUKlku6+HhIT744APk83kkk0nr4KbmPi8Fwvg/11lRbzXFp6amzH2g9uS5HlyvcDiMdDqNZDKJ69evY2pqCq1WC1tbWzg6OsLo6CjOnTuH8+fPI51Om//JOJ2uN1/XgnCfz2dtNAn2cJ05F7VY9P/BwUETzgwN8Xk0+1xCb7VaWFhYQLlcRjKZ7HElVNArlgF0y9nGx8fNKiqXy2i3u1lPzFnmHDlG0gELxkmXmUwGm5ubOHfuXI92Z4RCBb7SNcdaqVTM/wRggohrqe1f+l2v1JyanqfpYboYXHAO0NVWGm9UE5Gf5yLxNZWg3ADeS0EcfkYFBRdbn0dCoETkGFW76vfIIIT4M5kMstmsmWzUFGR6rlEkErGMF4IRzCBhcoTGJAm0MBdTs1J4D5rKkUjEGOTo6AjxeNy0HE1yr9eLYrGIw8NDHB8fW2vK0dFRnD9/3vxbrgXBF/pCqun0JxqN9jQ9o084Pj6Oer2O09NTRKNRTE9PY3Bw0DQnASeuNc143QNeROJrtZqtGZllbGwMOzs7CIVCpg15kXYY//R6u2mKrDUFYLHEaDSKdDrdQ3dnobfc03v37mFxcRHj4+OWN0tLTftP8bvqqtGcHR8ft2eoid1ut3siBv2u14ZSqGnchAMXvncdbhfYUHTWtbNVw6ok1oHzefo+v6edvLnw+jlFYvlbtTiJiIynm5VKpZDJZBAMBpFOp3vSBLlR1WoVc3NzljN6+/Zt7Ozs4Pz581ZgrP4vN9XNRnIBskAggP39fQvMc17KrCzWPj4+Rjwex89+9jMUCgV84xvfwMzMDEZGRmwvqLUp9Wu1mmXI6L6p4A2FQj2mKgDLEOKRDD6fD0NDQz39lDhPzot75AKK3PdgMIidnR0kEokeAZpOp/H48WNkMhk7o0WReY+nW8XD9iAEZNLpNDKZDCqVioW/RkdHrTeQPoOAIMcCAA8fPkSj0cCtW7dsjRhyoVBWS1GxDQr2g4MDs8DY+UIrYgD0lBG612sBIfqR6me5hK1xRdVmvAffo3RWdE0lq6t1VXtys6lxaDpwg9TEUB+n32/V/K55o8LE7+92RL9165YRebv94vAk1lBS4tMcnJ6exurqqlU80JTReJoroDg/VzjwO7QYKL2BrsZhkTaPQKAWf+ONN3qaZinS6fP5UKvV4PO9aA3quhuKAqugVfdDXRgisZ1OBxsbG6hWq5ifn0cikbA1VcGm+8bY7tjYmLkDtDAAYHp6ugdXYIYU14x7F4lELEtofHwcW1tbGBwcxNLSEnZ3d3sKEjwejwk5N6WyVCrh0aNHeOuttwwVPjk5QS6XQ71ex/T0tAk4tYjUb2WOb7vdPRM0m82i0+kYqg10tTTj3/2u13ZCUEJR05ELQsCE6pqbRUnEpGgXXeXl+oecNP0Qmo/VahXVahWtVsviavoZLTJ239PP6ElSmhjPsajp3el046lDQ0NIpVLmb1GSsksex8+r3e5mETFe1+l0LFuH9+faMmmDG6zgTLVa7elUx+/wedpr6fDw0IREKpUyNPTw8PAlwIlrollXur9EKhXs477xtzZPU6F9enpqR8jfv3/fhI2m8ek6KWEz1su9pGWwuLiIeDxuZqAyAr/X6XRR4Ww2i1qtZmYkQ0GFQsHwAp7T8vz5c9Nuag19/vnniMVimJubM1oCui5XPp9HoVDosX50DTgmmsfVahWpVAqlUsliniqgXmXWfilAiDdRE9bj8ZhUiUajSCQShtYR1fP7/fYa/RYX7NHnuK+phqPpww5mHAsny5gnzS9lemUcStt+sUH+Vk3canUr2mOxmB3RwFxM/uzu7hrR8ZmLi4vWDY4+HiV0p9MxU5LVE/0AhoODA2NOnvuhlgYR2r29PXz++efY2dmxPVlZWcH//J//E//wD//Q4xKQQDUNTk1u/q9tSBTMIyBCK0iBHOBFgbHH062BLZVKPcKYGpB7ofteKpVsThSo3BOa0LpXnBPNZZr8w8PD1gGR4Ro2DWcHRDYId4Gw9fV1bG9v45133ul5PhFWfkfXRt0SpaFAIGC4QjKZxPnz57G6uorPPvvMLBDt9eRer2VOlQbqU2oyN513PTSHBAy8aPHB3EgtIKbkIwLodlgncw8ODuL0tHvqMLUdAYrh4WFLFaM2UACI/iiJRM0xNZ1VOHg8HksbpLZguIDz5gLn8/meMzlOT0+RSqVQq9WMaNRkJfLqAmfUoPxNhmRGkSJ71DoMh9RqNayvr6NWq8Hv9+OTTz7B8vJyD1h3fHzcc8CtS2AaA45Go/ZMV3Oqe8J14/s0Gbm+Khgp7DQH2s0i4npxHzW0pZpTTVqfz2cWSDKZtK7tBNtyuVyPiU6wbG9vr+cZ9Xod9+7dw8WLF605tbpzAIzpXZ5Q4Ub6GxoaQjAYRLFYRKlUwv3795FKpXDnzh10Oh075uMrMWe/vFpeisa5IA1NShIR70VzkOePMHcyHA4jFosZ+BAKhTA+Pm6mJc0DnjnCqoNsNov9/X2cnJzg4OAA6+vr+PDDD/Hs2bOXynHUJOQPF97VoDSRlHhU2odCoR4CBPCSr+j3dw/0IVpIQaTEpeCVjsHj6aZ3RSIReL1eS9Nz/XDec2JiAnfv3jV4nr4mtUOr1cLTp0/xox/9yPaOAoCXCi7+z7XQsXF8ZEYXzGIM0Ov1mivA72g/WHYoUCFBbU6hR+uL1g/TIFlhw2qQ4eFhE3oKTCqyf3R0ZIks+/v7KBQKODw8tHCY3+/Hw4cPcXp6iuvXr/fE7NVkDwaDlnml/q5e/H9ychKnp6f4yU9+gsHBQXz/+9/HrVu3LJ2UtbNnXa9NQlBfx00V63Q65hdRIruS0Y3jUOtoyIASvVAoWDF1s9nE/v4+Wq2WESZNC7Z33NvbQ7Vaxf7+PkZHR40Yk8nkS1rGDdkQGFEzVk0U5n665h4A0ygaZ6QJzjVqNpuYnJzE1tZWD9raaDSMeRjI5qZrWGhvbw/z8/MG+CgRM7RFYTM0NGQ+2e7urgEdyWTSEq4//fRTHB0d9SR3KLqtYQ+dq2Yw6fyIQnIsmps6OzuLeDyOZDL50hpmMhlbWwbneX8SM++jdcNEW9mriKAcFUe1WkU4HLZEdsYQj46OMD4+bvRGqyYcDuOtt97C0dERPB4P8vk8nj59irt375qV1m63exLjuS58X1FjXhxPPp/Hs2fPMDAwgG9/+9uYmJjoEfjsxpBIJL4ac2q7CyVuajOv19sTX9IgvhIT0OvTEYwho1AClstlaye5tbVlAydMriEPopKhUMj6udC3daVZP+3kMhwJ0ev1olar9WyGjl/RORIz41aq2Twej4UB2u225ZEquEOAhOAO140meTgcRj6fNwJ3XQyOd2BgAMViESMjIygWi/B6uwfZsjUJCVe1u5r11FSa+MBjEEnk6uerf8X7aZeFsbExjI2N9cyJfmEymcTx8TEKhYJpkNPT7lmfRGs13NTpdKxLX6PRwPHxMdbX1zE8PGyKgHtWLBYRi8XMdL116xYODw8RCoUwOjpq9DE/P290wrK5Tz/9FPF4HIuLiz00Qo2s9KMuiQuIcY9OT08xPz+P+fl5ALCQE9ctHA6j2WxaR4l+12vP51TC5eaRMOhfcED9kEdOitpGfRtegUAAsVjMUDkCMKenp9jc3OxBVnnvQCCAXC6HTCZjaK6GDGj2cexKUGrOcZ78Dsem4QL96adhGOPjpQQZjUaRz+dNmOnZGG7MlN/L5XLGXPR1SSzKFCpg2PWc4Saag/SrRkZGMDY2Znug+0sgjQzLIwPGx8et2kLH6WpXtUBII2Rmarhms3u8w82bN+HxeKyki74hy+jo09N6IT0lk0msra3hyZMn+MlPfoK9vb0ev5QtN6lFnzx5gkqlYlozn89bggNNWY+ne2DRz3/+c6yuruJrX/vaC8aQmCU1NedNn73T6WB7e9uYWBnU7/dbLSdNenWD+LoCc+71pTu+c9OUMDQzQ489d1OdlLhVE2vckRKTn2m32zg+Psbh4WEPuKMEwkUbGhpCpVKxMxlVG+pzlUF5uRqVMVQlQP1R0ITaYGZmpqfMC3hx5srk5CQ2NjYwPT2NQCBg3QBc4tYi7YODAzuuXEE3nYc7RyUY+qhEPnnWqGo+FapqdnIPc7mcxVTZhNpdFy1sV7OX4I3H8yIrJpvN4s033zSMgf1lm82mJeXv7u7i6OjI7keklSeKac3pw4cPMTY2hg8++ABHR0cG3q2vr8Pv92NrawulUgkDAwM4Pj7G9PQ0pqen8ctf/tL6MgWDQVy8eBGbm5u4cOGCZQJxPTgnmvDqT3OtGHIaHBzsaUuj1tLg4CB2d3dNS5LmtPFZv+u1SQhKiOqfeL1eQ7QoefuBB6p9yXR8XTUr215ots/Q0JD1qlHgiX9PTk4asFMul1/SmC5S6AoGfT4/f1YesDsf1VrsVqCalj7L6OgoHj9+bH7WwcFBz1pojSdrYUmcbviFF4WVanM1+bmGBNUoPEdGRvombwAvsrMY4+QpWKxCIaGRqRW15VwVQeVnidy322188cUXyOVymJqaQrPZxPPnzy2phOdhsoaWa6DVTJrFs7a2ho8++ggffPABDg8PbR3U3KcGA4A7d+4gmUzi448/RqPRMOCRSqVer+Pjjz/G2NiYJQloRhTnrI3DWq1u4vru7q7hAzxTxuvtnipG/58F8noUBVMSz7pe27eWG6ggDzdW089cQtaUPV79zEmGR/R+iUQC1WrVwiNkSmU2DVJrWxB37Arnu1k52oeGfpMihpwn31eNo+ita06TUGjKh0Ih5HI5xGIx05z0PcmACgQx06cf4MCx6Dz19Xa7e9ZloVBAPp/H6OgoPJ4uoqtpeu59FZw6Pj42Rjk8PLRO8er7MsZLDRqPxzEyMoKjoyO0222USiVks1nrIMFWJyTud955B1tbW8hkMsZ0AHpAE83C0fVvtVpYW1vDzs6OZeH0oz/ud6VSwaVLl/D48WMcHBz0uBZkPHbzuHnzJt5//33zB5vNph36lEwmsbOzYwX4zLTy+/149uyZ0QazfkKhkFlVHo/HCvaBXmFz1vXa3Fq9SIR0xCuVim2S5hqq1lGG0kUGgEKhYBUTCq0zS8b193g/rRWlhtHWIEAvyqzjV3NaQRzmmbr+GC/VTKqBeV9XcPH/TqeD2dlZrK6u4p133rFWJvpZ+jXtdhuZTAbz8/OWYaJ+Cu+niLmayJwzTdjr169jZGTEuulRi561zzSfuWcamtA94He8Xq+dpXL+/Hlks1k8evQImUzGfEBiAS4ot7S0hMnJSUPkXSGo8+VYQqGQ3Y/1pMqw/QC/VqvbhjMajSKbzfaAYuzTSw1/enqKra0tZLNZo2+ClUyRJBYCAAsLC1hfX0coFML29jYSiQSGhoYs1KLnzrIqhp0PCKBpxpR7vbYTgm6exi87nY5VM2xublpuqX7eXSgdDBHAyclJQxJVG2nXA95TTS8uqsai6KMp8KN5onxNL3XWtfiav/tZBWRUjmF7exvJZNIqECggSDQTExN48uSJjZdEqtp9cHAQR0dHqFarFkaoVqsvnaxMoUSzkc9pt9uWPUUNQIFH5udnXSGjYEan07F+PxS+nU4Hw8PDiEQiyOfzJnzOnz9vYa2PP/7Y+u4wKUNpRU1NAinj4+MYHh6207+JuKsmYzIL45705bm3ul80hYlh+P3d9iDf+ta3sLa2hkKhYOE+pnoyXsvXmPoXjUZtzGRGhsByuZwVj9P6CYfD1jyafZrY5qXT6Xbl2NnZQSQSsbTPoaEhO9ip3/Wljp33eDw9zMOFoN396NEjzMzMYGJiokfrqWlCoqbW01xLlahkPgWI1GzhYinTMMWOi8jv8T1ugDKmxr1owmiIRLWu3k9BHI6B51247TTUDwsEAhaWqNfrtvlcL2pNF7FU4eRaAiRMn8+Hx48fY3R0FO12t9O4Mpw7d52H60OTCTh+MjK/TxN2cHAQ2WwWz549s+A+G13xomAgqEVsIhwOm/CZn5/H9PS0vUZNReCFwoHzYRfAycnJHutEBSpjr7SEYrEYdnZ2cPfuXQAvkhN4pAaPqK9WqybsaQ1xzZmrPDg4iHQ6bQcaEe8gcEWtzvuw0obJGOzmNzw8DABfHa3VLCBOnJtKQqZpwKRyj8djUr1YLFrLey4UGVZjRLw3zVQFgFTauggqLwau+TqFiesb6rP4OWoqvZ8yIIlK31e/kmPk2OjHqlZqtVqYmprC5uamtcfUIlym6LGtJM0oZU4+Q8MWOoeNjQ3TJJlMxjrHqbvBNdDXeA/NhGJ/HzJTq9VCsVi0NMlarYbHjx8jn893iej/CFmilWxkzcwvmnVM7dT45unpqQFqrmtCcIf4AuOXbj2l7pkRtv/FsX9ra2sG/uh+Ei3m3jWbTWxublo6IK1Dgjikb36fZ9nQ4qGWJO3qERcej8eQXeIAPODorOuVzKmbwwVQbUBijMfj1pu01WpZzxm3fyv9KmVMlc68p9Yuqs+pwA7f4xi4ECQ41TiuZFXmpqZzNYj6mOoLc/7UeIz1clxKXHye1+vFzMwMPvroI8zOzlpmDLWR1+s1YIE9iFQQcp3UUlBhtL+/j3a7jYWFBaytrZmvw7VWy8QVcFwfaisSHO/PJskMpi8tLVm1ja4xEw9OTk7MZ2ZutK6x7gNjoGplra2tYWpqyg6AojChG8TSsk7nRf9iCgdiB4ODg6hWqxYrzmaz1uISeMH0NJs5Lp49ytrlTqdjOcbMTiNdxmIx83/L5TIWFxdxdHTUY+5WKpWePPDR0VHTvgRDv3L6Hu1wErtqCBJWq9WyDWAu6O7uLuLxuEHtbg4i/R0uvEpKmryUrAxmM36q6B0JQwEqLjYJQP/m53kRnVWTj2NRhiWDacYUX9ccS9VqrsaPxWK2BkdHR6YhOaZms4nZ2VlDAhm6UP9VmYlJ8T5ftzsCCZehC2VuF1RztTrzlHd3d1EqlUzjhcNhzM7Owufz4eDgwA7w4Xw9Hg8SiQRu3bqFu3fvmpmn7R4p0NRi8nq7LUCGh4cxMDBgZl6j0UAmk0G5XMb8/Dx2dnYso4iNnL3ebn8eIp9UIGwi9ujRI1y4cAHNZre5M/Ovx8fHTSAw8Z0mLy1A7fw3NDRk/iWLNZimeHh4iEajgdHRUWSzWWxublpaKU+yJuKey+Vsr4jWK5N/5Tinq0V0sfk6JZoyF2NplEzaQEvNVSVgjZ+qacv7kpg0q4bf1QJdErXX630JIOJrDM9oFhA/p4zlxjtdU5wXk8vJrIqKKuMTnXTDT16vF9lsFlNTUzg5OcHJyQkKhYLNh3OMRqOo1WrIZrMmiGKxGLLZrNULuv6q4gTKrEyF297exqNHj7C0tGTZLrdv38alS5fQ6XQTENSM5D0HBgZw7do1vPPOOxgbG7OEcK4RmdH1bYGuycmQ0enpKZaXl40pUqkUCoUC7t+/j3a7jZ2dHQSDQeTzeWSz2Z5yxGKxiKmpKTObW61uK83x8XFMT0/D6/Va6iKbN3c6nZ5wBnOk2fiZZjvPT+H+ULBUKhV4vV5reEZw7Pj4GOl0Gp1OB+Vy2ZBkngdKS5JWoUsb/a7XJiGQaPvFkihF6SPRP2DLQAA9viY1IgtquTBcAE0aJzEpo7jgSKfTsZo5LpKbWOCatVxo+jo6RrcKh+YkLzemyfUYGxszUIStKDRVkc/3+XxYWVnB1NQU9vb2etplrK2tIZvNGnDAuCIZv9FoGPEcHBwgGAxa7jERTCKc1MRkBAqNZrOJQqGA3d1dLC8v27EFjOVNTEzg4sWLGBsbQz6ft/gz++R6PN2O8VeuXMHNmzcxOTnZg3ATEHHrIHUduRaaUTU4OGhHHkSjURweHiKbzeL27dv45JNPMDs7i/X1dTSbTeTzeczOziKRSGBrawuzs7PWf5e0WK1WMTs7a773wcEBarUarl27Bq/3RUOzdruNYrFoJmc0GsXBwQFSqZQ1vKZmppJhJpAeShWNRi05PxQKWRkY92pnZwdTU1Pw+Xx2JKTX6+0p3ftKzOn6cG5YQkEEHivOlD71vZTgSejqj3LjSFwu9E/pTaZUFJfj0ENoVLtqHJbPHx4etjQvtpDQ+/l8PkxOTuL4+NjiV/SRNFbJqplarYZPPvkEtVoNpVIJ6XTaNrjVamFnZweHh4fWTW53d9fmS2lM4cAYHjOmCLhpQ6+RkRGMjo5awLvT6VgbEyYLkFGOj4+xsrKC7e1t7OzsWLsNasBUKoXr169jaGgI+/v7llhOn61cLsPn8+GNN97AzZs3MT4+3hPXVXeFVoNaPor0E5BxBeHR0RHOnTuH09NTTExMoNPpWF0mj5lfXFzE7u6uJcnzu5VKxT5D96PZbJpJmkwmMTc3h1AoZCGWbDZrqZ+sAeU4+Vy12Lgv+/v7qNVqGB8ft70hT9BcpWtCi5K+qVqRitJ/JeZUf1E1m4ILavNTE7oZO65pQ8IhkxExU8nPDVTmdQEi1+/k+NSsI6OqRhkaGrIMD/aLob+kCPHbb7+Ng4MDTE5OIhaLIZPJGLpL4IY+EM/EoM8HwOJytVoNq6uriEQiGB0d7TkEh1oxnU4bM9GaILGk02lDRmmW+/1+62hOs2p7exujo6Oo1Wp48uSJtQvJZDI4OjrqWXufz4dUKoWZmRnzx0qlEkqlEorForWXDAQCmJqawpUrV3paTnI/eClYp6EYMqR7EeVstVo4ODhAqVRCNBrF2NiYCfz9/X3Llx0bG0M0GsX4+DgODg5wdHRkBzIxNurxdGtY4/E4lpaWcHR0ZJlPW1tbCIfDKBQKALpaLZVK9ZT+AbCytO3tbVy5csVK8ehikCeoCLLZrAFJjUYD4XDYWoh2Ot2somazaSApx8P5v6rY+pXMyURfMkA/pM/j6WZX0HxTSN79rEpYl1lpetHEdFFVMhbNERIHGZkmBc9w5H3dChgGqZkorea4Oz+aKl5v90yRZ8+emQmkc2LH9Hw+b7mjjH9tb2+jWCxa7vD58+dNGGSzWYt38vAe5gjT7Pd6u/mcPFqCMVm6BrRUSqUSdnZ28MUXX2BnZwcbGxtmRVDYMJQRjUYxNTWF6elpM1eJtBNDmJiYsNrYkZGRHuBM94D/MxtILY9+CDF/h8NhrK6uWg7wxMQEksmkmaHpdBqlUgkzMzOWi0vElXHG4eFh5PN5yxmmlTQzM4ONjQ1rkUmgJxAIYGJiwmiALgTXlYxTLBaxu7uLdruNr33ta/Y615MxVgJSR0dH8Pv92N/fNyFLRJ6adH19HTdv3jRk+eTkxNIavxJzKmhDwqYGolTn5lPqK1qqhO6ipvybBEiJTn/Q9ROB/iY1F4A+md6Pz2bskUeN5/N5q9lkqhn9anfuGpQeGRkx7c7x0tQOh8MYGRlBJpMxhl9bW8Ph4WGPMGG4pFQqGezPOVFTkdmphenrMJGB7f5pOgeDQWxtbVldJIPr7DhBMGdubg4zMzMmxDTFrNVqWS3twMCAHUqk+8U94/6QAdvttvWI0rMq+XkX/Gu1WpYEThohQzM+yzQ5vZfWnPLzdKFoLl69ehWHh4dmXfj9fktnVJdH3SPuDS2wQCCAt99+G7/85S9x7do1RCIRE9Q8BW1vbw+np90WoURmE4kENjY2EI/Hbe0pHKh9SX9Mgvjrv/5rvP/++785c2qBrasNFSGlJKrX6z1J2/3MWH6f0spFZLnIDFC7WpLEoH4NzUO+7/P5zFTh+8wY4f2115BWPlBjAt36VKKVREYjkYidLk0T//T0FIuLiyiVShgbG8PU1BQymYxB+PQdFxYWMDQ0hEQigb//+78HAKyurpqpRu3E5tWVSsXWTdtjcsz0N3moDiU4/UieI7qwsGD+EE1tnjBNkysejyMYDOLKlSsYGhoyVJQJ68CLpAzXZeDfOl7FG7iumj3EZtXAiywtCjUKeoJY3EPNHKO1xPt3Oh0zb4+OjuyIelb9qBAgcOgCf6Txk5MT7O3tIRKJYHd3F4uLi8ZY7Czh8XhM07N/ViKRwMrKivn+7Xa3zpjjLJVKODk5waeffoqrV6/i8ePH+OCDD87kv9fWcyraSkIMBAIGUXPRuaDa0t5FotT3VFNWfzNe2U+q8eqXFkhhoZulkhqAaXWCIZVKxcAYAHaP8fFxlMtlQzIpdWnaaOxRtT79SHZ5C4fD+NM//VOMjIzgP/yH/4Dvfe978Hq7OZeE3IvFohEeTTM2OqPJSQ3L2sx6vY6JiQnTLOFwGBcvXkSj0cAvf/lLXL58Gbdu3bLjBxqNBgqFgqGFxWLRysqIrKdSKUxPTxuBM9ZK4up3NiZ732obTq4tXQsKU/b5VaFL60sZg/4b8CK1jWvuIvFqwbTbbYyPj2N/f9/MXFoe+gy1ykiz7XY35e74+NiSCjY2NjA3N4ePP/4Yo6OjCAaDBiItLy8b7jA2NoaFhQVsb2/j+PjYhPjjx49RqVQwMTGBxcVFnJyc4Kc//SmWlpawvLyMf/pP/ym2trZecru+NHO6CCuZlAumC0ppoQxIMIf3oGTUpANqXf5NSacpZryfZgZxYzSJQVFZbiCT9ckUTN5mMLpWq5kGbbVaGBkZwY0bN7C8vNxDbAp4ULOS0RmQ5unMsVjMsltOTk6sp+yf/dmfIRaLYXZ21sbGZzPoT2KanJw0RqWpyW5u4XAYY2NjlmYWj8fh8XTTyb7zne+g3W7b4a78OxqN2jmjNAdZ48nDdehDUbvyqAYKW/r1nLuGn2iyE31maEktHt47Go0aTSjD8fOsKWWcnNqa1g4ZVc1Un89nSRiqKNxnKKhJGmW+LwVOPp9HqVSyWPDDhw97ai+JAo+MjKBarWJ8fBxDQ0N4/vy5HQG5u7uLmZkZ3L17F5ubm3jw4AGePn1qQrLValmyw1dmThK/ai/tocqFZ/xJJaur+ZSpSOhkXu0ppGENft+9FGHT9zUdy+/3W/ErGaHVaiGbzZp5w2e3293Dgc6dO4eDgwOcnp5aew1NPaSJQp8tnU5jcnLSzsZoNBoWsshkMvhP/+k/mWA4OjrC3NwcRkZGbHwAMDIygj/6oz8y07DT6WBqasqq55mjzKR0xjcbjYaVMbGj+f7+PlZXV608iv2XCNwx1DI+Po5UKmWui7oF1CTKGFwnEjzvRzOc55h4PB7rP8RCeZcGVFvQL6SJSwb0eDzY3NzE5cuXTRFo+IY0oOE1hmOOj4+t6yGBOLV2mOhRLpdNy5fLZTNFR0ZGMD4+jufPn6PT6eDZs2eYmZmxhH/GLzudDr72ta/ZQU3z8/N44403MDw8jHfffRc7OztYWlrCT3/6U2xvb5sSGhsbw4MHDyx54isxp4ZNeHGT6MxzoVldzosMTFOQC857KKDjmsDUoiRedwzKuJoxROkKwEISRCnr9ToqlYqlYZXL5R4EMpFIGAiytLT0klnMWj+WU7EC5+nTp8hkMrhw4QJCoRAePHiApaUl01BkYD0denp6GltbW/D5fOb3UWtyfQGYNGdqmaLdJycn2NzcRCgUwvr6On7961+j2WwaAKVxYiKu09PTmJycxPDwcE8yBn/4HTYV0w5/7faLQ4N5cY2pyTqd7tkmDLQzDMcfmsZkRm19yXisx+OxBmCrq6umwRj7pTCgxeLz+ZBOp/H+++/jhz/8obk7mmighyvx9HD60uFw2MAborfHx8cWo7548SISiYR1zwsGgygUCmi32xgeHsbQ0BBisRgODg5MqH3xxReoVqv44IMPcPnyZUs3pHtQLBbx4YcfIhAI4N133z2T/750sTUXlRupHQNarZblIvKz2m9FCZ335esa7OUmKwO6yC/BBzfdjqlRqtHL5bIRnAIAPLKAPWToNyUSCbRaLbz33ntYXl7GysoKGo0GlpeXMTMzg/39fczMzKBer+Mf/uEfsLm5aSdtzc7O4vz583jw4AFyuRwmJiZMcPDZIyMjePPNN62lxfPnz3F4eIhCoWDd86jBSTgkWJ6FwucVi0VsbGyg0Wjg4OAAjUYDIyMjljFFrTc6OmqJAwyMMxlbwTC/328EqSAgTVcNjTAZIxAImI/abDYN7aUmYWNwpksS0Do8PDRTn8e788gEdgxkX6GrV68in89jd3e3R1hQ05+cnOBf/+t/jU8++QRffPEFjo+Pre0k3Q+NOLiRA9LcwMCAZYzRCmCubL1ex+LiovmYuVwO2WwW1WoVv/rVr3Dt2jU8e/YMDx48wAcffIDf//3fx61bt3Dv3j1jaCoqVqlQMB4eHn415tTiXWpIbiYXR/u9uO+TSWiO0ecg3M+FA3qBJy6exulo9qqWdT/LXEiahtwkvp5KpVCv1zE8PIzT01OrVuCGs29uOp3GW2+9BY/Hg88++wyrq6t2/kg+n8fHH39sR0N4vV479ZnfW1lZwe7uriVY37hxw4j+yZMn2NzcRDAYxPnz53Hnzh2srq6iWq2i03mR0F6v15FIJNBudzvPbW1tIZ1OI5vN4ujoyBLENQVydHTUTM8LFy7g2rVrVivJWsVKpWIaiP4zNQvjvizdoqZU7cd90Bxe7h/Na/qbFOLlchkHBwcoFAo4Pj42NJUJGgoW8Xn8/fjxY1y7dg27u7vGbMpgQ0NDuH79Ov7sz/7MEFoFoFTYu+EyV/Dn8/meGO709DRSqRR2d3fx/Plz/OAHPzC6mp+fR7PZPZvlz/7sz7C0tGQC5y//8i8xPj5uLVtGRkawu7trvjyZFAC2t7e/GnMSuuZEVNvxNQawKRE0w4ZmGxOjmdHi8XisiwIhe/oritxpuZobo9K/yag0vXZ2dnq6gK+trVnMiSd/MdhPs5LBefqYg4ODuHPnDorFIp4/f46HDx/C7++2cXz33XctcZuhjXg8jk8//RTnzp3D7//+7+Nv//ZvTSNSG3Q6HQMVPB4PHj9+jLGxMaTTabRaLZPYlUoF2WwWPl/3aL1qtYpcLofNzU3rRkhtRv+cZuI3v/lNzM3NWZtMIpTUUgROqM0YZ6XAY7sWahWuB5+pDdfU5F9fX8fPf/5zbG1tWScEankivmRuRUuBF/2mXDQf6LayKZfLmJyctOMauH6np6f4x//4H+Ozzz7Dzs6OuVbavoRWES0FBZ+UMcnAipPcuHEDb7/9Nv7iL/4CW1tbOD4+Nvra3d1FLpfD7u6u5SEzBLa5uYmdnR2Ew2EcHR1ZXS2VC8vkaH5/JeZ0W2Qw1Uzjm0zdo//GRdcCZr6ueac81o0LSA23u7vbIwy4CYocu3ErReFIQAMDA4ZATk9Pm1nGloyTk5MmACqVCsLhsBEUCTIYDOLu3btoNBpYW1tDNBrFv/t3/w4AbIFbrRYuXrxoJu/6+jo6nQ7u3r1rieXMRorH4wiHw8Zo5XIZu7u7BvtfuHABV69excrKCrLZLJaWlvCHf/iH2N7exv379xEKhZBKpcx0a7e73f2Gh4dx69YtzM7O2kE91FxAN762v79vB04x44WCjY23SqUSDg8PceHCBbNWWNzA+ypKXi6XkclkzBpgOIHtK93iY+6nhsGAFzF0BYq4z51OB0tLS3jvvfesMoWvs3fRn//5n1u/HwDGJBROvJerONwwhrpx9Ic9Hg+uXLmCYDBoKZF0ef7kT/4ErVbLwDgyvYJepVIJDx48MDCuWCz2CAHGzH9j5tTQCS9X8lCTalNiSmRqi4mJCcv4YAt6+lEsPqXm1ZO11DTmwpGo+HwyKKUQc3sp6an56QM1Go2eeBd9abbYJyrL8QSDQdy+fRuVSgUHBwcYGhpCsVjE0dGRhUzI3IlEAvl83tDedDpt6VnMv7127RoqlQp2d3dNE587dw6pVAqBQAB7e3vWn7VareIP//APjcEDgQCGhoZw6dIlxONxTExMYHp62nI2NVOL/YcoKBmrIwBDwcrsqs8//xxjY2OYn583X05dEl2XfD6PtbU1bGxs2Lk0zM8lY3LvFDBSZuD/btJCP9CQMVQisTTF/+AP/gAffvihrSUrUmiy8x5qrZBm9W81ffkeQbXt7W2Uy2Xk83msrq6iUChYB7+//uu/xj/5J/8EXq8XH3/8sbmBzEbL5/MmzFTJcCx8zldmTi6k6+fRFyTRKPO6wWpqMfbHocRm60EAPcnEunD8rXB/v/doXjPpmp+jucyNYwIAe8awlKdYLJr5lUwmjdl9Ph8mJiZw/fp1PH36FMViEc1mExcuXDBGHB0dRaFQwMzMjBVMb29vG5FSA0WjUdy6dQulUgmXL1+G1+u1ZAVq7ZOTE0MoaWLSMkmlUrh27Rpu3LiBaDRqYIwSlq4JM2TIKNSmDL9QmNIsv3jxoiU/MOWPa87jDh49eoSnT5+aiXx8fGzCgTFZZURNv1OgSc1OXhqCo2DgvJaXl/Htb38bo6OjODg4wNWrV+Hz+ayJNH1vPl+1GLW1Gzd3GVWjAl6vF8+ePbMxMfc5l8vZ+TV7e3vw+/2GfpP2aT6r1cCaTpaXvcqc5fWlOr7zopYksQO9VeOKplJie73dzgis4iAgQc0KwNr9s8UDE8wDgYCd+wn0duBzLzImCVIFSi6XQzweR7VaNc3J4ldqayKVHCMAA5RqtRpmZmaQzWbxV3/1V7h06RLy+TwePXpkyGk2m8WPf/xj3Lp1CxMTE1ZLODs7i2g0isuXL+PKlSu4cOECPvjgA1QqFctdffr0KWq1GhYWFpDP53F0dIRSqYREIoGlpSU8f/4c7XYb//7f/3tDZLkO9NVI5LQIaJYqwk4G0LAN0I0NJxIJI2oNgTDEsbS0ZH1feax7Mpm01pYuMypCyv/dggfN+lFAkDFUZj8xthgOh3Hu3Dlcv34dCwsL2NzcxMWLF3H16lXzhcmA1NrUWCx9I2MxyYJ5yBTMmko4ODhojc212krX/S/+4i9s/nQXWEqmn1WBqQJIewn/RszJyfZTwTSLKpUKRkZGXoKqCbYMDg5ie3sbU1NTyGaz8Hq9RvCZTAa7u7v47LPP4Pf78d577/Uwx/j4uPVbcc1blVTUcHS2eY9Wq4WjoyNsb2/j8uXLpqFYxU5mPTo6wvT0tFWyZzIZQzI5x6GhIUxMTKBcLuOLL74wtNTn8yGXy2F2dhYejwcLCwvw+XxWYlWtVnF0dITj42MsLy9jfn7eBFSr1bIg9NHREa5du4b19XVDs30+H37xi18Y4HB4eIixsTEjcNeKcH0qrbpXy4OWDk13TberVqu2tkdHR9ja2sL29rYV0UciEQs5AV3fjCeOM/OHPXeoQbk3FLg0lZmrzMNlqVmYKEHgyuPxmFX14Ycf4tatW0YjExMT9jliCP2AQy2Y4MXQDkM3BLBqtRoODg4stZMtUUiLtEQ6nQ7W19cRDAaRSqXsWAjdD1504+bm5sw0Z9rkV2JOSgRKQzKkmlL0TZQxGXekOcvDZNLptB2m8/z5c+uLenx8jKGhIVuYdruN2dlZ69ynxOjC3/RbmLmyu7uLjz76COl02hihVCpZq4toNGrtMVgkPTQ0hJOTExwfH1vyNs1REjKPb69UKpifn0cmk8GlS5eQTqcRi8XMz/v000+Rz+et8oVVH9R29N8ajQY2NjZw8eJFC16TWEgoFy9eNCCt0Wjgf/2v/2VdAFxhpb4Sf9PcI0KqABDfJ1NWKhU8e/YM7XYb4XAYmUwGe3t7RkSXL19GPp83jcOA+sHBQU87DxYtkwlDoRASiYQVrPPMznA4bHW1ao25Zic1H6833njDmmsR+KO251pQ6NA64Lz5DJq4jG+yzlafWSwW8ezZM+zv79sRGrOzs0ilUvjFL35hwoFrq6FBMqWa1lx3luN5PN0OCvzeb8ycqoJVLVPaFotFKyqln0mzQk+kZkoWY4oAzGdidkyz2TQzMZlMGmhEIlKTiNLY6/W+dHZipVLBzs4OLly4gJGREUMhmcju9/sNgWw2mwZ5079jFUq1WsXExITleHY6HRSLRTx58sS+X61WUa/XUSqVTAvTv1SwI5VKodVqYX5+3lpq8KAdPaqADbRobvGYOxLnwcEBtre3LQOHc9aLxOieieLxvMg8YnhBzVe/328mNYVqOBxGOp2Gx+OxhAiGM6htKPhodiaTSVy6dAkjIyNm+lILEj3lRSY5CxjR8AoAow2ejcJECwUHNdear7kWH38rcqyxVf7udDrWsIsxaMZ3KTRYKsjOek+ePDGrRxmT9PrkyROcO3cOw8PDWF1dtSL6fteX7vjuSmnmi05OTtprZByv12ttLtrtNlZXV7G2tob333+/B9FSjVutVrG8vIx6vY7vfOc7PcATCU4nCqCnmRcvmn7URMVi0QK9LH2ir0fElYf/MruG6WE0bXhgE8EV5mFSMLjAA30JEvX09DTi8TjefvttrKysWK5nrVZDLpezUiL6mjQJmS5In6nT6eCnP/0p5ufne06MpnZltT21PX0nbT9JP5vExXDI6uqq3S8ejxvKqfmzHGM2m7WDjkKhEK5fv45vf/vb2NjYQCQSwdWrV23+6pKo1QP0pl6SafoBfvwu14yC1a3lVJNen8uLgJhaYzS9mclDgIxCfXV1FaenpxgZGTEBz/Wbm5vD7u4upqen7RjIfD5vebTqw4+NjWFychKlUgm5XA75fN4ObfpKzMkJK0O6TEpHXBfB4+keY6e5irTnc7mcEWen021RQh9jY2MDALC/v2+SXts8csO8Xq+1eHBDPexXOjg4iPX1dRwcHKBYLGJhYQHpdBqZTMbMCY4/m82a7+Hz+cwXorY8ODgwbTU/P4/r169jdXUVy8vL1uSKgBK1RCqVQiwWw9TUlFV+DAwMYG9vzwRNu909ao8J80RpOc9nz56ZRG40GpiZmbHwE33VarVqhwUxIZ4hJa6VhqqoiRme2N7eNutFEfmBgYGeTugrKyuGTrMg+saNG/jOd76D0dFRc1XoXqhWJC2p20PAhmN0AS41DblWvG+lUrExKJ32EwKqvWg5cGwUpGRSAkh8n90EucfEUS5cuIAnT54gk8mgVqtZLez4+DjeeecdW1sW1g8NDeG9997DrVu3UK1WUalU8L//9//GgwcPrCb3N2ZOrRIhWgXATEMSsC4ENWKxWMTe3h4mJiZ6YHkmcbOXC539QqFgkpTahGlkHIP6TDSTXOk4OzuL5eVlnJycIJvNIpPJIB6PG3Lp8/mwv79vWThzc3NoNBoGatBcIgGzOxv9bUrpVqvb75UM6Pf7MTk5afWRHDvPD2Go5cqVK9jc3DS4nZ0NGOLQM0YUVazVarhw4QK2t7et2LdUKmF3dxfJZBKzs7MGcgGwsSo4QcSSLVKYE60mnuasMvNre3vbYrfxeBxXr17Fm2++aT2FTk9Psbu7i52dHXuWourqFrlCXNFM1z9UxJVrQpCGWWU0a8lcGkbx+XzWJFtzhpVpNdzB+RNMKxaLuHTpkp0SR/eDYNbu7i5CoZAd8TgyMmJ7EA6Hcf78eZw/fx5vvPGGhano7pycnBjK/5WY0/VnVIsS6udEScD0/8jA/DxBiJmZGQwODuLhw4cG8XPBaSIy73Vubu4lX4RH0lHSu2Pkwag7OzsWMOdRCJlMxvJuU6mUHdPO53NTWMFC5JHmMJOxGWjP5XJYWlqydpKs7ichELYn+soSLm4IkyI0r5Y5oapFeD/2FeLnW62WlasRkKLQInFTMOzv71t2FEMEqrnUBKWQYIiBRwm++eabuHLlCpLJpJmDR0dHdujt5cuXrcxKkz9UgFNjkekIKKr1Rf+duAOtCbYJOTo6wve+9z3cv38fAHqKHcig6n8SbXULrWnCci7q31OATk9PY39/H0dHR8jlcpZwwRrbt956y7oZbm9vW73q7/zO7+Du3bs9HRRpUlPxMPT3lZmTE3ZjVvV6Hel02m6uwWbNIuLGTExMWJU4Ub9Op4N8Po9isYjR0VFcv34dn376KQYGBpDP543w+GwuMou6ufhqLlH7sbcrGy1r2OPcuXOmSRjfCgaDKBaL5lupZCWCTD+WWT9MXvjkk0/we7/3eyYVKZDIoESIARhAFolEUKlUDBBot9t23gbXmNqHIRFKbx5qq+dMEuono+lp0Ts7OwbOMQ1PT9siYWomDVudhMNh3Lx5ExcuXLCO/p1Ox/KGW63u2R9jY2NoNpt4/PgxDg8P7RgDWhqultRwBC0u3puhEQAmvBmiWFpawoMHDzA6OopHjx4hGAxiZmamJ+mC2lT9cTIv85c5PobhmH53fHyMXC6Hp0+fol6v47333rPKH86XJ62NjY0hFArhW9/6FsbHx7G3t4dcLoehoSG8++67Nj/uozZAowD9ymat2vCaBUQN6aZcabqdz/fiZOXz588b4RCIIXFSorA9yNOnT81nDYVCOHfunLVFabfbPa0EacKQmBlwz2QylulCQcJmxfTxAGB+ft56s7LMivNm1QkvSmc1zwl6bGxsYHt7G+fPnzcInwxDQcW18nq9Flqgr0uhQtOazArAKkg6nQ5mZmbwySefIJfLWdEAADv+gCZwLpfD8vIyWq1uZwcWwdOnpcnN5zL+TDchHo9jaGjIqv2JUBLF5jH0PPbR4+nWYN6/fx97e3vIZrO4evWqhUl4qdDmmnK9+T61PQGper1udavFYhFffPEFlpaWkMlkrO3nwsKCCUAm/IdCIcM62NGBGUWBQMBacNJKyWazVnVUKpXw+PFjO6pBM5/a7bbRz7lz53Dz5k0rsrh8+TKOj4+tibXX67UuE3SXgK4FVi6XMTU1ZSGZ35g5uXCaHUFiJyDBBSXRaryNaK1K3Ha7W5qVy+Wsdyw3i1Usrm/Ks1dGR0fNfKYU5mfZfXt1dRXNZhMXL17E4eGhdQIns7F0yufrHl1+/fp1MynJKOxyx1Ir3pvgivYdIgM9fvwYCwsLPY3PWMbGTgz0g6jlaJX0szQGBgbMVybDX758GTs7OxZ4J9pKMIkxOZ4Xyhxc+s7ULJTY1CJbW1uIxWIYHx+3BmXM1qLmY3aN3+/vAfRqtRp2d3fx+eefY21tDV5v9xwUajSt+9X9YnhNaYwxw2w2awXXlUrFOkg8efIEe3t76HS6HfIzmQy2trZQr9ctdFMqleyZBGUUCWY4Tfv3UCvzqEAKcFoYbIB24cIFVKtV7OzsoFarWWlgqVTC4uKilSIqIswG1KTzcrlsySdTU1Pmp//GzEmfwO0PxDo91ayu70eNqERMBmSbhsnJSdugXC5nBcHZbBaJRMLCAh9//DH8fj8mJiYQj8eRz+fNrKKPSLue5sxHH31kpzzRjCJTdTodTE9PY29vD5ubm1hcXLRYHQ+a0bpF9p+Nx+NIJBJmImuq2vb2tmUaUVixAwMJZHNz0xie60PTnNqCF9Fettqcnp62mCH3wuv1WlL2s2fPcHR0hJmZGTPb6JbQp9LzJ9nGI5fLodPpYGFhAYuLi5YeyP0vl8uWn0xNSP/v6OgI9+7dw+bmJgDYic7VatX8QZrPTBxotVo9BdH0cYkYU/PQT6eGyWaz2N7eNjPw6dOnODg4sH2Nx+PY39+3RtQEZSj4VEMxds0YNVF7WgZ044rFIv7iL/4CU1NTuHTpEvx+vx0R6PF47Pvj4+OGHBMb0HRICt1cLmeNtL1eL8bGxr76KWPUgJS2ND9pR/M3CYWMoaYfwynAi4ZYWotIk4kaKhqNolgsYnBwEJ988on5Bnt7e5ZjquEGFQ6a9UHQRFPIuIB+v98aXNHPpFRnlYk2siIoUigULOGagoCEXKlU8Pz5c/PN6PvQnKe05slUlM5aPsX1o6XB+tdOp4OrV69a681kMomDgwPs7e2ZicS2lpFIBJubm/D7/T0AE5s+s30mhcvk5CRu3LhhPXnp4+oZnfRT6Q8XCgWsrKxga2sLBwcHBuBwvdgY68GDB9jf3zdhBcCYkxfnTL/fbbwGALFYDFtbW3ZIcTAYNFDO6/Waqc1YJAAbLy0idm/g3xwrBSKFOLUomezevXtYXFy0+LbX6zWLhqez3bhxA6VSCcPDw5bhRX+7VqvZCdfFYtFolUXxPFrxN2ZOwuo0P2lOqg9Fx5b5k9RMXq/XWuXTtyEhDg4O4r333sMvfvELO+uR+YyDg4O4ffs21tbWsLu7i0ajgTfeeAPz8/PY3t7G5uZmzwlP7DZPLUQBwAwYMgY1OBl1fHzc8iaZckbfi9lNjUbDUvwU9YtGo8jn8z3ZKX6/HysrK6adGaNlyKnZ7J7dsbi4aFUdTMKnT8/1feedd5DL5bC2tmaEdnx8jB//+MfweLqNryixz58/b+VpQ0NDODg4sLlxbAyfsOXG3Nwc5ufnMTExYUcS0LpgZ0LmvPIiPsD6TXUPgK7lw6QHMk0mk0EmkzHm7AcsKl7BMbOjARMiCApRINLUp8AlqEdmPjo6MvOStZ1kRv3t/q2xVQpgasf19XVks1mL+5LmNzc3jT7oKtB96nQ6Zsby0F+avNTuerzFb8ScxWIRi4uL1u6fdWqsNl9aWjK/hpKGC0yJRo1ECUmEjGaI+h61Wg2Li4uYnp7GvXv3cHp6apkVm5ub5lyzvSDQNVHYrsPr9eL8+fNYXl5GuVw23yiZTJrfyFzPhYUFa88xNDSE7e1t23i2PNzd3bWkbDIrTWlqGQV6crkcHj16hNu3bxuxUbNSarO2kpokHo/j3LlzWF9ft6Mk/vAP/xBPnjxBp9PBysoKvF4vVlZWsLm5aSAPm1UzVZCJB2xLmUqlrKLk0aNHqNVqmJ2dtbAPNTr3RwP9yWTS9omvHx0d4f79+wgGg0gmk5bqR4E6OjpqXRDIhIpAq6BUQIhCW4U358J1dkNMmlVDLcjvsFCB+61M5zKhWlWcZygUwsWLFzE4OIhHjx5ZI7V6vW6CiznQjAp0Oh0DothUfWdnxw7xpcJguJAN5g4PD+0Mm9+YOQ8PD3Ht2jXLDWVgvtls4te//jX29vYQDAZx6dIlOyYuGAxie3vbenlqpggHuba2Znmk7EhHZOzatWs9cajvfOc7mJ6exrNnz6xcaXh4GNFoFCsrK8asLFv7nd/5HRSLRRweHlop1D//5/8c/+W//BcLhdy4cQPVatVyeRuNBnK5HBKJhDHW06dPMT4+bj7GlStXkM1meyB/9alpzq+treHmzZsmEZnjyhCOx+PB4uIizp8/D7/fj3feeQe/+7u/i3/4h3/Ap59+Co/Hg3v37mFvb88kMvCiYl4bdBGBBWD9ihjT5Jii0SiuXr2KqakpQ1eVSF28gG4GGYUnlGUyGRwcHODKlSsoFovY39+3Jsp+vx/b29vWWoVMQx9TO2roM6kJAfRYNvyfJiRjkZwTtdrp6akxIXN+6eup26PMqei+zp39pd5//328++67ODg4sHNQmbzhYhhk7OHhYQPQWLmyu7trbW/omjGUx2Pq2U/pKzHn7u4ufvjDH+Jf/at/ZcXStVoNv/jFL5DNZq3N3/r6Oi5fvtyT6B6LxeyAV5o/jUYDH330kbW6v337Np4+fYrJyUnMz8+jVCphYWEBH374IVqtFr7zne/g5s2baLVa1hA5k8ng61//OiYnJw0UGhsbsxaGXm+3f+ibb75pVTDpdBrf+ta3TLrNzc3hwYMHeOONN/BXf/VXWFtbw+lp99i2dDqNgYEBlEolC+fs7e3h9u3b5lfRn+TGN5tNQzLpYzF/mEkJPOCI5trFixcRi8Vw6dIlbG5uGux/dHSEx48fm3kIvGjgTcuDgXme/Mz0PAq8VCqFyclJLCwsmNbXoLv6WpwPpTnTF+v1uvmU9NHr9br142WhAI811A4TBBFp2jMXVlPrSOCa96uILcdFLcgeSWReZklp6p7f/+K0AL6ugoiWgsai+Zx/9I/+Efb39zE5OWkJJXNzcxaS4tg4Xk3yoGuknfSPjo6sAoemMQ+0YrFDJpP56hlC9Xodo6OjiMfj+Ku/+itrULy2tob5+XlrpFyr1ZBMJnH9+nXcu3cPw8PDWF5etowZZtlks1msrKygVCphenoaV69etSRgTsTr9Vou6507d3B8fIxisYgbN25Y7SXzG1dXV/H06VOEQiG899571uyXkpNAyO7uLjwej2Vl0P6nNlFE78GDB/B4PGaST05OYnJy0s5x1PibFuoWCgVjyEgk0nP0Os1Noo+np6dYWlrC2toaPvroIzMttSuhIq380de0MoQJ4aFQCDdv3rSDYJkupsRKQiZxc3y1Ws0S+nd2dqzgPZ1Oo9FoWJYMQ0wDAwPY3Ny0I/BIqIwNEyzT5Hag92R0fV3xDP7PfeA9BwYGDHVVRm+1WnZcBS01zWbj81Qg6bMpfKj5K5UKgsEgrl69ir29PasyUYtC47cPHz7EpUuXLCY9OTlp4M/BwYExI08Q4OHAxWKxJ5b+GzFnuVzGu+++a8nRjUYDW1tblsVBOLrZbOLevXvIZrN48uQJgsEgzp07ZxktgUAAyWQSf/d3f4fNzU2T+r/7u7+Lb37zm/jP//k/4+c//zneeustS9HiQa7ZbNaQr8XFxZ5Fb7W6taa5XA6/+tWvEAwGrTJ/eHgYMzMzWFtbw9OnT7GwsIByuWzpbMzSGR8fx8WLF43h2Ctob2+vJ3eUxyvQ39AcWM3rBID//t//O9588007d5LlYGSst956y/IqWULG5AoteSLwwVYmjNHREqEmSKVSGB4etlgfCVJNLyVOajVFs+lDbWxsYHNzE5OTkwiFQtZTljWN6XQae3t71siMBezUljT11d/WfsLKGJqAThBRGYi+JcE+HiJFJuDVbretrpa4h3u55rsi5LlczkBAn89nR9czHs00TF7U2LzH2tqaFVzQenr69Kn5y8w6Ojo6QqFQsFJB7u9Z1yuZc35+Hn6/H48fP8bNmzexu7sLn89nfgBPDR4eHkYqlUK73T1MJpFI2GEyrDjx+/2WhxkIBLC+vm4nOF2+fBk/+9nPMD8/bwfKMM60tbVl8bVUKoUbN24gEAhgY2PDEo2bzSampqYQjUYtvphOpzExMWGHFel5IsfHx6hWq3j+/Dmq1SqKxSJSqRS2trbs8BnC6HTyuSlaaa85nJpO+MknnyASidiGxONxa1A8MjLykjYEXrQK4dEABGfol+tnhoeHMTExgcuXL+PixYt2hormjpLpSICMTWpSCRmE2p8mXzweR7lcRjabRaFQMJP9+PgYT58+tcZVFErEIciYTP8jEzD3V2PfXDP1OV2TmzFQzikej1sPH+BFyZnf78f8/Dyi0agl9Ou8eT9N81T/9/S022rmzp071tw6nU7j0qVLNl83dMe/mSGmbTmJzNMnZl4z/WKuVb/8gC/NnBcuXMD9+/etgRMPOE0mk9jb24PH47FDXckkzMbnUd7a5p5IHc3NtbU1nD9/HleuXMEvfvELLC0tWXe7eDyOQqGAQqGAw8NDa/jL8hzWXZKInzx50oPOaX4s/SASKBE+TQRgML9Wq+H8+fOWeqfZJbo5SljcLEp+1uyx+3k4HEYqlbKYoWZVkYlYKMCu7wAMcb5w4QLa7W4n+OvXr2NmZgYjIyPmBnBM6ldqvigT+jlGQvyaLsf3qC0ZQ2XMdmtryzQEn8FQFNeIc3MrQ7iOLvOpKeuCU1wfCmugi2xHIpGeRuFDQ0O4ffs2JiYmrOOdala9r2pu/ng83drbTz75BO+++67VrDLDbXh42A4xokYmGk336fj4GKurqxgbG7N4fC6Xw/r6ulmXqikVROyn5b8Uc7Lsa3x8vEdrAMCDBw9w7do1IxKmqC0sLFh6mTaRarVaPY2d6eNRG58/fx6fffYZ0um0mV2sIhkeHrb/WS1AhuNik+jUH3B9DNes0YoAIotMctDYmEpKNb30HpSivHZ2dgyS93q7Tc7GxsasGoQJCix7YuEuiwNYzZBOp/H1r38di4uLpll1Dlxb+o3UWJwPM3G45q1Wy3JjqblV4x4fHyOTyaBarSIej+P4+Bhra2t2D/V3VTszHVF9OY1vu1pMmYOvk5F1X2q1mhVxMx2PHRxDoRAuX75sSLnH4zGN1S+mqYzPv69du4ZisWigHNAt0mCCCksbqVhcAQJ0mfVnP/sZJiYm0G63cXh4aAAbLSpN01Q6UXPZvV7JnAQwACASiVjXAPoCV69exfj4uMUL6cvxf118r9drDvbW1hYAYG5uzpBMmmZPnz61VDxt3MyjxhlrBF74em4gWxlLM5eUyfh5MhyRWJrTKv1JMBwLP6falCYWP3d4eIgrV65YA6ehoSFrAUI0m4DJxYsXsbi4iGq1imQyiYsXL2JqasqOgJicnDTQpR8S2Wq1TDNqojxzhBkOUILiOmm/nXw+b7G3ZDKJjY0N62hO35spnSRK5uu6TEAa4fqpFaIEqRgC15H/c/+ZrUTG1oZgzCRinitjka5fyP3vdDrmo+/s7OAP/uAPsLKygp/+9Kd2TAYTCTweD6anp7G2tmY0qfTF+Z2enuLRo0eWMrm3t4dCoWBCidaZy5i6Zv2uVzIng943btywYt5gMIijoyM7+IdxMc0MUrXNTfF4PHjzzTct0yKRSFiJTaFQwBtvvIG1tTXrH8vqCTUvma3DE6dUk7mAgvpzqlVd6U5iUVOFGSDMaqHZqfNSn1MZE3hx2CtzbVm+BsDaoZw7d85AJnZ6f/PNNy1QD7yoMlEhQcLXeB3Q9UcHBgYs84jr4UL/vBiH5OcODg6wublpcVLGollzSiGtBQ7MR1b/UVPj9HVaNOqX8n0yMj/j+okcO7UPhQobwNGncwWYe5FefvCDH6BYLFrPXeYqP3/+HO+++y729/eRy+UwOjqK8+fP49NPP+3pVAj0ZhPxmU+fPkWn0zHTWpFyXu7cXnW9tk3JxsYG1tfXMTMzYwvFeA5TozhAEjqJnZUsNIenpqbwne98x8IsBwcHdmAQM3WAFyU1DAdwEZjTeHp6ak2eOE4uHDWXa8KoluP9dNHUvGL6H/CiLI0ACAEnVizwdCqmuz158gSjo6MYHR21UiWiu0RSx8bGMDAwgNXVVfh8Pty8edNaahKwYj0mY3s6BxIqGZnEqk3MyJjuPAFY/mepVDLTdGlpybrMMzTEqhVNg2OBsMZwNXVSs3fUgnHNVdINgJ6aTzUBVfPwPlp2xcgAfbloNPqSmahWT6fTwe/93u/h+vXruH//vqUY0gx98OABFhYWMDg4aMUPjx8/RrFYtDG4GATHpQcycdx8jzRIBeC6R2ddr2ROhjV++tOf4u7du7aIlLpEzTQFipqOjKnnK1arVSwtLcHn63ZRp9/JPj2Tk5NIJpOoVqvY29uzFDRmVwBdBJlpX8fHxz3oHzfCNSFUcyiBKFFohUkqlbKMkUAggIWFBQOiCLnzb/4mQ2xtbfVodyKt77zzjvmRgUDATGemRJKQWq2WHYXHIwg0PKEbSoZkDyGCNUxMoLmpxM39IqEwOL65uWnhEHYnIMBD5tQkeGpEjpnpm3wWhZoyiyb5kzF1P5ibS1NW/VV+h7Hz/f19+zyVA/NvXUuB97hz5w6++93v4vT01LLSfvSjH1kx9/r6OsrlMjY3N5FOp+2oQh7MRD89kUhY4gbj3gp4vcqPfJ221OuVzMkA7MOHD/Hw4UO8/fbb8Pl8GBkZsdgbpSdhfyYcMAufjb6oiXhYKQGLSCRipwZzUxTUoF/J2sXJyUk7op1d65QoFHzgQpBQyOQaK6T2Y8ZLoVDAyMiIVdTMz8/j61//uqGWZBKawADs9UAggAsXLiAcDlvPGKLcLO5lyINtTg4PD+0EZzYzI+OkUimUy+WeE6ZJCPzNvFMVMhSg1LhaY0ozlqc4cx8IFLE2VqtQTk5enNOiTKXMxnvwUg1DwU1fUDUHBQ+FulaOuO4HkW8KQq6/ujQKBKn28ng8+O53v2v3IoLObvsc/+bmJgYGBrC+vo5QKGS5yjTXL126ZKE2pkyy+Rkv1yRXa42/daxnXa9kTlXTLF+iA3562j0PhNUkgUAAT548wfj4uGWVnJyc2DkSGt9hh/j33nvPwjKMJ7HIFQCy2awld/NYt2fPnuHb3/62aV1KTjKg/pCIuJk0A6kl+R3mhoZCISwvL5vG0ZYi6lvTrCWRsW/MwMAA/uW//JeWKeTz+fDhhx8aKEQiOTk5seB+uVzG+vp6jzZjiRxTvN555x3EYjE0Gg2L26o/p8TAahE9ZZzMple5XMbTp08tzlsoFEwYskichBkKhSxO3Gg0LB2PWpOMoCCQCkcyKgEkahd+xs2F5TooOERrze/3W/Ey0WN1nehjcwx0R8bHx1EsFjE3N2fZUCzEpxnd6XTw+PFjfP/738fGxgai0ajRLgCLL3PfR0dH4fP5sLe3Z6eH9QsLuSGT15mzX4o5uSnJZNJsb54Incvl7NQldhwgkMI0Km4GJXAsFkO73TYtsb29bZlFlUrFzDm2D2RAF4BB98vLy/iTP/kTjI6O2sax8kEXmUShealkUG4Y/QFWrgSDQct/nZubQygUwtDQkHXX8/l81mVcLQbC+CrNuTGNRsOYk4TYarWsKRTTGpmHymyiL774wk67ZqcDCii96KeROehSlEolEyoAzCRrNptYWVnB0tKStUlpt9uW1E3iou8ZiUSsqIC5vsyS0pCVmqQcl/pbQK8JS5rgQU28h8ZcFQzi2L1eL6amprC9vd0DzkxOTiKRSFjTb35/YWEBMzMzKBQKePbsGa5evWrPUS1OBtzd3bU629nZWes8wbYstELoEuXz+Z5WM7oGuleuFuf1Ku35Sub0+/24c+eOZd5wkXgIECF8+huE65UQO52O2fc0AQ4PD+H1eq0dRbFYhN/vNwJkTx+alvThCNYwTEFpxePOXenEEiI3BkmkUc08Joh//etfR7VaxeHhIS5evGitO3iiF1PSXCbkfdTXoaajduPGuL4jzSMmrxNMY2YUjyZXcIP/UwtRGFKjFotFTE9PW73rzs4Oms2mIbEsAKavxhaSrVbLCI5oOZFxakAyEAmR9+HlhkfcvxUMUlrT5AFlTK43rS/2AAZeJASoX8q/L168iD/+4z/G7u4uCoWCne/JDn7Mf1VAq1qt4tmzZ7h27ZqFBO/cuQOPx4NMJmNMfHLSPb6DnRT4wzGokNJ5vM6U7VmTV705OztrCCpNOrWj2cPz8PDQTNZsNms1mDQPBwYGrP0EN5YoGbUjCUTzVpmETCSMi/7BBx/ga1/7mjEywQMKEGUk+mvqK1LIqA9AEykcDiMQCCCXy1lgnQfv0ITShaYJ5Wpsr9dr3cFpCvIePMCGr7ENSiAQsIJoZgoxrqzhFT6TaCzwIiuKOdBszH1y0u3fu7y8bNaI1kvS1yTj0ZXhYb/sikChpKgr78E5a/hKgShaC655B8BqNmnN9Ds/RNecpqMb1iqVSoZH1Ot1nDt3Dj/4wQ/sqA/Oa2VlBR7Pi7Nhw+GwddXj2haLRRPWrVbLkjFYi0nLghED0h9p6SztqIz5ZZj1tcxJgITAwdHREcbGxhAOhw28icVi1tl6bGwM09PTlldKZmQD5FKpZEATG/eWSiVbZBIOJ8eNUtSOdY8a+yMxUSty4hqL1MVTIqHfSFCHDA6gJ7OGY6AWcbUlP0fNz5rM1dVVTE5O2gGz6mu1291ubj//+c/N/GX3iOHh4R6EXMfgak1aCjTZcrkcKpUK1tbWUCqVcHR0ZKVXAOyUcRI8mZSuCNMxqRUVaOPa0hxVcEw1iPpcatbxszQnmeJGC81NbHe1kpsE4PF47DS5UCiEK1eu4Bvf+AYAvDTnhw8fYnp62sY8OTmJo6MjswCBbvbb9773Pfv+4OCgdX/XbghaSM2xcb4u051l7r8KvX0lc1J1v/nmmwCAsbExeDwvKuWnp6dx9+5da8Wwu7tr6WKUVvQly+Uy9vb2UCqVcHx8bOAPU8mYzqabyVxdEjG1287ODvb29pBIJHBwcIB2u5vPyvpRmmO8l/o16mfw8nhe9DOllB8YGDDtc+7cOSvipX+p6VxaNkamaDabVhoEwKQxCZHfpbRmahqFA7UJc4E5ds244T20GwAFQ7vdtjNCOWfto0Nwj0SlGVIAekw9zcRyY5cuuKFhLH5XLRWN2TK7iOOJx+N2bAdDNy6AxBxXCi0SPc3diYmJHtS/0+lYHJqMxcbm7FXEi/OhO0TNyBgvLQp+jwUdWqigKLYmKOgzXFP3KzFnNBq1FpisPgmHw4YWMtuH5gszI2gKHR4eGhI4MDCAXC6HTCZjleAEOBRBJVFwIuzBo8Ftr9eLH//4x/i3//bfWvc4LdRtt18c/6aJ5QoK8T58jZqSubAEpljlMDg4aJtXr9dN41PI0ArQcXID1tfXsbW1ZUg2CY+EnUgkjCjpLpCIVcKSORX4ojlLZmMohGupFSgsOABgqKaLjHJMFFAUQq7ZznEpgVEQ0vRUE9fdBz6bmlNPTuM4XF+O+6nAnlpHR0dHuHLlihVMRKNRhMNhtFot67RB5J9HgFCA6fw8Hg8+/vhjhEIhPH36tKdWk2fhlMtl65zH8OGrNGG/11+lNYHXMCeLhgn8MLOev9fW1rCzs4NIJGLdA5jbODg4aFXyZLidnR3s7OzYhjDOqMTDjae5pj1O+bvVauHDDz/Ev/k3/8aaU5MITk9PLb6ooRKaasCL1D6VYCRO+lYk9L29PXz66acWmySYwBRDMoiCMiROZlJRk/7oRz/C3bt3kU6newieyQkkADcjSBPU1USkQFJto7WHZBCij0QxGVDnRX/RTRxQYaCmvQI6Gj7Q37yva8bynjT/iQYrmMVnu9k4utYUvszYAmBpdwS2aFU0m01rKs2sn2vXrhngxtAR5+jz+fDpp58imUzi+PjYYul8tsa1FZ3lGDnms0ChL3u9kjkpnQjYlEoljI6OGrF5PB48evQIExMT8Pm6ncg6nY6dJNbpdKwKPJfLGXRPc4Z+HgmVGkB9CpXsbLIFdHu+5PN5S35Wc0zr5QgSkam5ARoPVYBLjzHodLpVGj/60Y8sdEDLgBulzHF6emrAFdHsXC5njEfB9e1vf9sIDXiBRGrVh5tlosKEV71e70mx4w/3LR6P4+DgwGLH2maD41f0F3hxGBXXSYEd9bU1rqlugmpXgkdqxnLNKMBHRkbse7o3Gr90j3NvtVrWEkctDE3O8Hq7lUA069mxsd1uo1gsWn44Iw0uU7GhdavVQiaT6aFFKieuqSLFugZq1rrmre7rWddrmVN9q6Ojox7/YXBwEM+fP7duBTQxmT0RiUSsKkKBGu1hStDBNZXIkBw8NSHHMjMzg3v37uG73/2u+S1cGGoJN9Fa/SP15er1OjKZDJaXlzE0NGRMRInP1v+sn9Sxs95QmeP09BSTk5PmsxMhbbVauHfvHu7cuWOpcfS3AVg4g2NTwnPDE3y2akkG1andSFw0eRXppWByM3k4FvVvOV9eCu4oI6upraYn90GF79DQUE/neGUworadTseqlSjo9OhGNaH5m021vF6vVYaw6RZP4qbVp0e+u5qNdExlw+womsXEDhgqI526CQguP7lA16uuVzInqw5oOrRaLWxtbWFkZMSYisiVnpVIqJqESgnfbr84jYybRCLUwTIGqZUgWg0BAD//+c+xvb2N9957D+1226omlGkCgYA59ySUVquFw8NDS1UDYEkPh4eHGBkZwenpqaUZDg0NodPpZo5MT09bggU1FoEqaj7gxQnMjF8yGZ0Mw0NnuVE0rSjE1FwiAytDkGnYr4jxOBIkw1JqUruFvrxo7qtPzn00IhF/VK0QJUJqOh23rjm/A3QzbZiQ4iLXACzJo9Vq2WlyfJ8Erq1aqJlDoRDGxsZweHiIWCyGw8ND07gnJycWGqPvmc/njcEpuLjGylxsHOdW8hBHUZCHl5rivFzG/b/yORmiIIo4MDCAbDZrWStcbJq9k5OTdkz3ycmJQfUau9SsfRee50XTF3jRqpF+Acc1MzODcrmMv/mbv0EikcD29rbVeVIo8G8CRAxReDzdNDdNs6vVatjf37dNikajmJmZQTKZRKPRsBOO2eSMz/B4PCakNJDt8/kMICKCCsDAGpf4yXCVSsWKiYEXLSJJlPTRmaWivjBNOo156lorUQEwP1OJyK0I0bgmx6BajvfRZyjgo0Tp8/mQSqVM0AMvsrgouLUpGM1Q5mlrNwIKAzLoyckJrly5Yqeas4XN8vKyHRvJE8o1oUWFrNK9WiyXLl3C8+fPzTyenZ3F06dPjU7VKtP0Pd6L66sM3A9Qc6/XnjLGY915Chj7+7g+VqPRsIJhBrW5QWRMbraCEXyNUluJhCYOD+lVP+QHP/gBfvjDH+LJkye4e/eu+QI0M7RiQRdOJTyhdpovPE693W5bhz92a2BbTjIe10fjgCTsUCiE4eFh3Lt3z9BAXkzTowZiUgKJVGOLHLNuIp/NIwCptWk2q2DjdyjY1Icj4ShRagGB+o7a4oR4AfeOmkm77FFz8jctL5qqTF7pZzJTA/Jv0iDpR4UUGZPzjUajuHLlitHf/Pw8MpkMdnZ2kM/nceHCBcTjcTt7lfTphoNUu0WjUQwPD2NjY8PcPAp5IuEqSPvd4ywGPMv85fVK5uQmcmNjsRhu3ryJ9fV1g+Xb7bYlFNC0ZasILqRqPHewKqX6Oc3cXPWt2u02lpeXzVfkGRYAejSF+mQUICQsrebXg4VyuRx8vm5ZEFvmM47LuVGiKoLJebXbbetQx2cpcNLpdCyBgxezgJib3Ol0TKLTXCVh0o/U9VKTjPOgcOI91ErQMfM7/M3140W/l8SoDEXN66LUnDOFOs1UpQFaHRSUrhDVvVZhALzIE3Y1/8cff4y3334bnc6LTvmLi4tW9sUOFLTulB65n65pW6vVMDY2hrm5ObNGXIuC2piZXErPasIqfbv/97teyZxcFBINACuzIRFQS7GnrNYmuv6Iy0BuIgAv1RbJZNKImQsyODiIlZUVW9RSqWQbSY1Ov5ClPKq5XQCDm+FKUK4Bx6ahBB0vx8F7TU1NWUoeiYDalaYYfRdePKqPaDFbKno8np6wkKu1VTBQE/JvMo36cLpn7uX6hurn6jP4P+mDn3XNOTY4UwDQ9RO532o607Lg82mpMUJAzcs5Mr5dr9fxy1/+Et/73vewt7eH7e1tXLlyBXfu3MGnn35qABNbrrghK+AFtqFhpB//+Me4cOEC3n77bWQyGTx+/Njcl3A4bBEDjSy46+uaue7f/a7XHmTk9XrteHkmQBcKBaRSKSSTSTOlgG6KXjqdNr9M6ya5CAQnNODOeCeRO/odRIQrlQrGxsZMSgeDQYyPj9tmBQIBy9YggSgYoozowv+qQRQdJaBFxnBje+6m6iZws9wOfmqSsd1iq9XC8+fPrd8QGyeTMDVQz7FROtMEVpBEv+OGQhRQU3BHQzoqdPsRkRIZ6zxdZJemqWoHrh+BGa4Hn0sQkf9zrKQJ3vvk5ASHh4eYn5+3PaZwBLoNnm/fvg2/34/19XU7dfvWrVtmtag1ArxosekKJs71r//6r/HP/tk/sybeHBdpX+nhLCZ0rUVdy7OuVzKnSl2CGs1mE+Pj49YZgIMk6qd+AQmCv09OTnpOhPL7/Zaxogf+cPJ+v9/amVC6ciF0YQn4xONxZLPZHi1CQeAuBhlYL11EBvRd9FK1B7WlagCCScvLyz2+N8fj8Xis0JnPYi3r1atX7XxMIoFM0OZYaeaRiXR9ue6uMFCNyL9VspNYmU3DyhjX1HPXCIAJSKDXQnKJU0Ev1Via+8xCdAoftVg4H9IltamGgjqdjnUyYBOvTCaDRCKByclJO4hXO0BSEL3KzKxWq/jzP/9z/M7v/I7VJ1PAMnOMl2tVuQCQXu7autdru++RGLxer5WKAd1Djng0OQPnbKdIZuVC+nzdms5CoWALEQwGMTIyYtIIgJUnaRtG1iTyO4wveTwey6FlPurw8DAODg5wdHRksTJF41SquUxuC/J/zBp+XhPmeamZpwvf6XTjbzy4hgTOZ/LzPPRJmzGvrq4ik8ng7t271ieY8yZhu4i3q801OYKXCknVbroWPAhZ47H9wA31c9U0JZMpNqACke9zHTVHmcwJwNaMe8N5K6DWbndPRqdFpmPks+r1Ot58803Mzc1hY2MDo6Ojdggyj4/oty+vQk9Jk3ruDC2+s9wz11XTdXf/7ne9NgmBC6IFxkTQmN5HIg+Hwz1hAJqcBI14zicrEJiQzCp7r9drzEr0kj1jyPjcMC4SwSoS77lz51CpVLC9vd2TzaNM2M+/VKCCn2GCADfNlXz9zFp2Jaevq74150hhpdqM8def/exnGB0dxdTUVI+fxSoRmqyck/p6GrpgXM7VBkrEfF1TLPuZX+7Vz3xTHxd4ERvluAje0GXRuCY/w/kCL/o7qZbl+tHd4b14qb89MDBg7hXT92idhcNhFAoFG7M7l7OYdXl5GdPT0+ZK8LPan1mtxn73fZUAcK9XMifwwg/honDibhNhlYCUKBrYpinRbDZRKpWsowC/r76VggjtdvdYNZq7tPl5PDiTDZha5/V6sbCwgFwuZ2U+Z6Fkajq5yBqlOi0DSmmuhXs/fndubs5Qa/rP/Hyr1bJYnjaj0meenJxgd3cXk5OTuHDhAra3t61FDAlJtZsG/V1Cc0EavVTrc231Uj+UVz8tw3GQqZRIOSdlSNKTWlba95b9nNRMd90H5luTxlyiJ3rNe+zu7toJ02tra3a4rsaPlRb6MZDH47ET5FRT0gxnKh/XTK0XvYf+ft312k4IGhdTQmD8UxEq9Q0otUkklIShUOilVoPMZmEMUPsUMU6qR6pRa3o8HjMhOd719XU7PJZ+BcejKLEylW4+0UTG7oaHh3sKrYEXwJiikOpn7e7u2ncAGGBFv5FJD8ALcIlahePKZrO4c+eOnbmysbGBra2tl7SnEq2ut4Iq+hm6HC6TKVbANeM9XYJy78k5aByZa6o/RFY1CYL0wnsw1kracp8JvKixVY2lYykWi3jw4IHlXu/t7eHBgwcol8vY3d01S4HPVutI18EVDI1GA3t7ez3Yh9aB6ljcnGX3cqMV/a7XMqduvGrJTudFbR2DxASQ+FlFadvttjUDYyYOwwck9nK5bHV2fA61JjeL/imlI8fCFLxarWaZQjwqgq0PtQsAJTqlr9/vt+RonnUCwD7D/EzdAKbZkRk6nQ7Gx8dxcHCASqWC8fFxOyvz/Pnz+Pzzz7Gzs9MTyhgYGMDU1JQlE5BIaAkEAgGkUilUq1UryeOaqnnuAhoUju6lWl/DSq6mJYPxc0pMrqnO+6rpqRe1jZp7dFt0XADMdWL7D1oZnA8/RzSdFgPX//T01FwtdsxPJBJ2pGE0GsWDBw9wfHyMTqeLrPv9/p4OEMwFJhCnQmJ9fd3OrnF5oh9DulqS76sgPOt67fmcynS8EX25QCBgyKMSg/bZUbuewX2eo8mwCD/PEh524GZmi8/ns9aSrEag5iG0zgUcGBhAMpnsMf24aMpIBJKItqkZHQ6HMTQ0ZL7FuXPnMDY2ZsFvFT5KcGSq2dlZXL58GVNTUwiHw0gkEpiZmUE4HMbDhw8BvBAu6XQat27dsvWjP0oTmOOib86ECM6HTOVqM9VYShgcrwtiqKDTz/bztV0wiJ8nY6qA0e9zL/gZ1/zTvaLQTiQS5p+r9v/444+tEMPVcqOjoyZMmeyRTqdNIPAg5pOTE7z11lsYHR01ek4kEvB4PMhms6hWq9jY2LADnDgf7g0tLOIv2g6H7odalWrZqGV51vVK5iTS6fpVzJTQzdTyHT5YAQl+hxvAxWLckwTJTAs+n1KRk2IfHIYS6JB7vd6ejt8M4jPEQs3Zz2RjOhYPnvH5uuVWiiwrKkxTiFKeXQqj0SgSiQROT7vHI1JrV6tV3L9/HxsbG7h06ZKN3ePphlUmJydNCwSDwR6zmYUFXFsi2pTu/Xxp93JRQ36Wf6sZdxYootqaryvT6XNcn00Jk/ujjKmmtGZOEeQjo6sGYxE8aYNrQQH4wQcfYGpqqkvkfj8uXLiATqeD/f19Y8LT01MrgCCGks1mzcqj+xEIBOx0veHhYUSjUUxOTlp3/sXFRcsBV1QY6CbtsM+yx+PB4OAgdnd3LTn/VdcrmZOACHMj6RPR1HRBHQB2rgb9AX6G/gTzQUkcZFpuKqUkTWpKKIJFCtVTArVaLZNe2iQ5nU5bk7KVlRVrp+gKEeZyMs7WbDYtAyUYDCKdTvd0OudFwbCwsGAMTqh/d3fXACtmBNHnZBcIggm6ftTqfHar1eox/f1+vwFOGlNzgQrVeqrV+gFELnJ9ljnMPXI/o3FCTQbXbCbdNwpT1+dnqEiBR9bREp0lIzHLR9uuALDTyMrlMtLpNJLJpJ3pOTQ0hEqlYq8xhEVtrjTM7oMaCy+Xy7h69Spu3ryJDz/8EOFwGO12G/v7+ybYY7EYvN5uczea5NFo1BJ2yPBqQZx1vbYTgpbsUPJRurFbAImMWpExz0ajYRXoNI/5OTb1ImHwzAsOWoEc+hVk6k6nY8nL1F48gpCbNDExgdu3b2NqagoejwcjIyP41a9+hY2NDVskMiFNung83uM7kBjGxsYs+R54kfhA84blSWz6RPM5EolgeHgYfr8fa2tr1s3uiy++sGMq6NMq2qomH58RCoWs/pEtVPolvquZx0s1lKb7kaHJRG7YQpnOtZ7U/+wHOqk/SaYEXgjgVqtlQpEAn6LN4XDYmJqtVZvNphXWJxIJQ2E1T5dJLQQhx8bG0G638fjxY1y9ehXpdNp6+rIXEOfCozboOrDMkUpmamoK3//+97G/v49kMonJyUk7klLXzOv1Ip1Ov9TvNxwO24HSnU4HIyMjfVHdL8WcrPgm/E9N55o/gUDATj8mEkd4mUcCMtZZrVYtB5eagMxGc09hdo1VqinGz3KTKZGq1Spu3LiBmzdvYmhoCD6fD1tbW/j5z3+OTCaDVqtl/hslshbuUhuSkHQ8ZEoSKjXt1tYWVldXEYvFMDExYQgv77WxsYFisWg1jJ9++iny+XyPz6jZO7RQaGkUi0XTtGQ6+unaJYCMoYkK3CPFBPgZld5u1o6bNqcWh9f7okthv6QFdQXUxCXwRsvIDa8oakszsdVqIZFIIBKJWFNz3tMtICd2QE3MM21CoRBWV1fxi1/8AtevX8elS5ewt7dnxx6yBxTNXI5VS9h+8IMf2EnpnO/Q0JChw+fOnbOjIgYHB+28GjYETyaTFjePRqNot9umbb8Sc7IXDzUYF1YDzXpzZvdQitK5psnSbDZtITR0wEZfCk/TZGUJFwmJxBgIBKz3DDeYY2GvXXZV/+KLL7CxsYFKpYL5+XmMjo7a8Qn8DqUy61B9vu6ZMETyaEppWxKGlIg8z8zMYHx83Ah3e3vb/JhCoYCpqSmrnqcpz3MmGWJgNgzdg729Paytrb3UUUH9Sw0RqfZ0q2HUhCTDqYYlk5DpeJGZ+L6boqa+qwoETfrnOCkouG7cT5rD/JuN5MgkFNQUxqQj9YFVQNAyYgokrYt79+7h7bffRiKRwKVLl6zpnBs+YaSA82u1Wtje3kY2mzU35c6dOyiXyxa3Z2E+rSdmeTElk2tCKy+ZTOLg4OCrMaceh0AtqNn8NF8odbT5MttQKANms1lrZclLJS+1BgmPfm673TaiplTV80koyemvffbZZ7h//z5OT0/tvBH2NQoEAiiVSuYXn56emmnDmCsAAwFarZbB7qrBO52OHR9BayKXy1lvWqJ8FBKFQgGlUgl+vx9TU1PWcSGRSJggoslK5qCgoGBjyh8vMqWaRm6WD9ea3eeGh4ctQUMtEb/fj3Q6jXw+b6eVKVNrUQH3jYTLZ/Qbh4I9nBMvvsZ76z20Tw8FPjUlhTzQzcjSM08YmyZtMrPs9u3biMVi9joVDounyYjtdttCfLVazY5hpO9IoJB5ukTcfb5uy1YqF8UGeA4oNSarqNQX/42Zk/mtap6oKapBZ5qC1G78vsai/H6/lexUq1UrwKWEL5fL5mTrRtLUoqYCXgAnrBph2GVwcNBMQTL2yMgIpqamMDQ01JNiyORyoq3MXmIfH/YMIvMwjEMmojlN34XHFp6enuLBgwfWJIwMNzs7i0AggNnZWQBd4XdwcICdnR0bN7UBkWr6JTT7NSxFX5XH92l3eyZReDzd4Pn777+PjY0N84Vp+iqQlUgkLIRA4ceWKiQi7eRAwaaNt6n92OSbDEchz89QiAcCgR6kU8NwJycndj4JcQXuDxmWR3HwtXg8bk3QSa/aNYKCVQUYhRIZnHTTbDYthMf0PyoiClCePtdsNo22qcWZS86kGK4HtS1Bvq/EnHSKedoWANM2xWLRzFYSBRMEgBcF2iwdIgHQv6PzTYlJn5QLQW3JDdOAvyYpUIrxvoFAADMzM2aOcgGYG0wfgpKSmpSmJRs/0yfudLo1pdwEWg80q/mZSqWCTz/9FKurq9jb27MO6xwzD2SlpcDXqAVoJTAmRmLlsfPUdAqAsdfrs2fPrM0kL64JQZeJiQksLCzYvDj/UCiEZrPb7nR1dRUzMzM2x1AohHw+bxqAn+U6MK2Q4TZiCkSox8fHrXji+PjYsqS4HzT5KCxCoZCh/zThyZykx93dXSwuLpoA1xxc9lWmRlShQIak5aeYABur6ZmzAwMDZqVQy7EjPvCiYOD09NROMFDNSmvQ7/fbqXpMIqFAi8fjtg+/MXMylBIKhex47oGBAZTLZZycnFhGjead6gFHjNFxsXk/LpKm1PF+kUjEFpQ9TUm07XYbz549w9LSEq5cuWKxUmoSJkRwk4kkcwM1bkvTg0kLJFgKklAohFqtZtkm1EBM2KeZyA1tNpu4du0aPv/8cwwODmJxcdEEE9dIY328ZyQSMSEXCATM3KVGI1HRLycaznYZPp8Pw8PDlt1C4qdwpIVRLpdNY2tMk0KPHR7oaw8ODqJYLCIajSISiaBQKGB0dNTCA9Vq1YiOudAE5HRu2j+JFle73bZjI3kiODVVpVKxzgLUPtTMZMZsNmvxXpYu0uzXgD/DGUSONdpAS46/T09Prfm5ou1cI4JNatar8E8kEkgkEj1HSpD+iM6Wy2UkEgmMj4/bHrmo9pdmTpaIcRLUZMy+4MYxPqVEpGGKarWKXC6HZDJp56dEIhFLT1PklwntHDS7AdAs2djYwIMHDzAxMYHx8XETBAxL0Mzm+DR4zxiUSj/6q7pQijJrRhDnzjRCr9drhy8RnXz33Xd7guNcE703E/Lr9TrGx8cxNDSEarVqYSdKXAVXaIoTQVZtokjv8fGxldLRNCThsgBcga16vY5yuWwnbfOz2uWAY8hkMj0d7Li+Chwmk0lLHqCAJUJeKBQAdMsNh4eHDUfQvWPojnuiebR0gej7JhIJ03AUwqQd+ousnNJMMAo4JqqQEelOdDody+GmwOLa09WiWR4Oh61ShVYD+YL4RTwe70lk4PObzaalmv7GzPns2TM7bo3mJolkZmbGbG2iZGxPTx+LjjXQrdaIRCKYnZ21Rdc4KmOUBGc0bqVoXzKZNAeeABETJcgAXHSanXTm1axhYbiGhWgWarIDNTA1DA9Vpb+n4RWixtqanxtL/5W+Og/YIWETCNMqDUp0RZUpVChMNMYZiURMo3N+moLZaDRQLBYRiUTMp6/VaqjVaohEIuZf8Z5+vx8TExMm4Gh+E+BptVqIRqNWq0sAjYUKzWYTiUTCzGPGHnkoLQmYe8f14D1IWxTk7KBIs1GrlyjQNIQ3PT1teARpSStaSqUSRkZGetJSuS68F4WURgW4Hpw7hYLiIVw7umWkYVoXjKEqQPYbMSd9G90QAi1er7enoS6Jzg2JUIuoVOPi8R7sCE+wRcElon0kTh7zRiCAz6btzv4yNLk0BkdijkQilgFEbUGggya6xlo16SAej5u5quAGBQyTpRUwI0CjG0sTl5YCJS9Nam42D8whUwIv+uzSz+Z3PB6PhYHI0LFYDFtbWz0J3CQUYglMNVTG53y4j/F43MAurhkFHdeOaxIMBjE2NmYWEsdMOopEIrbXGjtXhJMxRzIELTE+R0MfFHzagEv7JtEsZUybPakYiyQiTs3carWM7j0ej51awBRVYhdE6okqE73l/EKhkGnPo6P/X3v31tTmlbQNuCWQBGYjEAJvcLyJJ5WaytHM//8HczRHk0klU3YcxzagDTtjBIj3QHW1Wkze7y1z8uXAqnIlNkh6nrV6c/fd9+pnkKUVjmZ1dTUT2hc75/Pnz/+rEQ+yMh6kDKjBCNHYGtKygowArqhHZDmOBKpZdOc4aVExp7VxfXp6uiCkB/PW1tbi3bt38eDBg6ybGMb19XXWV/prnB68cu/VackM/QHNoILqwO7HC9T1ezIEksQzVvr9fmxubiYRYS+qFrjf7ycXoMapj7kga1RbN5vNNHKwNyIWAmBEJEn05MmTePDgQZ6BrMHSfoHjEZFTHLSgqmNheKtQQH1XAy3SqhKK1raWIUdHR/n5EZEwG/mmnyooKscQQZBaRGSQgkK0/8wEVs+DunV8jHVjszKiQ97u4+LiIpGIIFP1wl/knKIOgsVF1J6kxeN4ph2AHJyLgkgz32ME63fJOG5aFIyIpPOvr69TNAxGaaOcn58n5V3FEOpNbZrBYBA3NzfZd7RRNhpEYrxVwVLrBY/tM6lB0CI9szGc1DrY3PPz82Ts/M7JyUnW2cPhMLrdbm6mxxz6/Kurqzg8PMxHH9ofVH0dMmY+kHu6uLjILAXBTCaThckWrVYr+4kOHNSRnU714CXU6KPRKN6/fx/T6TRPfAikPquWFOvr67G6upqaWGSQulsglMFPT09TNYUFFfAbjUbWdhHz6fG+j6BFYNEScV8YZevWaDRSRGCNaiuRPUdEKtKq6gqKmUwmyXkgTuvBhS92TtGw0+kkdGC0HjEg2kVEMmM2XbGOqo6Yiw44ggs3DhJM0y5xE2qBummiDsLF2TxQAinkc2XH0WiUAUVbB1wR9ar6ifGBNWq509PTzBLuEYS6vp495dtG+b2ISGj9l7/8JYdwe48sg7kE9zjzdDrNJ4lHzJhXGbFOjJCZQTs/JxphbH6mlaUWkqk9b0SGIUez1xXKyvoOvP/9739fOOzgeu0hZ3EyhB1ppwh2gpXf73Q6qQ77/PlzwkgMPKTmXqjM2KoAbN/qCSOqMqIBAaDakvt2TRKLrC7zcnSHuysxFRELtvrFzimbkK+pRdRQ1PW1TtNnos6p+sc/Ot/m/0WtjY2NuL2dPTRJFLfBolRl3CJmmUJNa9JCxAw2mLbGaSLmA7ZAboRSRCxI6xxnA3fqI9GrQJ+axXciLyIiIZHsCPI7MbG2tpbOWQ9c1zZTfUyigOBQ+traWo7UrLVgVTOZr2qfRqNRGgrn9Zn2qYoKZMjJZJKCjXp8Ts1+cXERHz58SGiNjTw5OYlPnz7lk7objUaywwyfAyHLQHTB27wpQbvRaMT+/n6iJmNI2JBD90dHR7nukB0bwHUsLy9Hr9fLpMNWtHFkP04oiJ+fnyfLe3NzE+PxeAF21yBBXEIEU3mHezknJpEDKYJ9aIV6MmIVD4MkIppeJ+eq7YIagSLm9HOFZaI0GMehMGtV81vF2xxDlPWd6iMZlMOCyqKkrC1DV4bQf9UkarhaZ7lm92y0qKdmadKbSh4xH1fp+2Q8J2doOWvrhcywwqzaqwT7dnZ2EpoxIA7puxk0HajvFEgrEqhqoI2NjcwiHgbV6XTip59+yvuvOm3Bmv0I+s5RsrEKgytqGI/Hsbu7Gw8ePIiTk5MMrsfHx/Hbb7/F2dlZEj2fPn3KQNxqzZ6KV+taj9twVEyf8/j4OJniamN1OiIGXFYVBFqtVgoTvJSElcv4YueMmJ/Yrx4uSqK+aw1qY0ETzgtGcWoOYeFFb/0jkICKn85URKSn9BkWj4SPs3JkjCDDsbE1AzIA91h7gr4Dm1cp9soqLy3NHmC0s7OTDhIxH7ilJh8Oh3F0dBQRkdDxw4cP8fDhw9jc3Mz1EfhkQ2ssQsu2yItaZliLRmP2WAH3VANRZVqhkbskXiV2/B6Sxu/4e7/fX5C4gc0UODWbCyQQFPRjbSsU1QYS4NfX1+Mf//hHnJ2dxQ8//JC9Yn3k8Xic6wZS4ijsX6/XS4QAyQm2pJ4CiWuBINiE+piCy/4iQ3Ea2OnJZPZQJjC6Pvb+i5xTH9KHyyoWaGtrKyOmiMa4OYjNi5hDQRlVluHEHAiDySg4/ubmZvT7/Xjx4kVmYk4h6sqaHP7q6iqhqJ5fPfsJqsoCCBf3j4JHUFkD9Lnox2gr61gFFQKD+uzw8DDevn0b33zzTQ6OOjo6iouLi3jx4kUyyWB1rfEqGomIDCBKiXa7ncaKoOIkAow1r0FSHRUxH22ppKlaXuRTRRoyn/tXEoDKSLNWqxU7OzsLsK7ax+rqagyHw0QQoHWz2cyRJRychBI5p9bzUF7kYFV51bYZ/XKn08n6lCyS1BKpVnu/AhEhCvWPWt+528qLsKHLy8vodrvx5s2b7Bvf2zk9NNRmggHocxetz+iC1ErqB5FH5K43WAkiNQwjgNVttPqRKohjyEzqA1GaJhZDzOCRAM4Kgq2//PJLTKfTePXq1UJWXV9fzwnuMhqSzLXURjnodX5+vgCHDPiqR4eweOqebre7IPeLmD91zd/9rNvtJiys2VSdK9vWhjpjqbA5YvEAtcjvcLDsaB8r5Pc+qEQQwE80Go14+vRp3oM9YuhKCIGGttrnVhEKaI2dp+eu91KRGBut7SP7KcCsra3Fo0eP4vT0NKFv1e5ShbFR2bPZbMajR4+i3Z49GlMQE6ShN0q46XSatT7YK7l9sXNWVgqEYSCIBM4hmyBtqnExQlCGJEoT3XtlQGf1NIk19w8PD+P333/PIzqyClIHNKl/RHz14PHxcTKcEfN+pci/ubkZ//nPf6LVasVf//rXjOwgMva01WplL00d3m6383RL1fiqz9bW1uLp06dxdTV7IpsDuJ1OJ5+yXGtv2dl9gbSiv/u7K3+rQVJbiUO616r1BMe1eOhM1Y13CTzfS3DiM6+urrLXCM5VvkCwury8zLOa6+vr6VwSAHbcS+ADIZ3AAc+ttcFvFRbL9pz8/Pw8GVmE5u3tbYxGo9R3C6QCJ7jthbfwdDijbHALvlfZABF43/n5eWpx7505ay3gZsFUmYHqAkQVucFJF4p9rIQJgqA+lVpm+vTpU4zH49je3s6oismF19W7FVoxGJss0nc6nSRMOBzHF2BWV1fj+++/j+fPn6d2U91CjmVdoADZpK5ZROTZUZnC2jDCqq0UYDhmhd6gtPdDHVVLKquDYEQHDNh6g7aVkKvZFIS3Fl6j0SgZaT1Je1qPn7EP9yEwqMtlzoh5BqvtCAFc605Qre+1LyBlu91OgQooTR4oI1tvSAr6kmwODg7i999/j62trfj48WNERE7wi4isJ41LtSbURaSL9qm2eezV2dlZJhCokJDiXs5ZHQZcqM5gJKWaiDFW1YeITlnhJe0TXTPmOt6Cw9VjY4QNsi1oU2sy0R40EV2d/qhaXFnD/4NSdxlKP1crcVCQWcZXV9UAwqgYWD2grab3WllZSUhZYbo1k6GcjBEkESucMiKy1hQ8tYMEpHpECxRTx1e5XCVrIhYfQuy6tNcEgsq0VtUVBFBJLqWRWth3UfDIopBWlTWyKclAdtTCgnRkcnviPRBIr9fL63RvsmINrlDE06dPU9TiM9m8PVtdXU2eo5Zt3W43Oxr1mN8XOadoKQq2Wq04OztL4wEvYG2sIGqdcdxV/GA39bb6/X5EREZNxnxXgQFic0wbVh2nMriMGyXuPtQjNu6usMH3qJdlF5AkIhbgmCyNLUYM3Nzc5AFmEE7mdPpDJAdfKzTXm6y1W2UN75I6IK8XoYj7jJgLSxBYVbZ3dXWVp/Tdb6vVyrrd9VirpaWlBTXP6upq9v7UzZwIfKxZdHl5OUdUClYRsTC4zF4Tbvic2iuUaa2b4KHeJASorKvAVPekCulrt6Db7cbt7W0OByNI4ANaVNpGuAnIhX84xwlxYHnv5ZyfP39eOCwNpjIAi+yERT1LqNURMR+N6I/PE+kxrwzd5L52u50nxsnhRPMqowJZNH79nNFW52SglTaXPUAd16wnp50wmUzil19+ibOzs3jx4kV88803aQg1et7e3qZqB4Shh5XJOIB/bzabCRHV7NbINXFwNV49YWFNOV6tUys7W4k931GPn9VIzhEhErWgNamik4hYmISnLSVbQQvgXA0sVc6nDVGJGAnC1Dzr5ZqISiAtIvOI+VRHgdtaKAEq6YTFrf1e2VU2fPDgQVxcXKTARhBXv+qdV1QWMUt0g8EgBoNBzr49PT2Nf/7zn/dzzqurq4QHJlpHzDA1WZ0sI/oOh8MF0a8I6L3gghsgYaLMYCQYs6Ojozg8PIyrq6vY39+PXq+Xi6w+cqM+W5AQ7e9CjwqzRFMjJVDrVTkTEWkwjsoZ9a9Our6+jtevX2fUJ0h/8+ZNTCaTHFOBsJF13GvtpYr4nJlB1SNJMmplqhlhRQ32yLoqOXyeYMo4QTf3C+aq8cznEXBqEICcQLjaD5S979b7xBmdTifbEUgYTlgFHZVZFiQi5gyz6QyuD0FXHRUz/+uvvyYMBf2rakm3Qdfg5OQkMx15n3Xc2dlJ9FLVXLoNMizxg7lCFel8kXPC+Da5NpU53NLSUkY+F+JLjeqwiQ5ra8YiiyoTKfq9efMmWycvXrxII5O9x+NxnkGUvd+9exej0ShOT0/j5cuX8fTp06xBZN/JZBL7+/tp6HXhREIObeyGQ9ZYuapNPTk5yfUYDAaxvb2dhMz19XUePgYZSdAQSnqyHBGVr/da62u/77Nre4ooOyJy0rysXBv9Pmt1dTU1rWrAWr9heBmqLFqfUVLv3RQAT+wWJBk+HgCHIBtxzIi56oatsD3Qs9aCNNvaR36GsFJjSiyCnUDmsZNVtFGJNH3qOslBQCAiAeWx/OpjCqPr69lURnv67NmzWFpaip9//jmWl2fztP72t7/dzzk1ZjmhG7GwoiVIiai4ewh2MplknepcX/08Wc57RE6Ff2WCEQWVSJA1m81mvHjxIsbjcVLi6loP0o2IFHiDHDIBpjFirrFVH9pAjWwZU112dXUVvV4ve6kMmqOpLW9ubhbOBuq3RszbKLVFAEbW3q+Hx1YVD1JMZgYTaz0t4NZ6Xq07Go1ia2srndywNWM31H+c0975jOl0mvVYo9FIQ8fsug/ZsIpG7BHnBbll12azmS2Y2tz33a5DpscB+DthhtpeCVE7CL7TWuMbBBD7yhnxKMqnt2/fZnLZ2tqK8Xgc//rXv2JrayvJo/39/VhaWooffvghEce9z3NabLVdhRmiVXVABhARC1CsQjXzh3xmzZqV+JG1EFBO+SMnwEYyuM3NzZwZy7k5CBatHoqux7eqM5iAZ7O63W5eU9XlVoh1cHCQhugeOJn2BP3l0tJSPtEbu1mJqlrjMwxrVc96eoGpq6urC9PrqsKltmn0GAkj7Kfa0Xs4UG1Pqd+JHNS2nu5moHZFWNPp7HEFvts64hT8GyRWPxPiEPwEdNcO9ZycnES3281WW8Ti6E6fCeo3Go04ODiIT58+LbRL6uF1e0vMYa1ka71Xx/MMrHOwvdvtLqAx94AB1qpS336xc9bi24KrV9xkrXMi5iNKZFZ1IYNeWVnJaOHmQBgLOhqNEjr5vsvLyzg6OsoTGEiVChcU+AKHCEtXKlNV2AVmy0qy0dnZ2QLRUqlwG+MEvUzdbDbT6S4vL5MUkrXBWRvtu1yb67aGEZHsZ6fTSY2xqM+hqnTsw4cPmek5bFVh+S9E4B5rL3tjYyOJDdnhbsaNmCGQ4+PjfJR7q9XKqXfVufAQNYiwAdCSgAUKkK1BaTI8vwclXF5epsoGOyoDY+5xDfb54OAgfvnll4XEwG5WVlbygVQ+F1JTkrx58yYePnyY3zOdTuPbb7+Nk5OTePLkSVxeXsbOzk68fPkybm5usk0oGVVORIL7YufEalHrNJvNzHyymUwiEoBQnK3KvygiRHKw0AlzL5mF4dE6gmngRs0MtTZwPdhHsJsD2pTxeJzQ3DXXKeMHBwcpshABq7709nY2JwnVzmgEp9on29raSlavEmkyTCV8ZEl93Npn7fV6CT1dh2HFlZzBCiN8GGc95GuyItg4Ho/zoT8rKyspDawtARBctry+vo6dnZ08wlbXVu/X966treUhe8FRsGi323F0dJQT0BuNmTSRmmdpaXacy2klsNoeI1tcm8BBEqkl5+jhs2fPska0f1UMAd7az7W1tXjx4kWcn5/n5MDpdJpPBfj8+XNsb2/nRErBuLLK7XY7Dg4OUq8sAN7LOY+OjvLoDHhDvaKnB4dXSVXNmNPpNOGjm3VjqGt9MFGvwpmqxZVZZVQMmnmljE7maLVayQRTCN1tpA+Hw6xJq6oGpS9jLi/Pn3QVEXmPPks2JCqokJHhVIYaJPNC0kTMB4xxftnUqM4K/+0F5OL4FMJEgDBGUk1dSxWByfT0iFjYvxpMKhNbz4NaL6NiOARZXURkUD88PIzBYBAR88HlW1tbcXl5Gb/99luec9UuOj4+jkajkQPjTLIwxNnnGgVCehgRSei9e/duobcoaOhC1IxG4CFIq11fv34dDx48iO+++y7G43E6XS1HMMWGiVU2//DwMCddtNvthez8xc4JG5s/i1110Z8/f47BYBAvX77ME951Bimn4oAgor6oiMVhqH3AotpfFdm0P9R3qHLR2KYwqvPz88x2MgKIpHDX4K4sYqPRyJZRxHxsZ0TksbW7T5HSggB/RWuCCw54t+0gs9WTHeYGYTmPjo4WxjVWFCFgWBt1HeG77wcfr66uEoZHzFtXdycEVpZYHYb9FgBl1qWl2SM4Kjy3r7e3t/Hu3buUT8pY4HpVZ5mYp65dXZ099QtKqI7UarWyBkf0ePaM7Le8vJyHpq2rQNRoNLKd8vTp03zGqvsReCvTrfaGJEejURwfH+d+s3ctP+1I2vAqPlGm3Ms5eTVjgLstXj3cWxdM0/7y8jIfEMpBqvMgPGrzuY7Z8O8OSVdmz89B2cePH6fz1RaEzCJziOQyl1rOPRFJCEY2RJ0pG04mk2QiwTI9TtBYvUymWEUdEfNsyTkRPZrq9TGHz58/z4e0DgaD+PHHHyNilmUZmpd+JnKLkENZAvbKbhHzJ7q5Z4J4jl/h8NbW1gKUdq9+HhG5T3iGXq8XOzs7adw161ThwsXFRU4v0KesIz+x9ZXhFSisofVUsxIPSACNRiOePXuWgW51dTX6/X6Sb9aQ7UfM5ZFV3ca+2I9kURVmxCtURbXc2djYuL9CiD5U8coB9QzVEWbzWCibg+gA8zgu5k0kNGjr4uJiwSCJ3qu+sRoFNndpaSlHb7h5DupzRSuRt7ZPOKYAJHt7z9HRUQah9fX12N7ezt5dZTjBUZuqVSCb3t7e5qmYZnP2DEdCAEyj63UsTxur1WolsWUsJqTAqMFr6/rx48fMKhGR0jzw2ToKmAiq2hgHZUk3XbtgY11kNkGl6lAJDWo/V9YBLwUBhvvs2bM8lcQOObI1ltnrs2rqXrAt5JFZutvb24k4oDf94orQICjfp86tKit92YjFPi2EYNoFIlSiqD+7l3PqpYEfyBdQ1IZ4qfNEOVmwtjQqm1uPWsmKoJsF8vJ3EX9pafYYgocPH+a/2TDRj9EKBhFzWR8HUHui5LVc1FR6qI8fP07DpnzixFX2pWcmIzF2rJ1rqb04MMrAYUZfp6RfXFzEzz//vKAJrkoq9W4l1qhYSO0iIqcJUMsgJWq/UuY1LgQrSS0DWWBO688Et263m2ww5x+Px2mM6jL1vifHcVTfL+DKYLVUEuDZ5s3N7Fkqx8fHyXOApcof5ZT1lskhpBqQImJB4VNf7qlC2Spt9Gdvby+ePHmysN/QGc7kXs5ZNYk1WhAcgCL1Sy0WI+VUMow2gwwqg0REwsRut5vMX9XnyuDgjUiqJuIIFk4AYYjqLkeM1ESCD8irfr64uIhut5tsJFKIsTIum0V0gC20doyIccnunFEdiGxBsqn1a2sgYj4NsdZhjAf7LQtAGKK6tazSM3Wqe7Ge3qsvzAgN27q7huouziabWws/h2hAZ4YL5jYas0HOpiSOx+MFPbeAK0Npt1jPjY2N6Pf72Qpy78Ty9f44Ua21rVttEVaBinILR8DG/a57cg1VUlkZdejzXs4ZMZ+Srq7w5VXG5/dEOBi7YnRjGkR4WQgZUFnMCpEYRP0shi2q1mvVQqntHNcmw3Iy2R1C0K5xGmcymeR3yjZ3FVF1Q2qv1jXXz5FRGXat05BsVRmETZRd2+12BpKIyDk5VDuIGjJJQahO7d/a2lpokRn3qD4E7Z2uEDwqYYTEqetS9+Hi4iKf8wma6vfKztbMHgsAjB4RdXR0lIQKh6mTGK0ndpejCThVQx0RC3vGXsk7MbMRkc4znU4XTgdxtNr6Us9HzJEbCAy1SC7swL9XpPNFztlut3NBIhbTvcHGpFCO2KjVRFCs6nQ6TV0qJwUJbQySBbGk5fJH8MMiVmhQjZqGs8rAZGtGVeV3e3t7CzpLfUs9VEihss/gKSOQmWXqGphWV1djfX095XDu3eybOp7Tq7YyauBC9IjC2j+uq9frLaAeRgN6ytyMRxNeDTcYDDLrtFqtdEy9Os5jnY6Pj/Pz9RyHw2ESN8gWgbyK1QUJQdRMIGsLOjPoiEiS0bNEKaNkKYGjCi/YqnVy71XtZn+rY9bep713X2xb8BFkrWXtT/tOXITPvLdCqGooK4z1RciaerA4IjIrMvSK5dVHdTqCyA0S6+2Zjhex+LDcTqeTWcL3fvz4Ma6vZ1MBHj9+nMYuk6sRRWp10pMnT/Je60kU5BVH4Gj+K0MxLJnLi0Joa2trQXwhOPgdQYAh3o2ynECdzeCq3BGCqcGhbvrZ2Vk2vmvtc3BwEO/fv0/po+tDkkAUpImg8MHBQX4nMYl9QkBxssvL2RBqtfG///3vuLmZHVZGGunNbm5upvKKg1XJX8R8ouB0Os1aTjbl0PUkVBUsVPRV14ETCmKCcQ2g/X4//x2DzI5quSdx1GkLfsc13NVK38s5vVlx7YUUcmbTUORGo5F9IhfKINSIohtcz9g4h4VCLjgoe3Z2Fr1eL7rdbpycnOThWX3LJ0+eZCS6ublJIsc1RcQC+TKdTrPGtWkCiJrAZoMg4CHI5vH1NvHi4mJB11ub0Fo5erb1rKIWBgjr+gSS2jus9XQleuwX2A4CT6ezCRCVBPKntkBkFaogRqaWrkFHH9Fa+jvDU6fWrNPr9eK3335LdnZvby97kljMiIjXr1/ncOjpdJpPHke2IJRkuMqkLi/PZvci0ZwIci8bGxs5DpMjCgbWsh5CUGoRTuAEBAzBU1BlZ1hcmRba01oD55UP93JOhX99ApUIY3OqDlRmI2dyY/pWjKDWkRV+ycQyUl1UUwBrtoiYj9AAU8BQmQas8BwVWUlGsGAcuZJN+o5gqVpLzavmMw9VVGXUVTFVA5HAAa4xjnp6xLVQvYDq7tWaqeNqnaV1Bc6pXetnNhqNFPXLYH/k+MfHx3kMrCqTtLl2d3fj9namRfasS6UNB202m/Hx48cYj8fx7bffZu96MBjE+fl5fPz4Mb/74OBgYWJ/bdtx9IjI9pjBX7TGrh+Z1Ww2E85vb28vDOzCLE+n0+xNa72YLknRw3EPDw+zhImYPbJ+MBgs1NRra2sLz6LBMVANCZ51zb/YOWsLQIStsEy9CLJFxMLzN6riRSSsWUOdyXirMqXZbGYtY3gSo6d+YaCitmuomZuxGD/pO2pWjJhPq+PInz9/ziyCxeWUEZEHpzmE2k62qioe/2YdQJ6I+UNYfbdrcj9kguCc+xYQa+SthFxu8J061nrJlDVYciaMsT6rxr5aCYkiIDo/qh7W13z//n3ahMdrPH36NPdHKwubXNEEll1bTpYDWZFgGGA6XoGXg6rBlRi+U1AX9Kx9xHyO0+HhYYzH4xgMBsn2RkQGIn1qQX40Gi2ov3wm4UfEvM7udrvZbru3c9anOYFozWYz1TYR84l7akdEjKjNACp0VEyLkmRtdZEePXqU2RTLCyKAHBHzNov/5xAMqTqPZ3Roicjy+pwofqJwtReHuby8zMcb3IV71eDdZ623q0NVWt46Clb+uA+PVo9YfAQE56jRtzo5yOU+OBlIW2G9QKYur7LASlbZU6jp/fv3Ofs3IjLQ9Hq9+PHHH7NmUyM6giWwIZ16vV4SUXdJIYIW2mgkEgUbdKL8qgIX9zAej7P21i2QCGRgkFl/2yQDKEOCgXwEGfCZML/T6eQzVAlVoIo64YMC6l7OORwOU5Rs46XkCt0sEKghfYMTXupNGYSsCsPKWBXOWGDR7ezsLKEkWOrzqlPU7MNBOCrBsmgsSzJmzW+1LkE9B1IXulb/lY3dR2V9I2KhT6dlQlYXMVM+1WkGgtlkMkmht/uSLSqj6T7v9qMRU3rPPt9/HdsjrkDmgX4QTm1vHR4exps3b/Jo397eXuzt7UW/349ms5kzWfv9fkwmkxgOhzm4OWI2eKxyDaC9bOOkRy17zKOlR9U5sK6CF9vQahkOhwvKIuole8OJ8RTqf46tfcT2jWuptXm1V9JQ38XhlUkePtXtdhfO336xc5KqtVqt7DtVmrqOUURGSNU228Jywiqkpr7AvFalxd2sA8qYHWrzMIqiIGdR44mkIqQJCePxOPt99eTE1dVVCtsrsaN3W/t8rpPD2aTr6+vslda+moDi39TXJjM4TdHr9RZ6dCCubLm2tpZO5eeMtUrpVlZWkqiiwLE+1D++9+bmJl6+fLkw4b+yijIgsidiRrjs7Oxk2SMzE0A4HE9rrUSiFELOQBI7OzsZDHAWVRhhOiOSsj7BTg8abHU9alJkpGfngO41aPqs6XSah/mVaUhP7x2NRum4bKHdbid/gMEW3PEDVSACpt/LObe2ttKp9Oc4o1rSjdVjS3Vxfv3117i9vY0nT55kBH706FE6gcx1fX2dBJQbBbUU42CYLMVw6siRGhXpLDk6YoP4QFavmdsRJfUyhhY09h41eJW81Y3hzHVCgWxn/WQ4WY1DVZ0tJ60qm1rXea4IFYy1qfCec0yn0ww6vr/T6WTGu7m5SehXoZ6g6hCxKYiUSmpiJYeWy9LSbL7U999/n0/GhoROT09jf38/r6EGXJlHjTscDuP29jbZccKR0WiUtnpzM5vjg3hxyECG4+CCWQ38gnINdCcnJ4mgdCbsNa1uLSuw915aO5KEbHx9PXsKX7fbzTbUvZzTTUZEqu/dQFV6iGYijy8kMq5qDi0XhlmPQdXZQ6KzBRRp/L3qaTlX1e+qlzlOhSjUShhWf2ResAghgdVTW4N7YLnTNDKgY2rqsAqR1XgVSlsbQ6+dStHS8Rm1zq5nP415RDR4uYd6CoXYosJg8348Qs8YR4Fvb28vdnd349WrV6lRteZqt2r0zebszOT29nY+1vDx48cxHA7T2BkyEbq2m6B3fHycD50VYKttCQq1nEHkcMxer7eguBLsBCbrV8UDvr+qhiC3yoALmnxA8PL7Eor9I6QRmEzauLdziuZgDrWQaMCJRH+bQxmBVPEZeneazBZHNPX+qkDxO7IkCFpruyqUMEHeYtrIGlhktHovFlSAAJHcY4XyFUrLqH7/8vIyz4HeZVarIcnAnKmeORVcOEGzOZPdaUEYAenBtEtLS1nPnZ+fpxKJqqcKR9R5BBaM0d/dX51it7W1lZlZoBEMyQFrgx9iiYjMotAK451Op/Hrr79m6YNIdL/1gb8bGxspgqiaZWte21SCWMRc0Sbr6cuCk8qLypZjzxGF1cbUupKL/QZb1amQQM2YbMFn1tnM93JO0bxi8cpE1j8MEJTS8K//XvF9JWX0fqqCSHRTyyGhLABDsAiuCUwDwWvUJNHi8Hd7TO5DMIqIhbOBMpx78GKAAlhEJCtXVVa1n8rZZft6XVVnW6Vjgg9J28rKSqqh1G/uV/CqMr+IeQ/w5uYm4TvjrOhI8KqZpgYZGa1moeXl2bnV8/PzLGPAeWKQ0WgU4/E4Hj58mPWu1kclIJ02iogF9Ib/wJYKyu55eXk5H62wvr4eb968icFgkKqlTqcTBwcHiVyqys16LS3NhrAh6NifepOu23dXdhvUtcfq1I2NjQwKrs133cs5wR1saMXkXqKkKKB3JErX3+ckoutdR3AjWGAbEDGPXgy5voej1X6r2rgSQt5TA0r9/pqFqyZVnfFHC1mdtDrYXWfkOBAA+F3hEePyuYIZNtFEQjJF9VQtBzi092hvqSOtE6heD1+bmSRD9Hq9HKiGUwDTGo1Gzu11rhaiGI/H8erVq2i1WilSl9WOjo5iMBjEt99+G+32bMwnrSxHrdkEgQMKylJVb+x91kEPNGLmbPTLOILT09OUQNYWCDLu5uYmiVAHoj26Ecmzvr6eBwy0+cDUu2ogdqhlVNGbAPRHr/+zz+mGqkhAhrD5IptN8x6LKMNVxY6sUh2DwagxFPi+/4+uyUFWDorFEzTuQuE/ylBVs1qp8Mq6VZVUDU5/1MeUFd2X7FO1tD5Du0MtjHyZTCZJYC0vz4+oNRqzg9n6Z5hU9yTDV1JF0CLpQypp2suuVXrY6XQS2lbdLDio9JA1kGeCyc8//5xM5enpafT7/ZhOp/nkttevX0e/319QVAm+5gvpWwrInLHueb1XvIf1pHWuR/7U5eBsbc202+3Y3d3NgDIcDjMpdTqd2N/fX5Cg4kxqWWeoF7g7nU7zkHrEYn/6/wVp/0/nBHnqmT+RQGSQ7mkJwRokgBkvIocLqtmF4/sd30P+V7OO0/02k561isdJvmobA7Nnnqi2Re37bW5u5tAofVtCcP/GiRkNh2dYNRiJzAJKJbk4xF1xwu3tbbx9+zYGg0HOZ/U7Dx48iJ2dnXy0g+NiUEhFBFUq5lp8j9qZNhpLywkxvJ8+fcrWlUfi2XvOwvmxzMaujEajbEO4t5WVlZzi8PHjxxwoJjNrl5D+3d7epghmbW0t+v3+QpurKpoojpCP7Kfdbsf+/n4sLy8vCFA4cas1e9I2m4UwDEc3pR9cxpA7b6wur48UqfU+UrIO49ZLF6jv5Zw2QWFdqe6IeT9S8W+TqSPG43EyXiKJyFOZS3CIsdsYozAEAkYlKor2NQKBEDYG0WExqsqoqnP0yZxf3N7ezuzEYFw3A5Q9aG9rxqw1NGeuBFHNkoJVRORmIj8ePHiQCpwqEBckKEwqGcNpR6NRrq3vOz09Tb2s7FjZcEeoMMCEJJhogQDLjtCpZY+AZu04n+s4Pj6On376Kb777rvY3d1dgIuyGnt59+5dDAaDnHZArGBCPZvD1Ho/8bv61DWqT4kaBF6Z//LyMo+i0Wojv4bDYdqE9t10Oo3Hjx8nbL+4uEh1GuYeb2G9PdvTczzv5Zzn5+cpVdrc3EyZkmwjYjEUkNaCDYfDaDRmIz5EF8aCkLi5ucm2A+jG0LCunLgSUE53VEeNiHw/Q7DxNkUWY9CV+q7wSMbViNb382Ko7rX2ZavKBvyqLDBIK/tovMv0L168yNqJprOSaLe3t/msDvWaTM4hKFmgEN93cnISb9++zYAggwtmiCBw2/pgF9WY29vb0e/387S/oAhmdzqdhHOcQnB89epVqp5My4d8vOznw4cPY29vL7MPyRvmlf2ohV3nhw8f4vPnz5k1aXvdtwCJjPKCptj08vJyPhNG0LJvsqv+vGmO+tKHh4eZXbHyyrqVlZX/Gsz2Rc6pNnEj2CVGD7d//vw5jo+PF6Rx7XY7mUSqfCwuSIEgqlMI7m6mOqtOEJ9MJvm4gUqkNBqN2N/fzyBRZYa1PkJg1UhqM7rdbpIgDFtwALdMemdUnuMhsutTqod8Fhh79+8Rc31oJZ1k2krE1T5bZX39AZ3I5dSU0MfOzk7WnQ6pQ0TYcLXiaDRKBVVtwm9vb0e32802yubmZhwdHeVYkVqnmgv8/v37hSNp3W43n+rNAarqrPIKRBky5enp6QJR2Gq14ujoKPf69nb2MFzOyFYx3QidKkIxF2p5eTn6/X6iDkIBMkiC9dr2qaIZEkQzghFu1k52Pzs7S6LqXs65vLwce3t7Wa9YGAW00wAMjOgXhKgKIhdO3dJutxeeJhwRGQ0xad4HSoO8SJ/BYBCj0WiBwfV5sgInj4j8e0Sk3pRjytL6ruRcDPv6+jrXAZEguHjcQm00WwcGxEgEB99ds1vtR/pvdUQ1lmh8dXWVsjLqGy0Fn+VzsJtm7V5fX8f29vZ/SSVlUWwt4/OZFaVgPgVORry7u5uij3qSJSIS5m5sbKS9ODwPRVirimhkLk7ACf2/bOYlEfgdRJ+AJ3B64C3mVL3p2CEkgDMwRY+dVU6g2WwutEwEYUjGetV2UD2g/0XOaQ6sOmI8HudDgx4+fJhR2wWAtIy3PocEXOS0Ns+pcgt/V23ivTYBbU2xg7ofDAZZe9RMhxSpUjkZv0JJRqJ2qMHF77gH9QNoazNtOtEzp6p9Vm0NB21rtBcQK0lUiSeG678MyPtub28X6kIOWQk275WFq5gCnFWLuzYZTEnAqEzmM5jbo/rqmdvK7ttzyKnf7yf0t0aVyZfJoTMoDqJy7Wp+a1EZWNdMboe0pLe1v/VM6MbGRjx9+jT3yHNR2ESF2LL90tJSzqiVgAjpMeVKIJka0Xov53SigMQI01Ynr4G+jgURO1cIanMmk0mKnq+uruLw8DB2d3ej3+/naX2RqrKZalHGCJaKRj77bqM8Yv4Er0r8VOIGpK6N+1pXM9BqqK7NtVLseKSAbMJgGHStPWXwGmGpUlw7Z2bk9ff83GcInm/fvk1I3el0khGFXMBO6KbK2GqpUuvi6tzVCQge7DOHbLfbyTnU4WE1QPpMKIXTCgJ3S4AK4RFGXsPhMFVRHBo64HwRkWtLXshhHRm0748fP07UUPkHSaq2Esfjcbx79y5PFRE1nJ2d5QOeKifjNMru7m62Xf63V4Mxf319fX19/ble/7vbfn19fX19/X99fXXOr6+vrz/p66tzfn19ff1JX1+d8+vr6+tP+vrqnF9fX19/0tdX5/z6+vr6k77+B7UeTQ+EuoogAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "boat = np.loadtxt('data/images/boat/boat.dat')\n", "import matplotlib.cm as cm\n", "plt.figure()\n", "plt.imshow(boat,cmap = cm.Greys_r)\n", "plt.axis('off');" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's look at its spectrum:" ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "hide_input": true, "slideshow": { "slide_type": "-" } }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZcAAAEeCAYAAABG2VgdAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAAqVklEQVR4nO3de5zcVX3/8dd7d0MSIQlJSCIm0ASJKNByScB4R0FJvYVWaKNFQps2leK1tja0WvFRaeX3+1WUn8JDCpoAKqRYJD8ENAbRaoEQLso1JHINCUnkEsIll939/P44Z7LfnZndbHZmd/byfj4yj+/MZ875zjmzk/nMOd+bIgIzM7N6amp0A8zMbOhxcjEzs7pzcjEzs7pzcjEzs7pzcjEzs7pzcjEzs7pzchkiJJ0i6ReSNkt6RdLjkn4oaW6hzJmSQtL0Bja11JbpuS1n9uFrTJK0S9JF3ZRZmNtxQg/XecLelB+IJP2FpLWSdkp6vptyS3JfS7edkn4r6d8l7d+H7Zsu6VxJh/Sw/BJJ6/uqPdY7Ti5DgKRPAtcCa4GFwPuAL+en31Uo+iPgTcDGfm1gg0TEFuBG4E8l7dNFsTOAx4Gf91vDGkjSa4BLgP8hfTZO2kOVLaTPzJuAdwMXAX8NXNGHzZwOfBHoUXKxgaml0Q2wuvg74IcRsbAQuxn4D0m7f0DkL9st/d24/iBpZETsqPLUUuADpIR7bVmd6cDbgC/H8DmaeCbQDCyNiF/2oPzOiLit8PjnksYD50jaNyJe6pNW2qDnkcvQMAF4utoTEdFeul9tWkzSY5KulDRf0oOSXpK0WtJby9cl6VO5/HZJqyS9OT9eUihzrqSKL+o8dfFYd52QdJykayStz1N7ayT9q6TRZeVukfRLSR+QdLekHcDfdLHa/wc8C3y0ynMfBQRcntf7JUl3Sdoq6XeSbpY0p7s253qd3oNCPCSdWxY7StJySc/lPv5K0tuqvA8rJD0j6WVJj3Q3tVeod5ikayU9n9d9W9m06BLglvxwZW5fRbt74AXSd0dzYd2S9Jn8N9spaaOkb0gaW9bGj0u6VdKzuZ23SXpf4fkTgJ/lhysKU3In7E0Dc50vS/qs0hTxS5J+JGlyvi3Lf+cnJf1DWd1Jkr4l6eH8/j8p6XuSplZ5nQ9Leij/n7hX0gfz5/OWsnIHSLpY0lOSduQ6i/amT4ONRy5DwypggaRHgOsi4uG9rP824DDgC8B24F+A6yVNj4jnAST9JfA14DLgP4HXAt8D9q9D+0sOBu4BlgDbgCOAfyZNj8wvK/s64MLc1kdICaRCROyUdBXwl5ImRESx3OnA/0TEuvx4KnABsB7YNz//C0mzI+I3tXZO0rHAfwN3A38FvAx8DPippDdHxJ2S9gN+TPqbnkl6H6YDb97Dul8D/DKX/ziwFTgb+JGk90fEjaT36k7S+3Y2cBc9GMlKKn1PjARm5fXfFBEvFIqdB5wDfJOU0A/Pr3eUpHcUfuRMBy4FHiN9/3yA9Fl7b27jXblt3wQ+CdyR6z2wp3ZW8VHgPtIPjymkz+/lwBjSdOklwGnAVyTdGxE35HoTSP8PziG9P68BPgv8StLrI2J7fl/eDXwXWJ6fPyC/xihg9//BnGB/BYwGzgUeBU4GLlYacf/fXvRt4IsI3wb5jfRF+xsg8u13wPeB95SVOzM/P70Qewx4DhhfiM3O5T6SHzcBTwI3lK3vj3O5JYXYueljVdHGJcBjhcfTc90zu+iTSF8+pwPtwMTCc7fk2NE9fH+Oz691ViE2J8cWdVGnOb/+GuDrhfgJud4JZe/hkirrCODcwuOVwIPAPmWv8yBpWrP43v/BXn4G/g/QChxatu41wF2F2Enl7e9mnUsKn6ni7VbggEK50pfxkrL6p+fyH+xi/U35Pf4J6UdR+Xt8Ug/7vgRYX+W9fxhoKcS+muOfL8RagM3Ad7pZfzNwUK77R4X4/5CSlwqxY3O5Wwqx0o+2mWXr/Q/S/9WWnvRzsN08LTYERBqpHAO8g/QL8h7gj4AfS/p8D1Zxa0Q8V3h8b14enJfT8u0/y+pdR/pCqwtJYyWdL+m3wA5gF2nDsUjbCooei4h7erLeiFhF+gIvTo2dkV9jWeH1T5L0M0nPkPq1i5S4D+tdjzrkqb13kN7DdkkteUQg4KfA23PRtcDzwLcknS7poB6+xNuB26JjFEZEtJF+ZBxdPj21FzYDx+Xbm4AFpF/oNxamK+eQRjVXltW9ivQ+vqMUkDRL0vWSNtHxHr+bOrzHVayIiOLn86G8/HEpkJ9fR0oeu0k6S9KvJb2Y2/lEfuqw/Hwz6YfADyJniry+u0gjk6K5wO3Ao6W/e/7b/xiYSBrlDTlOLkNERLRFxC8i4vMRcRJpKule4ItKG2C702lKKTo2jI/KywPzcnP5a5J+edXLd0jTRBeSvnCOI02RFNtSsrd7vF0OvEnSoUp7jv0p6dfy87B7yuoG4EXSHndz8uv/uspr98YE0i/gL5C+UIu3jwPjJTVFxFbgncAG0p5ZT0i6T9KHerD+au/J06QEtqfPQFd2RcTqfLstIi4HPkL6Yj2z8NqUv37+4n6m9HxOlCvz40+QpvqOA26iPu9xuefKHu/sJr779SV9gvTe/5Q0Oj+e9HmgUO4AYARl/yeyTWWPJ5OSf/nfvfRjbeKeuzL4eJvLEBURGyRdCnyd9Kt/VQ2rK31pTC4G86+3A8rKluaj94mInYV4t/+BJI0C5pGmkb5eiP9+F1X2du+uK0ijuo+SRnYTSHuSlXyI9Av1jyNiV+H1x5NGEt3ZDnTa1VnShLIyz5Om8r5J3oGgXOTtEnlE9qH863Y2ae5/maSjIuK+LtrwLPDqKvFXk96rqtukeun+vPyDwmuXXqv0XGlbzURSgoH0C34c8CcRsb5Q7lV1bFs9zAdWRsRnSwFJM8rK/I6UICZTaQodIx1I/d8MfKqL11vT+6YOXB65DAHdTJ28Pi+r7km2F9bn22ll8VOo/IHyeF4eWWjf/uxhgzRpWqWZ9B+26MyeN7NrEfEU6Vfz6aQpsU2kuf6SVwFtFJKWpHfRMTXYnccp9Dd7f9nrv0TamH8UaRvI6vJblTa3RtoN+Auk/6tv6KYNPwfmqPOegM2kEdrdEbGtB/3oqVJSKe0McBtpirF8p4s/JX0+SscQlZJIMXm/DnhLWb3SyHk0jfEqKj+Hf158kEftq0k/AlSKS5oFlCeim0j/F5+o9nev899mwPDIZWi4T9LPSMdxPAqMBd5LmmJaFhFPdFd5TyKiXdKXSMfNXEoazh8CLCbtldReKH5jjv2HpC+SksbnSNNN3b3GVkm3AZ+VtJH0y/AvSHtw1ctS0naBGcAFZfPxNwGfBpZI+g5pW8sXgKd6sN6rgG9LugC4npRAzqxS7m+BX5C2hV1GGhEeQNoI3BwRiyW9H1gE/JD0t9yXtNfUNtKG9K5ckF9zRX7fXyDtJfU60jE+vbWPOnbHbsnr+6fcniUAEfGspK+Sjn15iTS9+AbSgby/JB28C2maqRW4XNK/k6Zbv0T6lV/8oftwLvcXkp4lJZs1/fglfBPwD5L+kTTifxdwapVyXyT9QLlW0iWkv+W5pB9zxf8TF5AS7X/nz8ga0t/19cDbImJeH/WjsRq9R4Fvtd9ISWQ56Rf0duAl0u6un6PznklnUn1vsSurrLPTnk459unCa6wG3kqav76grNxbSbuQvkz6ojidHuwtlmM3kr64NgPfIH0xlu+ddQvwy168T6NJiS+Ao6o8/wnSF/oruf0n5de6pVDmhCrtaSLtMv147vOPSbtqV3sP30BKRptJX5rr89/uvfn5w4Crczu2k0YHNwBv7EH/DiMlpa257m3A3LIytewt1pr7+H3g9WVlBXyG9MW5k5Q4vwmMLSv3J6QN69tJU2jzyz8budxfk3Yxb91Te+l6b7Evl8XOzPFDy+KdPk/5c3Jxfu+3kX4wzOji7/mR3OcduT9/RPq/d21ZufGkJPNofn82k0ayn27U90Zf35Q7brbXJB1H+mV3RkT05elAzAYFSdNIe5+dFxH/0uj2NJKTi/VI3qB5NunX1gukX+D/SPoVdmREvNzA5pn1u7wr9ldJ032/I00Vf460Qf+IiBgW5/Drire5WE+9QtpofQZpiP8c6T/VYicWG6baSHvIfYO0V1xpp43ThntiAY9czMysD3hXZDMzqztPi2UHHHBATJ8+vdHNMDMbVO68887fRcSk8riTSzZ9+nRWr644js3MzLoh6fFq8X6fFlO65sQ9hdsLkj4taYLSNSzW5uX4Qp1zJK1TulbEyYX4rHwNhXWSLiwdKStppKSrc/x2DYDL+pqZDSf9nlwiYk1EHB0RR5OuDfEy6cjyxaTz+cwknaZjMYCkw0kHWh1BOjfRRfm0FpAOdFpEOnfWzPw8pBMPPhcRh5IOXDq/H7pmZmZZozfonwj8NiIeJ520sHQiwaWk81aR41dFxI6IeJR0gNLxkg4kHf17a6Rd3i4vq1Na1zXAicXz/5iZWd9qdHKZTzqVBMCU0r7heVk62+hU0oWqStbn2NR8vzzeqU6k80dtpcpZeSUtUrqk7+otW4bkpeXNzBqiYcklX1Pjg1RegKqiaJVYdBPvrk7nQMQlETE7ImZPmlSxs4OZmfVSI0cuf0g69Xjpwjqb8lQXeVm6CM96Ol8lbhrpQkrr8/3yeKc6+ZoS46jv9SzMzKwbjUwuH6ZjSgzSmWEX5PsLSJfQLcXn5z3AZpAvfJWnzrZJmpO3p5xRVqe0rlOBm8OnIjAz6zcNOc4lX3nu3aTTapd8hXS1vYWk6zucBhAR90taBjxAOv322ZEu1ANwFul026NJp2q/MccvA66QtI40Yim/iFHdXH3HE0jiT2b39FLnZmZDX0OSSz7R4cSy2DOkvceqlT+PdIna8vhqKq8ASERsp/KqiX3iB3c+RVMTTi5mZgWN3lts8BN4ws3MrDMnlxqJKruhmZkNc04uNfKhmWZmlZxc6sFDFzOzTpxcaiREOLuYmXXi5FIjeYO+mVkFJ5caSZ4VMzMr5+RSIyF88L+ZWWdOLjXyyMXMrJKTSx144GJm1pmTS418DTIzs0pOLnXggYuZWWdOLjUSeF7MzKyMk0uNvEHfzKySk0uNhAcuZmblnFxqJPn0L2Zm5ZxcauSRi5lZJSeXGvncYmZmlZxcaiZPipmZlXFyMTOzumtIcpG0v6RrJD0k6UFJb5I0QdIKSWvzcnyh/DmS1klaI+nkQnyWpHvzcxcqHy4vaaSkq3P8dknT+64v+MSVZmZlGjVy+TpwU0S8HjgKeBBYDKyMiJnAyvwYSYcD84EjgLnARZKa83ouBhYBM/Ntbo4vBJ6LiEOBC4Dz+6ojPvmLmVmlfk8uksYCbwcuA4iInRHxPDAPWJqLLQVOyffnAVdFxI6IeBRYBxwv6UBgbETcGmnocHlZndK6rgFOVB+dBMwb9M3MKjVi5HIIsAX4jqS7JV0qaV9gSkRsBMjLybn8VODJQv31OTY13y+Pd6oTEa3AVmBieUMkLZK0WtLqLVu29KozvsyxmVmlRiSXFuBY4OKIOAZ4iTwF1oVqI47oJt5dnc6BiEsiYnZEzJ40aVL3re6qcR65mJlVaERyWQ+sj4jb8+NrSMlmU57qIi83F8ofVKg/DdiQ49OqxDvVkdQCjAOerXtP8LnFzMyq6ffkEhFPA09KOiyHTgQeAJYDC3JsAXBdvr8cmJ/3AJtB2nC/Kk+dbZM0J29POaOsTmldpwI3Rx/t0uXLHJuZVWpp0Ot+AviupH2AR4A/JyW6ZZIWAk8ApwFExP2SlpESUCtwdkS05fWcBSwBRgM35huknQWukLSONGKZ32c98e5iZmYVGpJcIuIeYHaVp07sovx5wHlV4quBI6vEt5OTU3/wuMXMrDMfoV+jdLGwRrfCzGxgcXKpUTrlvpmZFTm51Cidct/pxcysyMmlRt4V2cyskpNLjXyxMDOzSk4uNfJljs3MKjm51MiHuZiZVXJyqQNPi5mZdebkUiufuNLMrIKTS43kiTEzswpOLjXyZY7NzCo5udRI+DgXM7NyTi418sXCzMwqObnUyJc5NjOr5ORSI3l7vplZBSeXOvC0mJlZZ04uNfKJK83MKjm51EweuZiZlXFyqZF8KUozswpOLjXyKffNzCo1JLlIekzSvZLukbQ6xyZIWiFpbV6OL5Q/R9I6SWsknVyIz8rrWSfpQimNIySNlHR1jt8uaXrf9cXjFjOzco0cubwzIo6OiNn58WJgZUTMBFbmx0g6HJgPHAHMBS6S1JzrXAwsAmbm29wcXwg8FxGHAhcA5/dVJ4R8+hczszIDaVpsHrA0318KnFKIXxUROyLiUWAdcLykA4GxEXFrpG/3y8vqlNZ1DXBiaVRTbz7OxcysUqOSSwA/kXSnpEU5NiUiNgLk5eQcnwo8Wai7Psem5vvl8U51IqIV2ApMLG+EpEWSVktavWXLlpo6Y2ZmHVoa9LpviYgNkiYDKyQ91E3ZamOD6CbeXZ3OgYhLgEsAZs+e3asc4Q36ZmaVGjJyiYgNebkZuBY4HtiUp7rIy825+HrgoEL1acCGHJ9WJd6pjqQWYBzwbF/0RfI2FzOzcv2eXCTtK2lM6T7wHuA+YDmwIBdbAFyX7y8H5uc9wGaQNtyvylNn2yTNydtTziirU1rXqcDN0YcZwKnFzKyzRkyLTQGuzdvXW4DvRcRNku4AlklaCDwBnAYQEfdLWgY8ALQCZ0dEW17XWcASYDRwY74BXAZcIWkdacQyv686I1/QxcysQr8nl4h4BDiqSvwZ4MQu6pwHnFclvho4skp8Ozk59bV0yn0zMysaSLsiD0q+zLGZWSUnlxp5VszMrJKTi5mZ1Z2TS43StFijW2FmNrA4udRIEuGJMTOzTpxcauQj9M3MKjm51Mqn3Dczq+DkUiM5u5iZVXByqVG6WJizi5lZkZNLjbzNxcyskpNLjXyxMDOzSk4udeCBi5lZZ04uNRK+nouZWTknlxrJO4uZmVVwcqmRN+ibmVVycqmVt+ibmVVwcqlRKbV4u4uZWQcnlxqVBi7OLWZmHZxcaiQ8LWZmVs7JpU48cDEz69CQ5CKpWdLdkq7PjydIWiFpbV6OL5Q9R9I6SWsknVyIz5J0b37uQilNUEkaKenqHL9d0vS+7UtaepuLmVmHRo1cPgU8WHi8GFgZETOBlfkxkg4H5gNHAHOBiyQ15zoXA4uAmfk2N8cXAs9FxKHABcD5fdmR3Rv0+/JFzMwGmX5PLpKmAe8DLi2E5wFL8/2lwCmF+FURsSMiHgXWAcdLOhAYGxG3RhoyXF5Wp7Sua4ATS6OavuAN+mZmlRoxcvka8DmgvRCbEhEbAfJyco5PBZ4slFufY1Pz/fJ4pzoR0QpsBSZWa4ikRZJWS1q9ZcuWXnWmlLd82n0zsw79mlwkvR/YHBF39rRKlVh0E++uTmUw4pKImB0RsydNmtTDJlXnkYuZWYeWfn69twAflPReYBQwVtKVwCZJB0bExjzltTmXXw8cVKg/DdiQ49OqxIt11ktqAcYBz/ZVh3yAvplZpX4duUTEORExLSKmkzbU3xwRpwPLgQW52ALgunx/OTA/7wE2g7ThflWeOtsmaU7ennJGWZ3Suk7Nr9Fn4wof52JmVqm/Ry5d+QqwTNJC4AngNICIuF/SMuABoBU4OyLacp2zgCXAaODGfAO4DLhC0jrSiGV+f3TA02JmZh0allwi4hbglnz/GeDELsqdB5xXJb4aOLJKfDs5OfWH3XuLeYO+mdluPkK/Rh0nrmxoM8zMBhQnlxp1jFzMzKzEyaVGpQ36Pv2LmVkHJ5caeeRiZlapV8lF0rvq3ZDBzgMXM7MOvR25nC+p0yHtkv6sDu0ZdPrwtGVmZoNWb5PL3wFXlh5I+nvSmY6HL49czMx269VxLhHxc0nvknQuMAY4HHhnPRs2WHScct/ZxcysZK+Si6RngDuAVcBdwL8BtwLvi4j27uoOVT7lvplZpb2dFjsE+N/Ay8BHgX2B9wDXSvpinds2KPhiYWZmlfY4cpH0GeCGiFgTEVtJV4pcWXh+CnBcvg07u6/n4qGLmdluPZkW+3dgf6DqyCQiNgHX59uw4+NczMwq9XRa7COSNknaKekJSRdKqjhp5HDkc4uZmVXqaXKZDvyStL3lp6SzDt8h6WN91K7Bw5c5NjOr0NO9xb4UEV8uPZDUBCwGviHpiYi4oU9aZ2Zmg1JPkssu0u7Gu+Xdjv9V0lTgH4Bhm1x2H5/vgYuZ2W49mRZ7ApjVxXPXdfPcsOAN+mZmlXqSXP4L+HwXJ6t8LTAsD54s6TjlfoMbYmY2gPRkWuxLwNHATyStIF2rfiPweuDvgZv7rHWDgC9zbGZWaY/JJSJeBk6W9DfAmcDXCk/fDXy8T1o2SHhXZDOzSj0+/UtEXBQRxwOvBt4IHBYRsyJi/d68oKRRklZJ+rWk+yV9KccnSFohaW1eji/UOUfSOklrJJ1ciM+SdG9+7kLlw+UljZR0dY7fLmn63rRx7/qTls4tZmYd9vqU+xGxOSLuiIi1vXzNHcC7IuIo0nTbXElzSLs2r4yImaTTyywGkHQ4MB84ApgLXCSpOa/rYmARMDPf5ub4QuC5iDgUuAA4v5dt3SNf5tjMrFK/X+Y4khfzwxH5FsA8YGmOLwVOyffnAVdFxI6IeBRYBxwv6UBgbETcGumb/fKyOqV1XQOcWBrVmJlZ3+v35AIgqVnSPcBmYEVE3A5MiYiNAHk5ORefCjxZqL4+x6bm++XxTnUiohXYCkys0o5FklZLWr1ly5ZediYtPHAxM+vQkOQSEW0RcTQwjTQK6e48ZdVGHNFNvLs65e24JCJmR8TsSZMmVamyZx4OmZlVakhyKYmI54FbSNtKNuWpLvJycy62HjioUG0asCHHp1WJd6ojqQUYBzzbF33oOOV+X6zdzGxw6vfkImmSpP3z/dHAScBDwHJgQS62gHT0Pzk+P+8BNoO04X5VnjrbJmlO3p5yRlmd0rpOBW6OPtri7sscm5lV2qvLHNfJgcDSvMdXE7AsIq6XdCuwTNJC0ilnTgOIiPslLQMeAFqBsyOiLa/rLGAJMJp0cOeNOX4ZcIWkdaQRy/y+6owvc2xmVqnfk0tE/AY4pkr8GeDELuqcB5xXJb4aqNheExHbycmpr/k4FzOzSg3d5jIU+DgXM7NKTi418tEzZmaVnFzqxOMWM7MOTi514lkxM7MOTi416jirjLOLmVmJk0uNfMp9M7NKTi418q7IZmaVnFxq5Mscm5lVcnKpkS9zbGZWycmlRj7MxcyskpNLnXhazMysg5NLjXziSjOzSk4uNcsb9L3NxcxsNyeXGnnkYmZWycmlRt6gb2ZWycmlRr7MsZlZJSeXGvkyx2ZmlZxcauTruZiZVXJyqRNPi5mZdXByqZFPXGlmVqnfk4ukgyT9TNKDku6X9KkcnyBphaS1eTm+UOccSeskrZF0ciE+S9K9+bkLlbeuSxop6eocv13S9D7rz+4TVzq9mJmVNGLk0gp8NiLeAMwBzpZ0OLAYWBkRM4GV+TH5ufnAEcBc4CJJzXldFwOLgJn5NjfHFwLPRcShwAXA+X3WG49czMwq9HtyiYiNEXFXvr8NeBCYCswDluZiS4FT8v15wFURsSMiHgXWAcdLOhAYGxG3Rho2XF5Wp7Sua4ATpb7Z9O6LhZmZVWroNpc8XXUMcDswJSI2QkpAwORcbCrwZKHa+hybmu+XxzvViYhWYCswscrrL5K0WtLqLVu29LYP+Z6zi5lZScOSi6T9gB8An46IF7orWiUW3cS7q9M5EHFJRMyOiNmTJk3aU5O7bZxHLmZmHRqSXCSNICWW70bEf+XwpjzVRV5uzvH1wEGF6tOADTk+rUq8Ux1JLcA44Nn698R7i5mZVdOIvcUEXAY8GBFfLTy1HFiQ7y8ArivE5+c9wGaQNtyvylNn2yTNyes8o6xOaV2nAjeHd+cyM+s3LQ14zbcAHwXulXRPjv0j8BVgmaSFwBPAaQARcb+kZcADpD3Nzo6ItlzvLGAJMBq4Md8gJa8rJK0jjVjm91VnOnZF7qtXMDMbfPo9uUTEL+n6ZMIndlHnPOC8KvHVwJFV4tvJyamvdZxy39nFzKzER+jXyPuKmZlVcnKplS8WZmZWwcmlRvJljs3MKji51MjHUJqZVXJyqZFzi5lZJScXMzOrOyeXGpXOLeYN+mZmHZxcatRx+hdnFzOzEieXGvnElWZmlZxcauQTV5qZVXJyqZkvc2xmVs7JpUYeuZiZVXJyqdHuM3A6u5iZ7ebkUqOOyxybmVmJk0udeFdkM7MOTi418q7IZmaVnFxqJJ9y38ysgpNLjTpOuW9mZiVOLjXyZY7NzCo5udSJU4uZWYd+Ty6Svi1ps6T7CrEJklZIWpuX4wvPnSNpnaQ1kk4uxGdJujc/d6HyPsGSRkq6OsdvlzS9b/uTlh64mJl1aMTIZQkwtyy2GFgZETOBlfkxkg4H5gNH5DoXSWrOdS4GFgEz8620zoXAcxFxKHABcH6f9YSObS5mZtah35NLRPwCeLYsPA9Ymu8vBU4pxK+KiB0R8SiwDjhe0oHA2Ii4NdLGjsvL6pTWdQ1wovrlSEcPXczMSgbKNpcpEbERIC8n5/hU4MlCufU5NjXfL493qhMRrcBWYGK1F5W0SNJqSau3bNnSq4Z7WszMrNJASS5dqTbiiG7i3dWpDEZcEhGzI2L2pEmTetdAn7jSzKzCQEkum/JUF3m5OcfXAwcVyk0DNuT4tCrxTnUktQDjqJyGq5vdx7k4u5iZ7TZQkstyYEG+vwC4rhCfn/cAm0HacL8qT51tkzQnb085o6xOaV2nAjdHHx6E4sscm5lVaunvF5T0feAE4ABJ64EvAl8BlklaCDwBnAYQEfdLWgY8ALQCZ0dEW17VWaQ9z0YDN+YbwGXAFZLWkUYs8/u0P3nZ7txiZrZbvyeXiPhwF0+d2EX584DzqsRXA0dWiW8nJ6f+MHnsKAA2PP9Kf72kmdmAN1CmxQatcaNHMGnMSH67+cVGN8XMbMBwcqmD107al3VbnFzMzEqcXOrgtZP245EtLzW6GWZmA4aTSx28Zv/RbH1lF9t3te25sJnZMODkUgeTx4wEYPMLOxrcEjOzgcHJpQ5Ke4xt3ra9wS0xMxsYnFzqYMrYNHLZ5JGLmRng5FIXk8ekkcvGrT7WxcwMnFzqYvyrRjBu9Ai+vnIt9z21tdHNMTNrOCeXOpDEd/78OEa2NPHP19235wpmZkOck0udHHvweD58/MHc8+TzvLB9V6ObY2bWUE4udfTWQw+gPeCL193f6KaYmTWUk0sdHT9jAvOOfg0/vOcptr7s0YuZDV9OLnUkiT974+8RAase67Prk5mZDXhOLnV21EHjGDOqha/99GG2eduLmQ1TTi51NrKlmQs/fAwPPb2Ned/8FTfd93Sjm2Rm1u+cXPrAOw+bzKULZjOiqYmPXXkn/3bjg+xqa290s8zM+k2/X4lyuHjnYZN50yETWfyD3/Ctnz/Cj36zkTfOmMibXjuRo6aNY+aUMY1uoplZn3Fy6UOjRjTztfnH8LaZk1jxwCZuuHcjP7hrPQAHTRjNYVPGMHPKGF43ZT9mTh7DwRNfxZiRLUhqcMvNzGrj5NIPPjRrGh+aNY3tu9rY8Pwr/Pfa37HqsWdZu2kbP394C7vaYnfZ0SOaefW4UUwZO5IpY0fx6rGjGL/vPowdNYKxo1sYO2oE++fTzYwbPYIxo0bQ3ORkZGYDy5BNLpLmAl8HmoFLI+IrDW4So0Y0c8ik/Thk0n4sePN0AHa1tfP4My/x8KYXeeq5V9j0wnaefmE7m17Yzt1PPM/TL2xnZ2v322v2G9nCfiNbGDOqhf1GtTBm1AjGjGxh35HNjBrRzOgRzYzMy1Ejmhg9opnR+zQzsiUtR7U0MWpEM/u0NLFPSxMjS8vmFGtpFi1N8ojKzHpsSCYXSc3AN4F3A+uBOyQtj4gHGtuySiOamzh08hgOnVx9G0xEsH1XO1tf2cXWV3bxwvZdbH15F8/nx1tf3sm2Ha28uL2VF3e0sm17K1tf2cVTz73MSzva2N7axis729ixhwTVEy1NoqVZjGhqojknnCalZXOzaJZobhItTU00NeV44dbpcalsc2EdTU00N0FzU1Onsi1N6rw+dbxek0Qp50lCQJPyfYHSEygtECnelO/nf7vrSp3LqUrdjnLqsm5pvU2721FsT7EdnddJp9dQp3VQ3o6y/lSrW1G+i/5QakuVuux+rY7n2N3eXKbwmC6e7xzr+Jt1ftw5boPXkEwuwPHAuoh4BEDSVcA8YMAllz2RxOh90gjj1eNG9Xo97e3BjtZ2tu/qSDjbd7Xzyq42duxq45VdbexsbWdnWzs7WtvZ2dqxbG1rZ1d70NrWTmt7sKutnfb2oLU9aCvcWtuDtgja2tL99iiVaact13tlV3Rdt3SLHGtrpz2gNddvaw/aY899taGpx4mJsoLdlNnTOosPKsp0Ea/2enT5emVt3sN6Oz3fi+TdVV++/1dzmJSvqFsvQzW5TAWeLDxeD7yxvJCkRcAigIMPPrh/WtYgTU0dSWoway8kn7acwAKIAAKCIIJO8UhPdHq8u0xOVsV4KldKZMVYoUxX93Pd3W0irSeVq96mUjuKdSlbf3vZOqu1qT13prJteb0V7ez8mCi1tdjO9Li4Xna3I9fr9Ljz80XF9fSkbqdVlOr2sE7x9UtlqCjT87rl/Yku2tOzNpU9vxd1u+pLd22q6G/nZgAworn+I8WhmlyqvVMVH/eIuAS4BGD27Nn+TTwINDWJJsSIwZ0jzYa8oXoQ5XrgoMLjacCGBrXFzGzYGarJ5Q5gpqQZkvYB5gPLG9wmM7NhY0hOi0VEq6SPAz8m7Yr87YjwRVbMzPrJkEwuABFxA3BDo9thZjYcDdVpMTMzayAnFzMzqzsnFzMzqzsnFzMzqztFtUNphyFJW4DHe1n9AOB3dWzOQDec+juc+grDq7/Dqa/Qd/39vYiYVB50cqkDSasjYnaj29FfhlN/h1NfYXj1dzj1Ffq/v54WMzOzunNyMTOzunNyqY9LGt2Afjac+juc+grDq7/Dqa/Qz/31NhczM6s7j1zMzKzunFzMzKzunFxqIGmupDWS1kla3Oj21IOkb0vaLOm+QmyCpBWS1ubl+MJz5+T+r5F0cmNa3TuSDpL0M0kPSrpf0qdyfKj2d5SkVZJ+nfv7pRwfkv0FkNQs6W5J1+fHQ7mvj0m6V9I9klbnWOP6my5/6tve3kin8v8tcAiwD/Br4PBGt6sO/Xo7cCxwXyH2v4DF+f5i4Px8//Dc75HAjPx+NDe6D3vR1wOBY/P9McDDuU9Dtb8C9sv3RwC3A3OGan9zH/4W+B5wfX48lPv6GHBAWaxh/fXIpfeOB9ZFxCMRsRO4CpjX4DbVLCJ+ATxbFp4HLM33lwKnFOJXRcSOiHgUWEd6XwaFiNgYEXfl+9uAB4GpDN3+RkS8mB+OyLdgiPZX0jTgfcClhfCQ7Gs3GtZfJ5femwo8WXi8PseGoikRsRHSFzIwOceHzHsgaTpwDOnX/JDtb54mugfYDKyIiKHc368BnwPaC7Gh2ldIPxR+IulOSYtyrGH9HbIXC+sHqhIbbvt1D4n3QNJ+wA+AT0fEC1K1bqWiVWKDqr8R0QYcLWl/4FpJR3ZTfND2V9L7gc0RcaekE3pSpUpsUPS14C0RsUHSZGCFpIe6Kdvn/fXIpffWAwcVHk8DNjSoLX1tk6QDAfJyc44P+vdA0ghSYvluRPxXDg/Z/pZExPPALcBchmZ/3wJ8UNJjpCnrd0m6kqHZVwAiYkNebgauJU1zNay/Ti69dwcwU9IMSfsA84HlDW5TX1kOLMj3FwDXFeLzJY2UNAOYCaxqQPt6RWmIchnwYER8tfDUUO3vpDxiQdJo4CTgIYZgfyPinIiYFhHTSf83b46I0xmCfQWQtK+kMaX7wHuA+2hkfxu9h8NgvgHvJe1h9Fvgnxrdnjr16fvARmAX6dfNQmAisBJYm5cTCuX/Kfd/DfCHjW7/Xvb1raSpgN8A9+Tbe4dwf/8AuDv39z7gn3N8SPa30IcT6NhbbEj2lbTX6q/z7f7S91Ej++vTv5iZWd15WszMzOrOycXMzOrOycXMzOrOycXMzOrOycXMzOrOycXMzOrOycVsAJJ0uKSQ9O5Gt8WsN5xczAamY/Pyzoa2wqyXnFzMBqZZwKMRUX75A7NBwcnFbGCaBawuPZA0VtI1kp6W9I4GtsusR5xczAaYfELNo8nJRdLv5/tTgVkR8fPGtc6sZ5xczAae15Euu7xa0hnAbcBPgXdExFMNbZlZD/liYWYDz6y8/GvgA8DHIuLyBrbHbK955GI28BwLPA98CPiWE4sNRk4uZgPPLODHwCeBT0r64wa3x2yvObmYDSB5Y/4xwD0RcRHwDeBKScc1tmVme8fJxWxgeS0wjnRVTIDPkK4guFzSwY1qlNnecnIxG1hKG/PvAYiIduDDwCbgR5LGNqhdZnvFlzk2M7O688jFzMzqzsnFzMzqzsnFzMzqzsnFzMzqzsnFzMzqzsnFzMzqzsnFzMzqzsnFzMzq7v8DUGTSWqma5fcAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "u, s, vt = np.linalg.svd(boat, full_matrices = False)\n", "plt.plot(s)\n", "plt.xlabel('$k$', size = 16)\n", "plt.ylabel(r'$\\sigma_k$', size = 16)\n", "plt.title('Singular Values of Boat Image', size = 16);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "This image is 512 $\\times$ 512. As a matrix, it has rank of 512. \n", "\n", "But its _effective_ rank is low.\n", "\n", "Based on the plot above, its effective rank is perhaps 40.\n", "\n", "Let's find the closest rank-40 matrix and view it." ] }, { "cell_type": "code", "execution_count": 11, "metadata": { "slideshow": { "slide_type": "fragment" } }, "outputs": [], "source": [ "u, s, vt = np.linalg.svd(boat, full_matrices = False)\n", "s[40:] = 0\n", "boatApprox = u @ np.diag(s) @ vt" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgQAAAECCAYAAACBs88WAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOz9aZCkWXaeib2fL7G4R7jHvuS+VGVlLd1d1WigG2h0owGw0SDBoShR3ASJImXzQ5Q4+qMZaWTDGXHGZiTZGKXByIgxSrIRRxyKI4k0iZJGBKmmDGh0N9hdvVdlZee+Z2REZCy+h8fi/umH53Pj/W54ZhVIcLqSiGsWFhHu33KXc895z3vOvTdJ01TH5bgcl+NyXI7LcfnDXXI/6Qocl+NyXI7LcTkux+UnX44BwXE5LsfluByX43JcjgHBcTkux+W4HJfjclyOAcFxOS7H5bgcl+NyXHQMCI7LcTkux+W4HJfjomNAcFyOy3E5LsfluBwXHQOCl6IkSfI7SZL8qz/pehyX43JcXp5yrDeOy++3HAOCP6CSJMm9JEl2kiRpJUmymiTJf5YkycRPsD6vJknSTZLk70Sf/3KSJNeSJOkkSfLbSZKcfcEzfufZM1pJktSTJPndJEk+8QdUv2NldVz+0JePi96I5norSZLr9t1IkiR//1ld0yRJvhTd+28kSXIlSZJmkiR3kyT5N17wnnPPnsF71pIk+U+SJCn+AbSBZxf+eZ/1h7UcA4I/2PKvpGk6IeltSe9I+p/9BOvym5K+4x8kSTIn6f8u6d+WNCPpu5L+rx/ynL/yrE2zkn5H0n/+B17T43Jc/nCXj4ve+Ctpmk48+3kt+u4bkv7bklaH3JdI+guSpiX9qqS/kiTJn/uQd009a/MnJP2spP/hP1/Vj8sfRDkGBP8CSpqmq5L+sQYTXJKUJMm/mSTJ7Wco+mqSJP91++4vJknyjSRJ/nqSJNvPUPYfHfbsJEmWkyR5L0mSf/157382GWuS/n/RV/8NSR+kafr30jTtSvprkj6VJMnlj9CmA0n/F0lv2HtGkyT5jSRJVp79/EaSJKPPvptOkuS/TJLk6bM2/ZdJkpx69t1/IOkLkv7GMy/hb3zY+4/LcfmXvfyk9cYL6rWXpulvpGn6DUm9Id//h2mafj9N04M0Ta9L+n9K+vxHfPa6pK8qq1def8ZY1JIk+SBJkj9h3/1akiQ/SJKkkSTJwyRJ/po97nef/a490ys/+/tt6x/2cgwI/gWUZ4bvj0q6ZR/f1sAIViX9u5L+TpIky/b9ZyVdlzQn6T+U9J8mSZJEzz0n6WuS/kaapn/9Oe+uSPr3JP2Ph3z9pqQf8U+apu1n9XrzI7RpRNKvS/qWffxvSfqcBgrsU5J+RtJfffZdTtLfknRW0hlJO5L+xrP3/luSvq5Dj+SvfNj7j8tx+Ze9/CT1xrPyv0ySZCNJkm/GYYHfRxuSZ/X94CNef0LSV/RMrzwLHfy/Jf1/JS1I+tck/Z+TJIGxaGvARkxJ+jVJfzlJkj/57LsvPvs99Uyv/NN/ljb8oS5pmh7//AH8SLonqSWpKSnVwDufesH1P5T0X3v291+UdMu+Kz17xtKz/39H0v/m2Tv+/IfU4z+W9D999vdfk/R37Lv/VNL/Krr+m5L+4nOe9TuSOhqwDXuS6pJ+2b6/LemP2f9fkXTvOc96W9J29Ox/9Sc9bsc/xz8/yZ+Pkd74rKRJSaOS/rvP6nNxyHWPJH3pBc/5dzVwOkaf8/25Z3WsPftJJf2epMqz77+gQVgiZ/f8F5L+2nOe9xuS/qPo2YWf9Li+rD/HDMEfbPmTaZpOSvqSpMsaoHZJUpIkfyFJkh8+o8Fqkt7y72WxuTRNO8/+9OSiX5f0WNLff97LkyR5W9IfkfQfPeeSlqRK9FlFg8n/vPI/StN0StKYpD8u6e8nSfLJZ9+dkHTfrr3/7DMlSVJKkuR/lyTJ/SRJGhrQeVNJkuRf8K7jclz+MJafqN54du+30zRtpmm6m6bp/0kDR+GP/X4akSTJX9HAe/+1NE13P+TyuWd6pfTsXf/o2ecnJD1M07Rv196XdPLZOz6bDJKhnyZJUpf031e2P47LP0c5BgT/Akqapl+T9J9J+uuSlAwy+f8Pkv6KpNlnE+GKBsk4H7X8NUkbkv7uC4zqlzRAyQ+SJFmV9K9L+lNJknz/2fcfaEDt61m9ypIu6iPQe2ma9tM0/boGdOavPPt4RYOQAOXMs8+kQcjiNUmfTdO0okM6jzYfH7N5XI6LlZ+g3hhand/Pe5Ik+e9J+jc1YBAffeSXpOmOBm3+2WdJzyuSTidJ4rbpjAagRpL+rqT/l6TTaZpWJf1NHeuUP7ByDAj+xZXfkPTlZ157WQNhfSpJSZL8JQ2Q/u+n7Ev608+e9Z9HE4byv9fAwL/97OdvSvr/aEDlS9L/Q9JbSZL8qSRJxiT9O5LeS9P02kepwLMknTd0CCD+C0l/NUmS+WeT+d+RxDLHSQ3yBmpJksxI+p9Hj1uTdOGjvPe4HJc/ROU39F+x3kiSZCpJkq8kSTKWJEkhSZJf1wDA/2O7ZvSZzpCkkWfXJs+++3VJ/wtJX07T9M7vp3LPkpD/OxowHZuSvq1BnsD/JEmS4rNchn9Fg4RmaaBXttI07SZJ8jOS/lv2uKeS+jrWK//M5RgQ/AsqaZo+lfS3Jf3baZpelfS/lvRPNTCEn9CAJvv9PnNPg5UCC5L+j/HkTtO0k6bpKj8ahAi6z+pCnf6UpP9A0rYGccMPWx7ESoCWBksO/2qapr/17Lt/X4Oli+9Jel/S9599Jg0U27gG3sm3dEgJUv5jSf/NZ9nR/9vfRzccl+PyL235SegNSUUN5u1TDebrv6ZBGOO6XXNdA4B/UgOgsKNDdvDf12BZ8neSw/0F/uaHVKv2TKesabDs8E+kg7In6U9okFy5Iek/kfQXzGn5H0j695IkaWrggPzfrJ0dDXTbN5+FWD73EbrnuFhJniVjHJfjclyOy3E5LsflD3E5ZgiOy3E5LsfluByX43IMCI7LcTkux+W4HJfjcgwIjstxOS7H5bgcl+OiY0BwXI7LcTkux+W4HBcdA4LjclyOy3E5LsfluEh64TGRv/mbv5nmcjm2iFShMLi83+8rl8up3+9nPpcUPmc77Xw+r3w+r729vcHWiLlcuCdJkvDsJEnU7/d1cHCgYrGoQqGgNE3V6/XCNQcHB8rn8+G9aZqqUCgol8tpf39fuVxO+XxevV5PvV5P+XxeSZLo4OAgXE8dC4WCCoVCeGav1wv1yOVyyuVyOjg4CPXlWZK0t7cXnsN7qBPtpw+KxaLSNFW321WxWNTIyIj29vZCG3d3d9Xv95XP5zUyMqIkSbS/v6/9/X2laapisagkSUJ/HBwcqNPpqFgshmcwJtSBdnh7er2e9vb2tL+/r3a7rfHxcY2NjWl8fFzFYlEHBwehP7rdbmjL+Ph46JuRkRH1ej3t7+8rn8+rUqmoWCxqZWVFu7u7oe37+/taXFxUsXh4ommapkqSREmSaHd3V/l8XuPj40K+0jQN9UcuaBPjSp9IUrFYDOPEc3u9ngqFgkZGRpTL5dTpdMK4eV/u7u6G+yVpf38/3F8ulzMyl8/nQ/14D/KWz+eVy+XU7XaVz+c1Ojoa6kw/IQf+DOSFNnp7kcvd3d3w/p2dHRWLRe3v7+srX/nK72dTmo9F+c3f/M2UNqIPmNsUZNzlQVLQGdyPXDN2FOYQ1/CbdyCbrrd4vm/976uufF7zbH932O71WZ2RD38mf3NPr9eT90Vcp7GxMe3s7Lywvdzj1/i1cXv8e/SsX8dvnuvP8muRee8/5pfrTN7D9zzT7+OZBwcHunjxovb29rS9va0f//jHmp+f18jIiDY3N3XmzBnlcrmg71w26Bf0w8HBgXq9nvr9ftA96GeXNR8Ht0dun1zv+/jzOW30sfQ57m2MP/O6M0YuB76VsNtF3s/Y0yb/jv6mjb1eTyMjI2o2m1pfX9e5c+ckSZ///OeH6pF/pnOjqRAd5R0zrPE+gD7R+e0d7e9wxUyhw/wZfq8DjLiD+TwWKgcY/D9sQtBuhIfBigXd61MoFNTr9cJAxm3geheCFy0Fja/D+MTgySc+1+zt7Wl3d1edTicI4MjISAACPm78PzIyklEqrmB93DGqABQARqxsvA1xm7yffSzi8fY+9wnnQCzuS1eg8Xc+0Yb1N+950ZjEJVa6/O3K0j+L+3TYHHuZi8tQ3Kex0ffv/H4HUq7oHfRKRw22lJU/vyZWxP7eGDj4Z3H9YjBAfVHWcR9gaJjD/ny+GwZgXDZcdobJxzAw6r+9XXwGsJcUjKvPe3QI7xsbG1OpVNL4+Hh4H3PRx2FYn7phw4AfHByo0WhoYWHhCMihbzB0bgS9f/nfxy5+joNw9A2yxP3ejlgWhukV2hLP6bgPYnsVzwN/Bm2lXn6tOxQxWKLerseRx9HR0SOyQvlQQBAL0LDixje+JxZKfy7FEa8PblyPYXWL6+H18c9fVH9/XoyOh01gv26YEfHn8QxnE9I0DQaT+vnAv8hgejtjAfB6uWFlbGjD3t6e9vb2wjuZ+A4gJGUm1jBFTsnlchodHVU+n1ehUAjMhb/TDRx94qyEe3AfpnyfN270N5MglrEYXHi70zQNDE0MFmJDMQw4Pk8O4gnPb793mCF6Eah+2YqDtZgZlA4Bz/P6mQLT50YnlhWXI57tch0DAZ4XK+z42ucVV/jDZG4YUKWNzHcv8dg7k+R9xTuH9ZnXAwY0rlvct/Fco9+Yn3znTOXq6qpmZmYCM8acj/vFdRDFPW682DRNVakMjloZHx/X4uJisAneB/Snj3/cPjeqOETUz8FfzGjHNut5TgRtjMGB1yUGmfHYDHNc/Jperxd0Y2x/YKkZ29hBimUD5rTT6fzzAQJHOzG6879dMQ6bQN5pTm3s7+8HtDcMDDjVQ+PdE3aKhwHCK3cK0X9idOw0P5+598EznAKHPov7IhYsH5h4cvtEc4McT3J/LvSZtwckyHVxSGRvby9MhlarpXq9Hjz6vb09jY2NKUkSlcvlI30WtwU6DuPP74mJCaVpGsbTAQntwhigVPb29jJtdqNOH7vn7mPPhEFxDUPz3BezH67o48nKO3jf84CZT0KXI8IE1NPr5nS519XbR72GvXNkZEQvY/F+duPk847vpKxn5v+7sotZrWHef/x/LBe803VPrAcowxT5MEdjWMjD9Q7vit+BvkF2Yrkc5qX637FuRt58HsftcQeKPsYwS4dhOfQe/Xbjxg11u13dvXs3hD9rtVpgCsbGxo4Al7i4fvaxfuONN7SxsaE0TYPX68/ASLpORf/Rt8zf2BijT2Lw42ES1yvD9LB/5t8Nk1HpqI7xMYoZcLd1yELMXNL+uH9XV1e1sLBwhC1BJxWLRY2NjWXYnWHlI4UMPkxBHhwcBEHySQdV7p60AwL+BwV6RR0Z8Vw30NSHd2CYXEkwGD7puScGOt6uYQicdnI9743rQZuKxWJ4bpzD4MKG8UZYeb6kEFPlfYyFo27uwciiCGJBckoOozU6OhrQ4s7OTpjcCFCSDOKGIyMj4XM3ZD5ek5OTSpJErVYroHHqS9/4M2Lky7X0jYdlXAFDezEp6AcUgoMX+j0OX3h+ys7OTkYOqRufuRKPPbsYzMQ0pgNCzxHxOCtKL1YkHmfv9XoaHR19IRv1cS4+Z2PwNgycxUoU+YnlQcoyAHE+jxfe5Wyk9zfXkE/Du521csPlshGDAO51PeXv4Huvkxup/f39wLS5kYj7gOegRxzMeuzb3++GlPfR37GhcDmWFFjAsbEx3b17V9vb23rrrbd08uTJEIqs1WrheeVyWaOjoyF3ahjj6Lq01+vp1KlTyufz2t7ezoAA1wExMEIXIDv+/Nioxw4aY+r9FPeH66Vh49zv90Nu1vz8fOizYUxf7BjivLpMYwtcZwEQ0BkeDsjn85qenj4SinBGmHwxz4UZVl4ICBwt43Hyf2wA+Q6hdHrHK8nvvb29DFjwv3d3d4NxIsmQujBwjqjppBgRu6BQnJKmxJPIhY/PQZhc7yxHsVgM7UE48J739/fV7XZVqVS0u7ubAVB8LykYZhQF3iDPxuDh2UtSt9s9IrSME0LD8zAoGxsb2t7eljSg5crlcsab9/t2d3fVaDQ0MjKisbGxMM65XC549wgmyssVKIINGMnn89rd3Q1GDvnguYyLMw/8zXju7+8HumwYCAXYUGBBGJfd3d2QzNhut1Wv13VwcKDd3V1dunQpU2+nQN3Ddzl3xb6/v58Jf3gYKPZgHQi7csYguLcBAPLk3ZepDDPkbpTpB66NvbjnKTEHFoyFe4q8xw2uv5fCd4S6HDA6CPaELa+Dt9Hbx+fP6xN/N/VkDsbPciDjRnEYyHFGIWYzYlZgGFigz2kDicXFYlHj4+O6cOGC1tbWdO/ePUlSpVJRq9UKgIHE5263m3EQ0CPj4+MBHNOWfD6vlZUVfepTn1K5XFa9Xj/CwMWevduTeH7EXj/XxX2AvMVjRQKzG3CuR2d7/ff39/WjH/1IExMT+vmf//lQX78mbq+kDPjkbwcC0qFTFX/u7SiVShlWMm6T27hWqzVUJqUPAQQuRCjmuFPoUAwVk5NC41GQNArj4Vnyjtqc9qGhbhxoHAaKLFSExjvaBR9Bd8qba8hSdSGgbvGExWBICsYQb6/T6QSlT6yeuhUKBe3s7GS+kwYetgMpnunoXzpUNCgN/uY3nujY2OBgMoyfNEgAOnHihOr1ugqFgsbGxsK9xAFHRkYCI5DP5/X06VO12+1MX3S73ZCcUq1WlSRJeB8K+eDgQK1WSyMjI4FGZOLQz/EEpf2sSOEd9PPu7q52d3fD5KddTBiUEe1wbw8QRhKlyyqeTavV0uTkpPb29jL9jYGJM5WRGcBbPn+4mobfyCA/sFgOdH2OSYc5HshpbCBetuIedGyA3Kv3eKgrdGTFDUH8LIBfr9cLsujAwv+O5zX9PDY2FsYAg0D/D5t37jA5HR0zB178O/73NksDA9vpdEK9JR0BRd4XvMfzd/ie+RYbibjvaCt94XqE1UXUZ3p6Wl/4whe0vr6ujY0NjY+PB7BNXScnJzU5ORnq0O12tbu7q2azqUajEUAHY16pVMI7xsbGtLi4qJWVlSPjHve9y5gbXWdn3J74uKOPcSA87Op2hrnpdpD/aUO329Xo6Ki+973v6cSJEzp37twRNiLW4Q7csJ8+zujDYeyFA5Q4X4K+4m/0EnMNh3BYeSEgcAGi4fzviBQF7ZMhRmEIm2eIxkLhIMEN+bCJxvPiSTuMVoWWiT+LhcVpGDrfgQOeOp87xePKH2CAZ4pRdnp/f38/IOokScJSuZg6ckPn6N9RfC6XC8bdDbq3m3csLS1pe3tb+fxg2SDKs9VqheWGKAFJKpVKyucHSwQLhUK4xj3vNE3DJGcZJdnIeFn0a61WC23xpUHOMKHYfHxos8c1YVUwrEzMfn8QDnE5JeeDibK7u6t2u629vb2gwEZGRo4oldhD98nNs7hmGEMCcHHD5gaBfomzhJ2ipG/q9fqLpuvHtsTAiOLzzBNsY+/dma5h3zEnRkdHj8xfafiSQ1fKgGPP0fAlvX49ni3P95huTP16m/0z1wVeL2f5hrXTnxl7ydQZxo+2EBbDKHudvB0OPEZGRkI4kWXJ7jQVCgXNz8/r/PnzQX9MTk4GZ4fn0i/oI4w+ehbGr91uq9FoaHZ2Vvfv31ev19PExISSJFG9Xg86EifUASZj6KDS7YOHEuJl0Dg9roOHgY+YmYufs7+/r1u3bqlYLOrkyZOBUYntFnWnH12HxHbQVxbEwDieQ67n4mdyjTPXDqTi8qEMQdzRXgEMTqwYhyG5GB3R0a54+YzOipfsuQBIh5Mzn88HT5Lng4h4Thy6cA8RhAjKjxE89XKq2AecgcTr51nUAUMjKQOeMOC0hf5xGh3jiuKB0nRwQfgBZeJ7FMT5E0wCJiNZwtQdpXJwcKCdnZ2gpKSBsiiVSjo4OFCpVNLMzIwqlUpAx91uN7AJPIdnO/ihH9I0DX0D/Q9Kd28+zhVwxsXHk/f2+33t7OwM9aoYv2azqc3NzUz4xpkYBw9MJjdOIHPqhEHwyRkDPAe5tJPPmT/9fj/DOvB/r9cLCv1lLc7UScoAcYp777Gnx+/YA3cd4XODEgMHns0c8Xno4a04zBCHDBhP9g3B8MYhIFf+3n6u87CH61rXWTwL5R73gc9/92KRTfKCAMyuv5wVwLkYHR3NMIXo0WE6Yn9/X5VKRaVSSbVaLYCPYQyJG2tCEOVyWSdOnFC5XFapVNIHH3ygWq0mSQGQMHZxH8aF+rrM+P41tD12Wn1MfH7G+V3uyNKe69eva3V1NeQ/TE5OZnKcPDwahxz9WcgO4+n3xmwA7/b5wnX8zb2Enff29oKj9LzykVYZONpyitPRVIw64kaDsniWd7Ij62H0oiMlJj7vd+Fyb4wJxru9E1xxx+jPOxTl4BumcA2Tl3a68ud/6dAD9P/dUI2Ojmay6V1R0a+e4AfKo56uBN179qV/9Dv1GxsbU61WU6fTUaFQ0OTkpNI0DRseYaQ9RyNGmJ4YNzY2FtA/tKHnMdB+Hydi/T6msAnxBkS8h8mJfHk4wDcu2dnZUaPR0NTUVMbTdtqsXq9rfX09sAwALlgZr5MrEeYBoYYkSTQxMRHqAfVH/8RJYQAIVn4gY+5Jwlow5rAZzWbzw6brx7q48humjKXhy41jhe2A3RX98975vL8BnIBqZybdKLsx8mtcCXO9M2jIMXM0Ng7PKy4zz+sf17/UD2Dr7cKpwriPjo6GDcow8GysxdwnEdDDI+4cjo+Pa3R0VBcvXtTXvvY1nTt3Tp/97GfDeDQajSDH8Xg60Pa2IRdzc3M6deqUvvvd72ppaSkTrnGd6H3h9og+9hAf97gxddvFPe6YIlPuaXveHPVvNBp6//33NTY2pr29vRCfB8RzrYN+vvd8lW63m2GI/FrqSX6SA0NnuoaBJZhtgNvq6uoLmcYPTSqMqQ9H6L7pBgIWT1Y33PHkYsL4IIBkGAA3uhiFGGXGyJ33OeUTexygMBcOEDXGhrpxncfIhgGk2KBD19F/o6OjGWFl8vEOb5vnVsSrDdzjob+ZzI728brdE6tWqzp9+rRGRkbUaDTUbrc1MTERUC27+NFf5XI5GGlJGWq72WyGcAgUIBNrd3c3GFsfZ1deTBLa5j8YVIyjCztt3NnZCfR/uVwOz2s2m+p0OqpUKoE52t/fV6fTCbJVq9XUbDbDUstSqRTqvbu7m2EmmMAoInYzJGSCd9lutzN5ENzPWDLODjIcrNIWp0bp17W1NT1+/PhF0/VjWxyUeh6Rj7uUXenhCs7H/aMUn2OxokT3YDQ91BgnxnK9U8/DnBTqy/PQCTCYPt7IkRsw9/IdREjK/D3sf/pyfHw8GGqMOTk0Ho4AFNA37oxMTEwEcOSrAmLmDKDw1ltv6eHDh7py5YreeustTU9Ph3sKhYJarVbGRnjbvX17e3taXV3VwcGBms2mRkZGtLy8rI2NDZ08eTLIhzO4LlvOynlyqV/jNol5RaGOLov9fl/tdluFQiFk53OtG+GrV69qZWVFn//857W2tqaxsbEjdsuBBIngDvh9TwHe4fe5/PiYO3CI5Zu5tbOzozRNQwjm29/+ttbX1/WX//JfHjp3PhQQuDGn0i7EoF/vYEfTjqIdXTFIcYhBUqCEERj3zDymj3B6Zjz3PE95uCDSsfwMUwpO9bMblyeixOiUtkLTjI+Pq1QqBU8/VkAoDl+aE4MVHwM38FD/9A3P5m+ER1LGoCMcjUZDGxsbGh0d1czMTIijY0QRzE6no1arlWEpUCqFQkHtdlvb29vqdDqZSYtAM9kAGwizy1XsgVNI8HPWh2d6AqMDCMbWJz5eebvdVrvd1s7OjkZHR1UqlVQoFDQ9Pa2RkZGQ9+DgBjkgexpF6wYMIItsA3idbvZ28reHIpzORVad4Wo0Gi+arh/b4vrC54rrBOloPPRF1CZzJPa03fi4UnWd4PPN5VE6NBjOBMT3cx1yjS5yPeaODvVhDTif+2oZ2s9KpGKxmHFA4j6UFOh9j/t72NDb1e12AwhyQ4VOkhTCex6C9Pe5Vw8Q/vSnP63f+q3f0u3bt/X2229rZGRE5XJZIyMjKpVK6na7AWi32+2MnaCfcI7wXpeXlwOTAftHvw0bb+Zg7LA6kInDMn4t39P3MJ30DyFixoi+X19f1/Xr13Xy5EmdO3dOV69e1cLCQtBHlJgBh4F1xpJxcqbCwYmDZg9BUZxtR181m03lcoPt56VBPtjExIR+9KMf6XnlhYDAFSKd4UbSJ4/f49d7hYcZOh8sn5SeyBIzAnGcjMnrP+5Vx2GOGPlyrVOE1MMFyCeu00lMKNrgExTFg2A7UMKjR0h8e0lnCHhPTEF5Fj3vjgEBkxoDBuIdHR3V2NiY2u22tra2VCqVQhyQ6+gLvB4MljMS5XJZ7XZb+/v7wUvBYxlGYWEoUTjUnTYxpvSxr15xkOgo3D2gfD4flkgic+RCoJRZ0kQClqShS6H8uYz7wcFBQPnu3TtAcbDrciwdZjK7Z4My4uwFZyYAZiiml7G4t+0KW8pSnfSbz+NhusT/j6lhnst9nmvC9Z5f4+A0BvbDdJXXyQ2mf+bMahzzRR6Yj3zPnPMwmusO5MTrCX1P/XEI4jX/kjJndHC/MxZ87jkDcR84s0G5dOmSfuu3fkv7+/va3t7W0tJScIDINcLblgbJy+6x0y8zMzOq1WqZvLGlpaUjfR+zJ7E88LkDQQcM0tFwDXqBM1bSNA1Ay51Y6prLDZYsX7t2Td1uV1/60pfUarWUzw/2A4i99nhbd1ggd2x9ObmUXWHAuDnLHjNfOGfoaXQGMoZzMjMzEwDCsPKhOQQu3K6IvcQoehjFh0D7IMWd7ZPRqTie5wlzbkzdC6W48MQ0U6xc3IuL6++UH0qeCcNEZcmexx09Ax5vE6Pj7ATXOAPidaQO1M9jpgAPZwyo2zCGBGWE0RwbG9O9e/e0vb0dlgmBxuljUPLo6Gig6Mvlcob9wcslKQjDGG+w4eDEDR8TyAEIfRbvCRDLkIdvSJpKksG63JGRkRCbI2SwtbWlnZ0dlctlVavVoIDwCpyxcGTOmHCdL7N0I+AyxHzhc5C9K2sUJ3FdxhzggPECXL6MxYG/g+c4JupGZxiY5D4pa4ylo+utYyfGgT+fxfqDv4cZfz5zto45yPvc+Lvh5n/ay/x3IINCZ66Mjo4qSbJniWxvb4dlvBTPgYjZ0+cVBzwx60b73XmhuIPIM6amprS0tKR33303zNUzZ85kgA7Lh8mxYemwM2zSIXNDnxOupM7O+MQHLdFe/o/zxghpU3iWP4M+9+Jeun/36NEjPXr0SK+//rqq1arW1taCDnAP39vpc9rtqQNZPqN46NrrTnF7Qd+is12XARSr1arK5fJzZeOFgIAOdPTulKYjL/eMvNIumI643HNyj8w9qdh7xzD4Wlue78rBFUuMqF3h+Pu9zu7R8Hn8zJGRkUCfQwFRFz/Nr1AYnFxXKpUCze4hEUf93k8uAI5u/bqYFh/GctA3XM/7ye7tdDra3d0N6N69cH7TXp+ovV4vIFGy4lmqBOLGAPj4ITtMBJcrvz4eE9rnwIHJ7ECIMUV2PUO/1Wqp3W4HZoMM5m63G5IJ3Rsb9n7Gg76hHShDwKHPCZ5NhjbyRH/wXoorARQ+E/plLLER8c/iv90Yew5GzPC5l4SB8Pv9Pf4Z8uVspCtVN5bxnIvZDWcjvL4xS+Gy7ayjA2L0GVuAx/NGOtxIzA0K8sH7YkcAOYvpZ4yEM4ne7w74Kehvn5/5fF6f+cxn9Lf+1t/SysqKyuVyOK1wmGfvrKY/P9atbhg9xMFck45u9ett9zEAWDmIoz4xgHRGwcO09Ec+n9fm5qauX7+uarWq119/Xdvb20Gf0LcAIp7hp6PSHzHj52ykO7juUDA+LoswDOQtIQ+ckko9sJ04M8PKh+5DwMTzxCg3Qnh8/B17MS4U7iU6UPCMdZ/oCAMTxgfNJ2u8c1RMqcRoOfYq/FmutGKGgwEZplBicOOJU2mahsQUYuIodzxMB18xU4KAuWJ1RRKHQOL6u0D4DlzVajVQetIhih7GMuC1SAOlChjy5SwOrnwSu/KIFZMb02FjGysgb6eHiuIMZPe8pQFIIwO8UqloYmIiE5skXgtA8Xp7vZzRcFBD+2jHMFYtzrNx1ozPYpDk4OBlZQik4RvwSDqioLnOmQD3pp2BoX9i2XAZ4DP0BHHyGFh4HWNw4n97KI3PHdTH7fN3IFMOBp2hQKb9Xa5TZmZmgt7wOeL6Ypj3yPUeMnDw4rrLdVYsl8OMbq/X06VLlzQ1NaV6va5Tp05pc3NTi4uLmTnkbJuHBfgul8uFXURpB/XyPUS87fzt88YBoDtHDib9+Q7mpOw2/f487u31erp165a2t7f1i7/4iyE5mxCDAxan+xnL3d3dTGhyGHMY6zHqRbtZQsp35G4R7vWVWOhW6lIoFMKGUcPKR9oLNVbI8aDQgbHyjifHsIGIBRC04whvGJUHaoqZCZ4ZC00MFobVJ25XfI9PGECBewbUEeWNUPnaWACEswKuhBDg2HuKWQLeFXtew/oVYXNQIynQ0BhEdsfzXAQXWOKZu7u7YdmgU50kNTnAQShdjuLYrFNtKEr31GJZpKBYHMl7wfPe399Xo9EISZ7VajVs5ORAYGdnJzAhsWfp9QageajD6+bKz2XGQyauYDwPxgE47IYbiJe5DJt3/O3zija7cYxZNPeOnIqXjjJ8XO/Gxd/rXtcwAzvM6AxjD924c7/LMoVxd6XudXa94joi1l+xsfPvXBf5/PL+5LkeSnneeMXG1gH/5OSkXnnlFX3rW99SpVJRrVbT9vZ2SF72saSd3W434+RJCqFJZ9GcjaOPvb8d0Hi7PLQd63af357w59c6eHE5ePLkie7cuaPz58/rzJkzajabKpVKIQzpXn8MMLEFPi7eHn/PMJDn442OYSMo9LjbTupAyBSHrlqt6nnlhet4XMnGCtINOJV2IfRO8Ht9UnEdk4BYGMp6mHD7c4b9P8yTi41F3I64Xv77eUqfvxFq6u/ZywABP27SqZthAMqNTQwCYiFxpRTX0+sYAwzAAdQ5yUy83+n+OITQ7/fD8j1/v1PbUIMoPnYqdIM3rI68J85T8e/8f28XlDyfp2kadktEQfX7/ZBbUCwWw5JJQIxvHxrXyccgLrQZg0/9YwPo40dfkzsAexB7Clw/MjIS9jt4WcuwfnTPzyldTxyOAZbLusuAlN34xoGGj+Ww+R/XywvAzI1TXGfp0Ph7cimfYXicTXL9hg6B0vUcAvSiZ/9LhzlVccjM6+XhqBg4+LPcoYlZPO9X2unzM01TffrTn1Yul9PNmzd16tQpNRqNkFvkz/C8CXdaHDgBJJwl8nX9PMvtDCU2rPzv7NwwB8oBX9y2NB3s0VKv13X9+nXlcjl98pOfzLyL2D3Fx4Q+dfmK57m3I5aLuL+SJAnsZz6fz4SQGG9PFmW1BuP2IkDwQpfDhWsYeozjTs8zxnQQDXHKFa/SYzUU9xSoRzyBhxmZGJE/7zreMazN3hZJmXCBJ4oM648469ffEyNOr4cLrR9DysTmutgT8XoO+5tx8K2GUTbz8/NhKR7JcnjNHtbgmYQKer1eJqbNuPp4DwM1Du74jDa5wpWOrkxBDochZwTek+92dnbUarW0tbWlbrer6elpTUxMhPf5Mi1QNksuUeyxHMVJnBSXBw8lxIjfP6N/WJqFgo8TGpNksB/E3NycXtYSKzTaF4PimBEa9ox4rhPC4vkeF46Zmvh+/8w9Nr5zQ+nv93FERmMHIjbQXmc+8/AcINyZEsBNbFA8XObzQMrqiNj75LpYLzmQ9TGgPR7D9vfy7IsXL2pxcVFf+9rX9PnPf16VSkVPnz7V4uJiCC16/QjdIPvoD5b+MX5eD8APK5toR8zaePtcd/LuYTLmutiZZ/qs2Wzq8ePHevTokX7qp35KU1NTYSn2yMiIKpVKRoaH2ctY58fMciyrnofg+0X4ai/kxBkyl8uYSUnTVJVK5Uj7KS9kCOJGuLFxBOQdF2dFxsgnFmIfSAQSBe1etzR8xyca7DRTbDBiIfb/XXnH3nVskH0S4Mn7T9xm6uXt9FwMv8frgIGD7nYQFX8W1zmuv9cNz989sfn5ec3NzYV1wkywbrcbQgJulH3JDG3zPh3mjdFuV7T0K7Lk9/iE5nqf+K68+Ix6sbdALnd4aiahgImJibCjmHtBtGNiYuLIXvW+IVGhMNjznu/x2rwtcTv4Lkb9ztwwptzvLA3tLZVKmp2dfe5Yf9xLTMW6x+lzIQbJnvw2LHwUOxKu/H1uAPyG6YZYJ8Q/zjb4XIxZixioxHrT5zv3ADqd6o2NQ5xE5s9EJ3h+Au+CIfPdPx0A+KZFcRgsHjeeEecl8MzJyUldvHhRjx8/1vb2tmZmZkKozoF+vJGc68MkScKqoDiM4TR/HH5wQOa6gh/6hDnm3nKcuBiDCsY/TVM9ePBAc3NzunTpUtimXVJgdWBzXF4YQwdynqfF9zHTwfzgXkIChFo8yTuWd/poWGhM0gtXGbwQELjRfx4tF1eK76HOOSCDde98huJ1YYmV/DBE79dTLya7770d182BRPzb3x1/7kbXJ6x7g8MoOfrNGQ+fTNBpMWiJBYmJG4MYhNnRcSyI7jlDMfl9STLIap6dnVWapqrX60FpQTOhNGij768AwvW4mMtMPp8PY+8JN7QBzwElECdPumfW7/ePUJDImhsGZOHg4CBs95vL5TQ5ORlOs2McfXUGKyV4F22PlRATHkDlBp7xIVQSe4XuddA2XzHDc9vtdvCc3DN8mVcZuHGVsgmv/O+G1RXo+Pi4pqamVK1Wg9zFe3+gb2KjTInnmSePOZCP6xPX/0Vtc2Mag4phDAXyFO8vTz+5fuC+eJ67UY91gnvk/r+/QzrqaPlcjPuI325I0VGf+cxnlMvl9P3vf1+FQkFzc3NqtVoZOt31Ns8llwLWDqCNbmepJfW9detW2EskjtnH7eEdDsB8vLwvvF5usHu9nu7du6dms6m3335bksJqJZLF3UN3ttzf77LJNcOYBG+D66p+vx9WCHhdh8mj21F/dpwYGpcXhgyGxVK90XEjpcFEIg+Av31y+4DEyAUq2lER740bBO3EQDuC5J5YkP1vBx3+/fOoeJ/MKCEE0oGJdDQM4SDBPSSneuLJHlN6Xi9Hgj6xffBdOcTf8X0ul1OpVAqKdmtrK7AEcTug2sbGxjJAwevmS/cwtsgBeQrUO1Y+3gayaOkzV3aOrl2heEYvOwru7Oyo2+2qVCqFJYYYExIS3ZvyvBWXD+7xv+P10Q4uisViZjvSYROUPnAWjCVZ7C3viiqe3C9joZ98bX3sWbtiLRQKKpVKGhsbCxtekdgqKSRUOUNYq9WCDCF3vhLB6yANB2qAOq6XjoZNHYDyHNc3XJPL5cLqHYAfn/sGQp5n5M+KdRDy4IxlHFvn+YBfXxkRy5AD7lgfu56MveWY0dnf39epU6e0sLCgb37zm/riF78YljV3Op3QPgczcZ/HhW136Teu8WOqaYPXZxiNHoM+H8sYFLpdSJJE9+/f171793T69GlVq1Xt7u4ql8uFpYbMdd6DTYj72a+JAaB0yJaga2EKpcNTKOM6OgvJe2JZ5R1u655XPnTrYlfUw5bdUQlXXmzXi/JE6GkIlecc7X6/f2RjFugXR6rUIzZ0MZJ1wfbBcYHmeoxL/A4+G4bMYyoGr9gNKe92L1M6PNQiRm4ukHyGYPN8VwKOsGPlitKLKcrYGAG6JicnVa1Wtbm5qc3NTVWr1VB/B4SMZbvdzkxkn+C0gXZ4jN7Hwek8cjIcWWMsfRz9O55P//Z6g70GWP3QarUyRxv7CW6MK3Sqr8WO9yHgc1eEzA0Hx4w7RotYqK/n9jgs3oozDC47Tj2m6WGC5MtYXNZdn8QMGTLiMg8YwKDgTSdJosnJyQxj5H3ZarW0s7MT7qEAKJ8H+N2AuEwPc37iEEYM1JFTH18HmW50PE8K2Ye5ck/en+/OAs/wevrfzszQbo9Rx+EtvosNpdPxrsulgT5/7bXX9NWvflXr6+uamprS6OioOp1OZkM39nDp9/shZwaj6uwb+p+9XJJkEFJgiR9t9Pnq88f1n4+RhxfiMV1fX9fBwYFOnDghacAEXL9+XSMjI3rjjTc0OjqqVqsVzkApFAqBhXR9TJ2Y/+hyCtu4e5v9HmwH4xODG7cDMWvOO4cBA3dehpUPTSp0ZOmDHxsYKk6cleQsp0QpNHR0dDTESsfGxgJdyv8kUyAMbrg9M9vpXeodC4ErnmHAwNsVd2AMBjzRB0PmAsHvg4ODsCyFevR6h5sS0R6fbDGC9fc+j43w792DiOOK3n/UnXGYmZnR+vq6Hj16pCQZ7PTHiXw8n5MZ4yRDJkSaDrJxXZi9nbzb/6afPAGTz5wif55RQdHkcrkABJCjNE3DwU1Qs3j33BuPMc+nf5FpZBElhtz6uGPI3DvzhEj3kvAcY5YFBQhlSh8yD17GgmGN9xIZVtzITU5OBobAwyooV99sxhksj0HHJ+7FwB2j4co59rJiw+EA39sYAwjGNN5PwAE913osfZje5ewNrwP3+m/a4J+5nHqJwY8/i+/coeJvwnc+Xvz9iU98Ql/72tf0rW99S7/yK78SDDB7DAxzoHAytra2tLm5mQHtblDd0Hk7/cwQL+5Ecb3bsLgkyWBZ6r1793TixAmVSiW9//77Wl1d1c/+7M9qYWEh7GUS5z3xbO871538P8yh8/FCz9Am38WWPkfupcOTXt3uACTj+nwUlvFDGQJviKNm34yIBjkY8CM4UarxYAyj2NM0DZs38D+TwZEr9WBSOx1Nfbh/2OfS0fWpjrTi+3zwiXm5sCIQ3MeAPHnyJJyTTX3jvnSaMq4jdYgVjYOOfr8fhMQntnsZTC6MELsp8tyZmRmNjo5qfX1d1Wo1nEXgHg3KNk3TMB6u5H0ckQ8UtSfy0F9MKoR6fHw8JNhxLcrDNy+KlTMycXBwoHq9Hozn2NiYJiYmVKlUQkgAYACIdAPuXgZGhfYBcqDu8Gy4H8raD87hGexQWSqVglGnPdQdRg2FFyvFVqv1wmNLP84F+XVjSPF+doDN5lGlUikTrnEZQP7pfzx/xs93jmMeMIa8V8qGh9xIxl68AwG/fpgnPoyZ45nMK/dyPRTq3j999P3vf18/93M/90Id5fOFv50NiENtwxwhn4/ObDlzAKOLJ0vZ29vTiRMntLi4qO9+97v6hV/4hfC+XC53BNRQP2mgf4rFoh4/fqxms6kkSQLwjjf0iuvrY0Kh/X5tzC7SJ17m5+e1vr6uZrOpra0t3b59WydOnND58+clKYQg3WuPgYbbAwd6PlbuJLo9Qy9z+io6hVBZmqYh5IZj484J7SZnjDni8vIiUPBCQBCjTzeM7u2ReU22pSeVuQc97PkxNYpiQNi4P85ZwMOiY5yaiyerv4/JH09uiisHN74OhJggfDeMRuP36uqq5ubmVCqVMjSco21Ahgu7gwvaSuHZcdgkbm/MOPjEdoSJN1atVnXv3j1tbW1pbm7uiMLDWDNuxOqbzaYWFhZCTBQBRfGSOEidYmCIR8xSJDyQ2LNxponJ7M+CGWi1WiqVSiE/YmxsLCjgfr8f2A9nQGiP9x1xfa9zLpcLSg05BQjDHhD75nnI//j4eLiOHBh2ruSZzCvq44Ar9oBeloJucPAbz0tnrkZHR8PR1bEnGYMJKZt34DknKNFOpyPpcCOr2Ph7yMqVKnrClSnviL14nu9ze5iH7vPP9ZA7ON5GGLiHDx+q1WqFcF7cl84s4IDFRij2In2OSkf3BnCWwOcausABFYBrZGREly5d0j/8h/9Qq6urmp6eDuPf6/XCcevMOd69s7Oj7e3tsEae/BCAvTuDzDNnTak/9aPesfHDvsQGnb4bHx/X2bNntbGxodu3b2tnZ0c///M/H3QwfSsdnr3gLADvdbsAsMGG4fz4uHc6HSVJEvK5nHFA3sjHc9aR5yN3yDIOeZqm2tzczCx3f5Ee+VBA4ALieQMuuK48fRJzrwu4G0svPphuNPnMk3d4p9NWJO64shk2sYfRJnFdqHcMVgAEKA+f6E7ROOrj82E0noMcFw7aFP/vio+6IAxOcfrEpe6MiU/uXC4XEmQABGmaqtVqHQltpGkajg32vcY3Nze1vb2tc+fOBQ+YZ8IydLvdcJ5DLpfLrCpwD93HLwZ6fD9MXpzFwHuZmZlRuVwOe7/Tn3t7e2F5oXQY1y8UCiGzn34j7EW/SYe7O3qiFqxB/L8v90LxuCJm4vq4UVdPNgQwvmj98Me5xHObQl+h7FGELA8FIErZrGyfVzyfOeBr3ulHQBjjPEy+eI7PYZ+3Dghdf8XU8TBK2mXUZSE2ZnEd3SDu7+9rZ2dH1Wo1o5d5fgz0Y8fD30173JHgHh8z1ylc6/3gY+u0/Sc+8Ql9/etf13e+8x39sT/2x8JcYMkv8XMPK66uruo73/mO/uyf/bNh7JwRo89cFpyd8Db7PXHfe93je5CrpaUlbW9v6+nTp7p8+bLm5uaC/oMZzefzYU8T8gkwyJ5w7uAfnUKCM/qo2+2GsCb94fYuSZJg37ADnnvhu+I6w8R8mp2dDUCE+55XPtJeqDTSUX4co47pKCYUlXSh9UkU0+jeGf5s/nf2wWOFju49McxpkngC0tmOGod52NQTj2/YpONdLmz0U7PZzGzj6Z6NgyrvM5iImM2QsnE97yf+pn3U1RUmYwnr4mOAAeUoXpa4MD60G3SO4p2amgonOXIGOsoBo4iypn5OibtySZIk8x31j5OrfL/uXq8XqMUkScIxzD6pMOTlcjlMZMbb90r3z3x/cgcm1J+6ORPmnq7Lso+F1z0Gqcgh7UI2eOfLWGIPGD3i+gK5YOwAdh7b95CKlD19j7lGcrLPxbGxsSCT9D/jwnPdcx4G0CnM99jjd93lcyVuJ/M8dnaG6T5JQWbHx8d15coVLSwshHo4QHJv2UNzwwwisu+60cFq/Bnt4HcMRCi0aXFxUYuLi3rvvff0la98JVOPUqmkVqsVVh/xvNHRUb3zzjtB/4yNjYXcpNiJcXATG3Svr8uAA4UYOMRy2m63devWLRWLRb311luSFJwcWIFKpRI2SJqamgr9jo7D64fx8tVWhG65dmpqKqOLfUxpB2FOSZn9FEhejuUOcMK748Pbnlc+NIeAznPq0gUFw+IG2UGAPye+N1aIULCOwmkAneQIn04bxgxQMBIORuK2xSxG3Adxux0FejtCp1pCGYaINjh1w/NcaB1cOBqPUW3ct274eRaFz+OVByg2lG8+P8jI5wRE6uhJLkxO95IBGJICCgVtO5Ino58xjL08ZOd5k3VY4Tm+cQpxZyYo+3gXi0WVSqUjCWoeKsAj96xoVy6xHCPnnidDP8dxYI5mdgDsS2192ZEvZSIU86JzzD/OxZW3M4f+HZ/7+RqMKydI4jF7jJxnuRxJyugKT4JFzt0gOTh4npx5W2JP3A1bLL+xXnHd5HrR3+9eInNkcnJSZ8+eDX3lxpDnuKEeZvTcWWCuxU6cpHCCa9xer9/BwUFYguzv6fcPafc7d+5odXVV8/PzQY+4cYtp9rm5uYxzRp8wz9zmePjV6+kgiTa7bXiebnGn6b333lOtVtPrr78e8qY6nY4mJyeVJEkIRwIQkEecZuSA1Ubk1NF/rIQiF8HnBfYKvYkRx+kBIMO0xDbP5Qu2jLkwOjoaTtN8XvlQhsAFlkGCEpWyx4nGsbUYCcdojgH3vz0O5x6p18EnjAOE2Dj6QHsdhk1o6WgMKqYkAT0kJ8VeAoYBgc3lciFBzylin0TUH8Pg8TwHLbGhdyDllLYPNsLgS93itkPdsea3Uqmo2+2G1QJOaceAAmBAjB6kz9pcN7TOdsTjTl8z5jHSdyA3LFGIBBoAGIaFgvICrPhRpDwTGg7FFcuq57G4LMVePLLrORB87psNIU8Y/9hLxJNwT8FDJi9jcR3gStoBFXPFv3NgRd8hl57w7M9yBcxvPud+5rLrBVfQcWyd58eeqQNsvz4GD/EYO4h34OBGn5+lpSWdOHEi9IfrHW+794X3e1y3WH+5PuI612s+l53JdDaL9nW7Xb355pt699139a1vfUu/9mu/FuoFQ+Tzw5kzaPmFhQXt7e1pbW1N0tHDmpyN8xL3Z6zDh11PH0mD0MWtW7f0+uuv6/z58wHIY+zL5XKIzzNvGSvXcegL32CJZc6FQkGVSiUDzHCUPBxLOAFg7ADRx5bCBlC+1N03dXJ5el75SDkEwwyqAwEGzGkdnyyuAHyCxsk3UpZyA2S4UYvjLCgFPLPn1d+Fz4XF0bYbSklHlL2zC/59HJvkuyRJnouinbJ2CnwYkBk2kD7BSECLlYoDKwyn90c8ifv9vqanp9VoNMLWnD6mnv3va/jHx8czcuAKlH6DJnOmxPMIJB1ZKcJkcY/e+4++B3wUi0VVq9VMOIQMf/dGQO30PUaFazEMw4AbY+uhBersyseROYqVPuYdXgcmL8wG84lxdQ/uZSuuzGmXFxSirxRwwykdperdW/W5jVy5h+vsFQrVQ40ur842DmMdhgFzZNHryjPck/Ux9GuQa7/WjfH+/r7K5fKRUIcDGIxkDFaom9PuXhcHCoVCITAwDoodHLnO9hi5769ycHCghYUFzc3N6erVq/qlX/ol5XKH+UrM1WG7cRIuwBuPWQQvXr8YwMU2K9adDnLow263Gw4v+vKXv6zNzU3t7Ozo4OBAlUolrB7ifeyJ4OCKd9JGaeCpc0QxYUjXq84IAzDQtRT6NgYDsLuMBaDa54k7sr1eL4SCh5UXAgLP5IypL19S6MbIjVeMYP0aBwJu0NyQxBRa7CWhKHlubJQRJq9/XDe+pzwPXdJWj6djMDwswfcYt/Hxce3s7GQQHoPnuQ7xsawxCPBlnig9r1/sfWFsXcn4Ub8gdDxp2lQqlVQul7W3t6eNjQ31eoPlcigABCz2gEH3jUZD6+vrmaNAPf/E47U+tngIjKsjYd7LPeyFsL+/r263GxQLywy5x7exZuy4zxNxXDnG4I36uCfgshGzLnyGkeP/2MNBVh2ExIYOMEHdfKXJy1SYO87+8NsBYryUk7lF8bnphoJ+jY27lAVvXAOIHlYwQq58nbHwcY69y9hrdlDgBot6+RxwGfHcGurMihTkxgEA17i+pU7uLXoOVOykoTNiY8oz9/b2MrtEevjPr+XZhUJBFy5c0J07d3Tjxg1dunQpM3cwigBn5IR8q9u3b+vmzZuampoKfcbYuV5gvLzu3p9umIc5hy439+7d08OHD/XZz35WklQqlbSxsRFyOJw96fV62tnZCXOUvnGbhKNF2Ivwg9fd5c0dPHcIeCf19xApibe+tbPbEU+2l5Spw7DyoYAAeseVId8xcYdRelQonvwueFKWWWCw/H5fn+wC7MbP6+EDjcD6HvjP87pR0j5ZPAvZvWlHZu4BukfrlPnW1pYqlUqG3owp5tiLdc/D+8WFmcF3lBwrLJA7fY6AsBwLAaRuxWJR09PTevLkiR4/fqydnR2dOnUqrB7xw3wIGezu7mp9fV23b9/Ww4cPlSSJ3nzzzdBXgAGWJTk6ZpwBSshEPD4uOxhIYnEkz5TL5RCXq9VqIUxQKpVC/XmWI2p/nntt9K33j8f6HBSQtNbvDzaR6XQ6mpiYCEoJGR0dHQ11AZQg5zzfgYA0UL6tVuulBQTIDUaEvnXv2BWgM3FuwOkjz11xo+V5PW4YY/3h89y9Or6TDp0EBwOMj7/D5757+n6tG3+vk4MF6hMblGKxGLbgZn8W1yOxkfR2ug7x+tK37mFTb6+Te7qug3K57J4Czta5Ybtw4YIqlYquXLmis2fPZhwwD9nt7e2pUqloZGRE7XZb//gf/2P94Ac/0PT0tL7whS+E58X19ZCPswwxqIrHmvnvO5RubW3p5s2bmpub06uvvhpYpmKxqKmpqYxTICmTPOj2wfUTBrtSqRxhw12vxU4FDg86BgeOI+fTNM2EAlwevI0UB5u5XE7Xr1/XV77ylaFz9YWAIA4DxAY+PCRC2+7t+BIaOswnCO9x9OPo3P925O8IOqbKoQb53FFW7DG40eFdCJTvOcBzeJYjUr5nOR1ZnXxGBjzGy+PDMYUXo9cYvXONGwyEzWnSuI585nkA7XY7MAB4Z76+uNFohIQuxpJJKB2GAtrttjqdjtbX17W+vh6WG9JGB0jDaDDqw9h4fNAVNrLiY0ldAK8uN2zo4dtgk9gEQJGyS7Col4cd3MPlXbEcx+yQr5/2MXcU721yL8fDKb3eIJbYaDRUq9X0Mhb6EhDkTJ+DgFzu8HRQv89BNM+Qjq62cdn0eelzmv5F1zgr6ZS/v4dn+HtiRsiNELoJ4+AyyW+fo14HB6TOHkA7u8csHeo2N4bxuxwQeeFdzszxLA8v+i6ZbnDpQ7/W5/Pc3JyWlpZ069atsGSSOU7f+xp99OTa2prW19cDPQ976qwu/evhRHckmV/OCrjn7A7Q7u6ubt68qU6noy996UvK5XLa3t4Oe8f4mRPc0263Q2KqM8oY7nw+H1gFH0t3fr2/3Qkgp8udAJICcXK9rYwD13m7uQb5rtfr+sEPfqDnlQ893Cim+uKXxMLLxI6/90kQD5pf7xPNhSz28Pk+phgRfkeRMS3j1/p7/RoUfFwXJoYbVig1luFxLwYI2siXmsSoHGHieXzmgujPRgDiiU4fIUi+1I+JDmMCSAEJ8x6EGGOEIpYU1uY7WmXpy8HB4GAeP3US0LC7uxuMIvWkfx3gIBMxKIiNpBt0knHc+3TaDXnw5BzeG69iicGvK1bvY29Dkhxmv/NO1tHHFKF7sf5s9yxilgoPMc6ReVmKhwaSJAkgk/bDlMQsoN8T6wlnxNy4us6IPXHG1pmWWF+45+xgAz0Y64xYJ3Kfe8tuJJ01cJ3mANE9YZdJdj113ebvdx0m6cjn8Wc+F2Md7XoJltgdAtdlziy4zhwZGdGZM2d09epVPXnyRDMzM6FdLsszMzPhqHKMby6Xy2TR014vyIQzubEjxXWxF+3zfX19XQ8fPtSrr76qEydOZDx2zsvw0F4uNzgrY25uLqNbODvDdVEsSw4KHLyxXJbn0LewAO6QuOPCda4vXYb4m/F5ERiQPiJDMCxpbpi3zj0xUnUF6BPblbxPDh8w7h/mzcfswfN+fDLEiiee+P6dF4yjTx7QPQPDDn0UjGS9Xg+ZqhgOfz+CHAOeuJ30lU8oj4UP83rdoKdpGvb6jwHaMMAmKSQPSofbMdNmJgnUmHR4rrvT4TwXQIBX4WyEj0+siBkz+gDwNcyjT5IkbJAVs1i8O36nswMuzy5/MdviFK2HH3K5XCa84uvih+XcxDSzjx2Kl/X4sXf4shSfg27Q3dHwceY7+ktSht6lxMDJPfdYxoc5HLHC9mvciDC/3Jlw786B6zAdybxxYMI8osSsKX87W3f//n29/vrrYQMxlyGX42EOWKw3d3Z2VC6XM4aResTGxSlsxsATjIfFpJNksJ7/zJkzmpmZ0ZUrV/Tmm29m5jb5A+VyWWmaant7O7Nja2w3vPhccYMYXxeDfOlwx8okSdRqtXT9+nWVSiV98pOfDM7E3t6epqam1O8Pdj/1JYLuiPT7g3Bh7Fi50xn3J8bdtxamDbCZfmS0OzA8kzCOf+d6zfuO6x48eKDbt2/rF3/xF4+MF+Ujb13sVK13ugtuPKld4ONnxIPujXW0HNcj9iC8sx08xPWjY2OD49fFBtFzE2JqzhGbewAxKuv3+2o2m2EPbJS8o2rPYPf6Y/jjiecGaVhCoyswT6BzDx66jmuoA0aMrYT39/dVr9c1NTUVjJNv3bu7u5s5gYw2YQABDC4DGGbvZ/fU48nt7dnb2wsImvEvlUqZ0ACbBjkNxyl5tNWNUb/fV61WU7vdDrFMR9Uukz7BSLYk98C9NZ7BZzAT7kU5bQnYZHx3d3fVaDTUbrdDlnO5XD4ity9b8X7FePF5zM5Ih/T9MIPg8xUZGgZ2Y4PgHrOUXQLrjgT/e4ye79zDHaYP45CB50bwTgcFsf6QDoFEoVDQzs6O6vV62PqXdsRAh7o5MPHCO9n8y/Uwf3siYqxHqCOsoLN73ibqNT09rbm5Od29e1c7OzuZHQp7vcF5E+xuSuIk4+1MjtsM2sWY02ZnPPw+L4wL5e7du1pdXdUv//Iva3Jy8giY4gA+bxtLI3d2doIssVthp9PRo0ePdPLkyQAQCJdiJ9wekWzI2DlLHOevuHPi+tudkxhEIYtPnz7V3bt39corr+js2bNH5ILykU87pIAg/fM45hqHDeLBoWPcK/KB87iaK20XCB90vouZhphV8AkZF1dMTCZHXH6AhBts6TB8wP3cy8YU7XY7c1KdgyA2m/CMdEe/PsCxIsNA+uRn4nj82WNgboh9K1HGk/4eHR1VqVRSvV7X9va2FhYWMpMFA97r9UJciw04QL9eD/rKT58DjcdKLZ747i2Dxvv9fkgaZG0wMTZH6d1uN8St/d3eT61WSw8fPtTm5mY4kwFwQV9RX/fCPO7tihPlRB85ZY6seJjL2RX6odFoaHNzMwC4sbGxFy4X+jgXlJjHT/nc57UzMx4Ldfn25/C/G2jmSbzyyfUFn6Vpmjk5juLMkCtk6RCAS0dXObkBjetNAcj6M7nXGQV3Rnq9niYmJpTP57Wzs5NhpJyhiHWp9687KLTdWbfY0WOnUh8zfntYiz7icx+jJBmwdRcvXtTNmzd148YNvfHGG+F75hc7+qEvPX8j1vOxrouBuF8f979fMzIyosePH+vmzZu6cOGClpeXw3V7e3sql8vBeWFfFcKgrVYrwwbynm63q6tXr2plZUUrKytaXl7W6dOnQ9+wbNHzCpxJiJmmuNCffk+sm1wOARXdble/93u/p3K5rJ/+6Z8+Iu9eXggIPCbuRh6aBM/TqTVnBRwReXKio3kGaNjgMjHigXXvvd/vZ+ir2DOQhocxHHFxjX9GnJ13k/DCRjySjqwm8CQ5BL7f72eyhKmXe/94QR4+iRPuvH98aRzLG73dbqBc8GJBg/IHFDAB8KgnJye1vb2tra0tdTodTU9PB2WLABcKBZXL5YB0x8fHAysQ5230er2QKU1/u3KPvTSXFc/B8KQdsm2dofJ4b6fTCduh7uzsaGJiIuPppOmAPt3Y2NC9e/fCDmQ8x+VFGk7txuDXvysUCmHjJlfIrjzZy8Ene7PZ1ObmpnK5nMbGxgJIeRmLe9jSodft8w9g5MbUGaXYyDmI9P5+Xm6Nj5mDdh8/Pqd+zghRYpDhDkusxOMcmGFGy9kDDwHwTNc7+Xw+hKC4zpV/bDDRYTHD4vqHtkhZZwHZd53kFLY7dLFH7kAjSRJduHBBMzMz+tGPfqTLly+H58JGonukwTJtDiVrtVqZcYxZG+8rYunDDGk8P4vFojqdTthz4J133sk8s9frBWdjb29P4+Pj2tzc1MzMTPDgJyYmQi5Mt9tVvV5XsVjU9evX9fjxY/3Mz/yM5ubm1Gw2Q65BDC5dRhzkuOMZO7TOsLlej8eZ7/b29nTt2jU9ePBAv/ALv6CJiYkXHqP+QkCAt0MnuvJ2Y+0NGQYK/LdP5DjeHdMd7k0xsN5BMXPBd063xCgKQfV3cb97HU4Vx/kDXkjMQ5ljxDCOGEs8Zm87cfBhyWIxEnev0ulnT16KFSmIEs8VxUQbiQvSd7QBg82yylarpUajoenp6VB/6sFZ9W788MQ9gQ9lhlfmyX70MwAz9qoYM3bugh0gVOCbffiYSgrL//xZyDVtZlLzbPeG4iWb7hE64HWgRj87AB5mVFwu+QFAEmZiDTTJnC9riZkiB+8knOJtSVnK0xlAN9wxe+aAnr+dqZGy7KXrJh/TGLzFoIB3OPBEPtzYDpNlp6y9/nEOC8/M5/Oanp4OsuC5M9LRVQbD+mRYLNqZjLhNDuC53+lo7nfQzzMo9EO/31e1WtXi4qJu3Liher0echdYirq3txecLO6ZmpoKAM91hBtEv568BnTIsOJA5/bt23r8+LG++MUvam5uLrTVlwvznpGREW1tbWWWNUuDFWQ7Ozva3d3VxMSE6vV6YPc4MZYD4XBEPAwS5174eNCHzkZ58Xai570wVvV6XVevXtXp06d15syZMG7PKx8aMpAOkyecXnIESAUYGO71Se2dwEA7uPCCAMbC7vXCmPmEdYUT05PcRz1jdsIBSugcS2ryWJ8rGK6LUTVGYmRkRBMTE2q324FVoa4xA0O9AUOdTidDW0OHx0DKPSNPwsKzkBQmr+8G5waMwkQeHx8PO6RBXy8sLKharYZVE7zLwYa3nXo7/Uvx/53xiceSv8l/gJUAwbuRBEB5sg7hGjcgUIbQ/eQD4J047U+fO2CEZnYD4GEBZMJBJZOb3II4LOZGiIzrYrEYPJEYaL9MxQ2qz0nXHVxHP9FeV5qMvesNV9z+bN7pYRgHEt6XDv6418OZfp0/x9mImC1wXTNsKWRMD7u+5HvaTxtLpZKazWZmLxHkzpkNgERsqGPv0+PuvhopBqzUAafG5dXH2NvhwKhYLOrcuXO6efOmbt++rTfffFPlcjnYEN+ds98fJMxtbGwEGp/PYlbOC8B7GKAk7wkds76+rlu3bunUqVN65ZVXlCSHB5zB7KJ/O51O6C8/krnT6Wh0dDQcbJTPD/YymJ6eDssr79y5o0uXLqndbofcj3ivjJjVcZmI85a875/HsPqc2t/f14MHD9RqtfSrv/qrwSa8iGn8yGcZ+IDF1AcDiwD7BIuNA53gy9b8me7dYhhj4aM+cUjBf+JnDwMAPMcnrj/LqXeETsoCGJ7jIQwXSJR6q9UKSNhjj95u708MA+91mt2Vjb+T4qwHHjvgg+RG3gMyZ8mMj/v4+LgqlYqePn2qzc1NbW1tqVqtBsqe/snlcmE1QqPRUK/Xy8Qg3cujPZ44FMfUHRSw/ppcDBgG9yZ9tzPi8YCBra2tAMrI60C5ogDGxsa0vLystbW1cE45q0JgM2JAg1xi8GmTy7q3l3t9908mvdOGrVZLtVotxI3ZMhXw8jKWWFZjOt/nurNy0tHd6TxnJp6z8buko3F6dxr8c2cOY53k74+VOZ/xHsAk9fZ6xcUVOnUbZpTRFePj42o2m0eewX0xiB7Wdkoc749pdemQBcaIbG9va3JyMrTNwQ918XbwvIODA50/f17T09P64IMP9KlPfUrlcllbW1thvMmlwvjv7u7q7t27euONN8I2xnFxho3C2Mf2hDru7e3pxo0b6na7+pmf+ZkAnDY3N5XP54N+GBkZ0eTkZNAn7MD65ptvan5+PuxRwP3U4fTp03rw4IFeeeUV9ft93bx5U2fOnFGapqrX65kjzF0mYnbneSDBwZCHvPwaZLDT6YT+npubU6PRkHSoI4eVF7ocKEuMkdPMw2JMGB6nwv2HDHE8TD5jYg+j0R1k0FmgH6e73cDGE5l7iMc5COCZDjpckLkGT9EnAQbLl43EEyFJkhDDjkMAJJg4cMLYuXKI45nE0mEZ3AtyOhL0jRcRL/Mkdk0sjDMMOKBocnJSs7OzmpiYUK1W0/b2dugfT9RjIyY30Nvb2wFRe9JprCw6nY4ajUZQ9L5ckWd1Oh01m83AmExMTGhycjKEK9zrZqw7nY42Njb05MmT0F/0ve/2Rl5DtVqVpLB8dH19XRsbG2H9P/c6u8JqB2cxeL7Lkm+kgyyxLNLjsd1uV2tra3ry5InSNNXk5GRIJiOP4mUsyLaHiRzYco3LtusKGBNkmiRYD/34vJYO567HuqUsu4jecZbNWTcHCdxLceDqrCOKPX5+fL90yLwiUzGw8XpjgAHFcR3oV/982DsdLDDPXNfwrmGx7dnZ2XDipusmH2f6Pgb31WpVJ06c0KNHj8JYweThXDgILBaL2tra0q1bt9TpdDL1o96uEzHOMcuLY4dufvDgge7du6e33npLU1NToe3T09PBAZqcnMwwqV//+td17do1nThxQrVabSjzLEnNZlPVajUAirGxMX3jG9/QD3/4Q42Pj2tsbEy1Wi1jV9wWxXNi2Pi5bnS7xXXMmdHRUX37299WkiT69Kc/rTRNw74O8TO9fOjGRE5HYfT6/aMnr7mxkrKHhDj1hwKlcaxhjylZN9A+4P4+p9O43qkqOt4psmETxb25eGD8Oiap0/rxchdnRjx7H+WAdw0d72303fbSNA20uG+G5H2Jwef5bpRjMEQ7ARAwFQcHB0HhYjS5tlAoaHJyUpOTk1pdXVWz2cxQo745SZqmYWUCmf/0C/0+jPIGVHj+gitjDEN8trgzMvyOxw6w4Z7Y/v6+xsfHw3sxxFNTU4Et4TOyup21gjqNPSMmnKTAMsQhNT81zb/nWSQStlotLS0taWpqSuVyWa1WS9JRFudlKYABfpgjUpY1ZC7Rzn6/n2FomFeMNf3nocVY2TEPnKqVsvQ9YDT2QoexDs4+0DbeEbMGscPBO+kPvnPA78WZE+YaANX353fgM4z9oD7Ul7pyr+sg7vF2wRB4/Yf1E/okZhvoi7Nnz+qDDz7QnTt3wi6e0iETwbwCUL/yyis6deqU1tbWgq50W+TtcceN+e6sSZIkqtfrunbtmiYmJvT6669ngMvBwUEA3z6GIyMjajQaWllZ0dTUlLa3t9XpdFSv18PKK/q/2+3qzJkz4b3T09NK01SPHz/WW2+9FdrVaDSCM+Z5KN6fLntuR2PZlQ7D8LBHk5OTunnzpm7duqUvfelLASjRz8PYKsqH5hD4IBCzjelfFzqfBL5EB0HzytCRCDsDGSN6JpDvH+3K3+P6PkBuwJkw8aRH0UjKeJFu8BFADBZ193CGGzFiULwbcLS/PzgAiK19eR7GjrrzTjxg6ukbBPmz/dAR2kN7aTOKFuABzY/HlaZpyNqnP2nz1NSUSqWS2u12SJxBkbiSKBQKgf2RBgdp9PuDJDnG0DP8vU9dYcPm+G/6A5CUpocHSHEPfcF5AYCHbrerVqsVTiZzMHBwMDgHYXp6OshdpVJRtVrNbJ3qVD/vZfmQszL89jlBOAX58n0hMHKwKqxxnpqaCgpqd3dXpVLphRP541yQDea3lAXePr/iOUW/odTcKfA4fMw0xEYuzqiXDj10fz/FHYnYa/d3uEfqINy9V97rAB25GebBcz/gqdfrhRUYsaMjZY+l5xmxsfcQakypxzqRtlI8Nu9j6s6Bz4FhwKDX6+n8+fOan5/Xt7/97RC793aMjo5mkgjb7XZg01ZWVnTq1KkjfRWXYSwB196+fVubm5v6xV/8xaDnkiQJ+wl4fXyML168qBs3bmhlZUXj4+NaX1/X2bNngycOwCU0yRiWSiV94Qtf0MrKiu7du6dXXnlFuVxOk5OTIZxJKNPlxVkfxswBI/1F/ff399VsNkMOVLfb1be+9S2dOXNGFy5cyKzCi21yXD50p0J24fMEO1AXCg1BlbKxVad2nkdzuMGm+LIIT0yJ6XBH7AgSBtTjyk7rxsjSaX5PRHSwgdHyQRu29MepOEfWGFr6jvbECt4TJfP5fIiT+6Y6fo+zNAA27w8fF4wgsehcLheS9NhYiDbSNoRybm4uZMxykqF0uGyx2+0GmozkmkajoeXl5SP1YByZRPl8PoOUfftOp8l9Lb6vlHDmwb1JYoDz8/OSpHa7rSRJwh7kGANCNwAH9m3AGMexaAeJfB4blGEUtYMCgDXjQcIkdHC5XD7STur6MpbYcA2jtx1AuW5gfD2RN2YInqdbpGwMOaa33XC4PMZhyth7dx3BvXG94pUlXMezYlqd98SG3Fmt8+fPa2VlJcPKxYbE+9X7Jv4dj09sdPjtutnvjXMcALXDksqxB9VqVZcuXdI3v/lNPXnyRIuLi+FaBzXo8Xv37un+/ft688039ejRI9VqtcxKJ3+3OxQeOkbWHj16pJs3b+rcuXNaWloK+0Gk6SBvB8BNvT2Rfnl5WTMzMyqVSsG7bzQampqaUqfTCeyJL1km7LW8vKzJyUmtr6+HpYuSgk1ot9uBiSCM6ONPOxxQwqbAqCRJEjZG6vf7+t73vqdOp6Nf+ZVfkZQ9Vj6eB3H5SOuYHAnGCFxSZgJ4RzMY3igHATwDKhEk48vPYnTuk0dSZg2rxwARTp6L4MXKg79pRwwI3BuOaTDp8Gjf+PkODpwl4Dn+f5wUw2cec3eB8AH1fnFqFiYgVkpsjoFQ+bIf9+jdm5ientbi4qLu3LkTDv0oFouBNWi1WkHA8arx6GEhnFZ18AjgoS3sfEh8HtCZy+VULpcz3rWUXW/u+QfsjzAzMxOWT7LzYqPRCAafOGaaHsb+ASkobuSVo0M5uAgmCA/WGSxkH3Dj8VH3RkiW3NzcVKfTCUmonlUNq+By8jIVbwdt8Lnk37u80kfcB8iO52iSHJ5pAoCPwT9y4ayMGxDGmpweZ+x4Hswbz3PHSMruGupMAW2TjtLBsWF3B4p7aMvMzExYGx/rx2EANe5f76dYh8dtos+ZNyQnP68t/M+zYlCTJIMk5cuXL+u73/2u7ty5oxMnTmTAgKSMU9Pv98MpsadPn9bjx4/DJmQxSKNQb5yxXG5wMuO1a9eUy+X06U9/OnMvbUIGfCklGxKVSiWdOXNGT58+DflLjUYj6EzmuPeNA3jOQ1hbWwuhAmmgCyYmJkIoiA2P0Hfx5kzYR35IgsRxTJJET5480Xvvvad33nknLFPtdruamJg4khcyrLwwqdCpdwwExgehd8GIP4upKRpC4hbP8snLd3jDKGR+3IsmJu9C6Al3PqG8He5xoeDj5LG4/s588OMUNaDEvXYE3Q0t3qFPAiYefUN/OJ1PH/IOvPy9vb2wvS3L8UZGRlQqlVSpVEKuAMg7XqcLGs/lcmGtO/0sKQjw/Px8WA6EJ0uizP7+fmBCSFAkgQUg6eEY97bz+XyY5L1eLyzRYZLxnomJidAWl0+UfDymvd5ghUW1Wg0nBQKWWq3W0AQbFI17o4yJJ8uiNGOjhGdQr9fVarVCW5CtXC4X2BCUT61W0+bmpjY2NtTr9UIiIbKN3CFrL2MZ5rnGIJh5E3uYFOZmHGqI2bBhgBlg6frMgSAMIvqGrXSRWU+Api7c4+8c5n0hL8OYC29nzGh43/GZM1n+vV8XMwAxc+DtdnaTuvKbxOKxsTFNTEyoVCpldi6MGQIHWvG8kA7Zu2q1qtnZWd24cSPc7+OSJEmY694no6Ojmp2d1cbGxlDbgo5zZoN63rlzRysrK3r77bfDCiv6itVQbldoD6xHv9/XpUuX9OTJE9Xr9ZAfwGogtl/2+iJHhBgnJiY0PT2tBw8ehJwt39uGPWsAM+12WxsbG9rc3NTm5mYIJ+Iws8+NpJAsv7u7q3fffVelUkmXLl0KMotcu218XvnQkIEPPGWY0CH0MbXBc6iMdHR3MRdmDwuQ/MV1PMuVr8fTeI/nEbgSdWPO/zwbGt8NgXs0fEYdJGXWwfM+98o9w19S2Idg2Np5qHfoI+rN/Xiw9BcgAmMISPD6YuBRgO6x8zwSGZnMFOL97KA3OzurqakpPXz4UPV6XTMzM4EFIAGPMSMcQfzfqXfpMPYOGPHldGwQxERi8yFHy94nzjqhpIvFYkjgA7AgJ77PAO9wEADIitkjZ52QLz/Minf5WnbmioMxQiYAnlarpa2tLbVaLU1NTYVlhigY373wRcj+41y83rAdcf+43nCgB5MYe9VSNsPddUhMf0uH6+xdeTubSXEmB33l7IJ7/s7eUQf3bvnMwYCHWZ1NGlY8Nu/MFcvHhgEHr0Osu9M0zeyb73ra64FxxcNGF2CsYobX9aH3iz93enpa+/v7KpVKOnv2rL7xjW+E7X3pK7+XxGQP97IHSrPZVKVSyTDP3I+OZFzX19d148YNLS8v6/z586G/8vl80McUz1/wEGY+n9fU1FTYnChN03CWQavVUrlc1s7OjgqFQkYnACiRHTz29fX1zMmPMaPk26YzB3AKmAPodHR/mqa6du2aHj16pF/6pV8KYAZ2FJ3jiefDykfe+mzYxB1GTfn/XOcIPKbI/Afh8WvcyDudFisJEF080eK4vtcLQfOJ5ysI+M6NLAaMgZCO7mWAMfe2J8nhqgOey4Djjbt35JST952kI5MUReExdIQN4wvIwLuIaWgHSyMjI8Frd/ZgampK9+7dU71eD5Q+YAKBc68t3kcBGYEWZOLRPuqBwua98V4AvCOWAyYIyB9AyUYiu7u7mpqaCrSrJ0A6YPV2uOygHJAXkiUBEdwLOHGvuN8/PEIVD4HllCgmGBbexylrMYX8shXmmcuaZzu7Eee3szAUT/BlDvs1jFnMRLmcuBfJZ8hMrH/cYPpnkjJ6KS7OeDptznz0d8cgxvssSZKMYYBhrNVqmX6JnxGDZd7/vP7J5XIh69/Bqxt9QBz31uv1zLNcJ6G7COEg27VaTblcTq+99pp+9KMf6cqVKyFs4H1Fm0dGRgIVT58uLCxobW0tMBg4hnF/SgPP+fbt29rZ2dEv/MIvhLohh+wwOAxM0Wd8xo6Ed+/e1Sc+8YkQMiD3BzDR7XYzzrAnsybJYP+T7e1t1Wq1EC6I3+/3uvzQr7EzLQ12JPzRj36k06dPa3FxMcNoMRa860WOxYduXRx7wPztDaWyjkppkIMHF17/8YaCdkDTPAdB9evpeBQ5QhtPLEpMczn6dqQW14l7Hb25R+0hCfqM+jO5oNtAeu4lIQTuXXq/xf8TcnCv1NE8CgGPlGfG9DzeglNLeBGlUikz9vl8XvPz85qcnNTu7m6g3TH0HqZxFgShRrl4rNIRsk8MClmzHtt3kOaxUAeYUO2MZZIkIdfhxIkT4QQzcijYUpTJ7HLIZEI2WLLpCYiSQoKgx/l8HtAugECn0wksCoAOGfFlq7QRkPGyltiJQPZ9dYx0mCXuc8N1SkwVu5Phc9rv9f53Zco1Pr6ugLnOvf5Yl/Fej5u7znAq3JmEeG57nSgOeLrdrnK5nJaWlvTgwYOMZzjMSfJ2en1cV/M9y4XjpE/GAkDv+qxarWY2PYPJYu44+GEzM+p15swZLS4u6u7du+FeB7vMdeYSnjffTU9Pq16vB+bQ9bp7+E+fPtXa2prefPNNLS4uZkCm1zmm0N0o8x269tGjR5mxos85ThqbwRLt0dHRwHgyl8vlctjTBf2BDHqom7r4XIntGbJ05coV7e7u6s033zzinLoudJs2rHxoDgFC4PEHfwHX8eODGiN3V3b+Xby5T+z5u7dPPBeFTke5h+eoHiXuXnw8MR3oOOLFsLH0BePkBtjbhRBBFSGAHHvc7XZVq9WCwaJerlR8CaTHkOkr/41QOFCiv+jT2IjgceN1kwPhysX3zvecg4mJCc3Nzanf76ter4fVBQim0+2AJ5cHxp5xRF6oJ7FbZMGXGZKnQZ2cHeF/f4eUncws82FCOPODrHi9fOIBstzgt9vtTFtdfrgnplXpHw5aQlH4uQzOhNAGAFun03nRdP3Yljj/hja57MfXStmDX/iJvdvYY4q/l4ZvkUyJjQnXufGP7wPso6+4x9/jzAPPRp/EybcxEHBmgFIqlTQxMaF+v6+nT5/q/v37R1gF6hYDZP6O9TZ6km19cXT4jpCax8PRs7lcLoQTifn73gieP+WMapoOQpWvvfaaOp2O7t69m5mHzBNAArsZMlb9/iDsNzo6qlarFRwsd4b47r333lO5XNYnP/nJcD/zq9FoBDZuWKKrO2y8Y2ZmRt1uV0+fPg2fE97zFSvIADlE6DJsEPu71Gq14Ai5Q8RPzDz7/x7SXllZ0Y0bN/T666+rWq2Ga9yhc7l8EdP4QoYAzxy0RvzLkZYba16EUvYJ5lvN8mw6NaZ8vMJ4W0mSZBJiPMvcBZ64OvXzcIUPeozyXTDieDztQUiT5HApoE98lpLh2fX7/SAI29vbGaXI8hMSDmPDjsfunnVMZ7GvQZzs0+8f7ofvyx0dpfMcQIHH7jC+PokxXAsLC9rY2AhU99TUVMjIR2Gg1L3/UIQIOp8jA/3+YCOhdrsdvHAUZ7xDpOckDFO6yCL1YK+Hra2tzO6JKA43TjAFDhh8CRJjRHjCJzFtZ84wbzwJFIXqcgL48v5wpQ6AeFk3JorZOM+1cUbODZWHArw/pOweAfw/zLAOmzN+v3TI3rij4n3PO5ElDyN5/R3U++eMe5zfA9sVJzMjx8gWBZ1w/fp11Wo1ff/739fc3JympqZCW72/h9Ul/p535XI5NRqNTM4NskguDo4a3jX3xuAlHruJiYkgt85QvP766/r2t7+tO3fu6BOf+ETGccnn84G9RK+7rTk4ONDMzIw2Nja0s7OT2dqYd1y7dk1Pnz7VL//yLx8JVUH3xw6hO6SwI8z1QqGgubk5jY6O6s6dO1paWsqA/yQZ7Gfgx2nzfA7vKpVKmdMrK5WKarWaZmdnQ5/FbAWfucw5sNnb29P7778fEgkBC8wx6dCGMk7DwlyUj5xD4J0XTwQ3ZPwGVcWCiIHxwXMBBI1iqBgcX24WCz8C6+/35C2fEHyOkPC/I0wUOOCHzi8UChlgxMDT+a48uIe4PXVmmdnk5GQwxI5weQ8TwRkT6VD5YXxJdPH4WJIM9uL3HR+HCRtj4DQs7Y5XczAO1Wo17Km+ubmpubk5jY+Ph+uhqNyD9vXdseJDgN1rJqbpywi5lj7gt3uOUJtOL/IsSarVamo0GsEbd/kjKQjF68mOKHaMfqzgHRT7HKFvvQ7O/ACyYDjw1KQsa9Hr9dRsNsOOhS9bQQHitdCuYeGC2Gt2o8xnblidoYqv4wAaKev1Y4y5/0XvckcidiacuaD437BxHo93oIneIPzk89PDYbQPj/P8+fM6ODjQyspK5qwLjz17SFXKMiFxYlmn09F3v/tdFQoF/dzP/VxoN9eiB6kPnxEyjNkY+pQEY2du+ZmentbS0pJu3ryZWTpOQQ8R0mPDLu/narWq7e3twFRgGx4+fKirV6/q/PnzOnv2bNgMjj5nq3Lk0OXK+5x6ITswISsrKxngQy6Dn2qLHkB+yP/wTeFYNVKv18PW6RTXld7/7hAXi0Xdvn1ba2tr+oVf+IUMyPVkSYAOtm1zc1PPKx9p62IeitDR2GGJPw4IPOnGNxtyb4x7fKC90U7nxBMZ0MCAudFxtOcGOka1nvji7eTH+8L7wOOODJqkI4odoT59+nSY1NBzCKkbTIon07kxdOGFtmNCxB4Sfe2CDvigf5wCdPqQpDtHlbncIFuYGN7a2prm5uY0MzMT7ud0Pl+O1e/3M6smXLh5D/F0Qiy0nzYwNoyngwHkiCV9jAM/09PTmp+fD0t5Tp48qX6/r1arFZQbE9bH1MEG4wTLAUMESEURophQZA5eyL3gvezlMDk5qfHx8aBk3fjs7Oxob28vHHr0MhbvQ4on8sXXUtzJcMPtdKl09NRDQjMAY07WczoWOfTP3HN2psDf7aFBB4CMF4Cn3+8HeeSH+R3rVBQ1OpL2+bzv9Xqq1+t688039eabb4ad81jxg1ziDCGX6C3eD2h3Wnlvb0+Tk5M6efJkaC/9SH3difPidXSnLEmSsJGPh2SpY6FQ0CuvvKLr16/r1q1beu211zL2ABDFoUexLEjKGNSpqakQGrxy5Yok6ad+6qcy7cnn88GBGgbunAH0viK3aG5uTpVKJWzjXqlUlMsNzpdA5nDy3CPnuXG+Bd83m83A9FIfB2DoUq9rkiRqtVq6du1a2AHSxwHnBhuJw9VsNvX48eOh81T6fW5M5BmyMc3vHelJVT553AsGOTLBfNJ5fM3RkSeSSYfUvlNSFAYEgfBJ6QacgXHaK26PK6L4Gmc0EFp/F2vNl5aWJElra2uBDifbHc/Wkb0Lh086n+TE7xwhuzED7Dg4Yhx8DDxcALBAKZFZT31GR0c1MzOjlZWVcAIYmfu9Xi8kJ7kX4mEfZyOIS5KgiJEcGxvLACJnpDye6bKE3FE8WYe1zw8ePAheI0wA/UsWMcbFKWQHJNSd/iD7e39/P3hEMTADxPimS2l6eMgSQKPXG5wSife8tbWldrsdlPbLmlToekLSkbF63nXMJ/o0NtI8KwbLMA/j4+OZbWm5xhkn9wBdJ3l9KDBDKHRfuurMIvLo8xTg6l479WHO8kzXh+i0brerer2uS5cuhe1uAefIMfLnq5aQ4zjsCdMpDWj9V199NayCoa3x2PhcYwkh73Hw4KFSXzHkbEqSJLp8+bL+6T/9p7py5YreeOON4BDQRw6SSPz180b6/b4mJyfD+QKVSkW3bt3SgwcP9NnPflaVSiV4y+i5/f19TUxMBBmE7fWwoG98hDFO00EyYKVS0Z07d9TpdMJzAPieN+RhKZc1T5RHb+dyOW1tbQX9Omw+xH1XKBT0/vvvq9fr6ROf+ESQJfaEAXTt7+/r1q1bWllZ0czMzJHwUVx+X4Ag/oyBc8M5DEkOQz0xIueaYbF+92hdITCQ8eTm/Y7CoKAQBKcneYe/l/vdGMV1Z+B3d3czZ9Z7xi1L2/CcMQZJMggnQE+78Y7f73Xk3bQdg+nXe7+5lwtwcWDkwM1DFe658QyU3NTUlKrVqtbW1tRsNjP3VKtV5XK5sDeB7x+wt3d4LjkAyE+yI4ZZrVbDJh1MYtrsgMfHy+WSZ9E2ziq4f/++2u12yCNgy2b35D1MEsul96+PcavVyihSrgEUMWa+2Q39TZ/iQXQ6nZBECEVcrVYDmHjZSzxuPp9RznzuhsSvlbJ7pPi87/cHS8QqlUpGZtxAA1j5398X6xgHEsgz8444M3Vw6j5mGDFgtNPntrcPsIq3zedbW1uqVCrBK+Y3sWnkGkA+DMiiM5xRcSfG57kX5qEbNdel8Rx0diBmfGhvvz/YhfD06dN6//33Va/XM/vOkBflG/7EgIl+nZ6e1vb2dpg/J06c0KuvvnokD6PVagVq3vO+6AN/T6wbAQqLi4saHx8PuyZOTU0FoFIqlcLJjMPyfbz/8vnBBmmjo6NB1z19+jSzB4EzWBRs2pMnT3Tnzh391E/9VJAZwADAT5Lu3bunJ0+eBP3SarWOsHJeXrjKwCcDvxFip/JjxTlsQlE88x2jxUE0UENMKKc+3CC5l4mgxkibwYbC94nk6+vd0MZAxY2PG2VnKRAWlAQ0sIcBPBuXZX/OeCTJYUKaGzsv3u/ePxg0pyalw0Q+vBMMkrfF4/keP0dwHUSxjr9YLGpqakrz8/MZY8gBTewmyAoExpQJFgPGTqcTEvs4fnRiYiIwKKBejClAipUQroQZF1+9AY3HkaZQ8BgO9m+oVqsZ2YLec3YI6pD/CbcAhmKv18MPrDIBjBSLxSCHjMHOzk7YmcxPWXTv5WUssR5w4+3fub6J57Lf58/1OUyoi/gw/exgAKDnbIIDbfdQGSN+w1zFugPD7Lqi388e6e5J1HF7ve7MZeYvzy2Xy5qeng5AY3JyUktLSyEESR4RMhs7O/SpdAj+XQbdIfI56rqO+hJeGwYe0jQNTAMsLc/3a5HnS5cuKZ/P6+bNmxmnhnCL5zLh+bp+pF0jIyN6//33tb+/ry984QtH8gEwxL4fihfXIX4v3zGeS0tLKpVKWl1dDfeQXC0ps6+Bg6VY1vkMGj+fHyzrZvdDdMkwZmx/f1/vv/++Zmdndfbs2UxdARM3btzQ7du3dXBwEDZ44rt2u63nlQ8FBN4wp8LcAPoEGRbvcAFF0XoSDQYb5QdV7MWXdWAYqZuUTUjyUAH/8zzaEAsyxTPUoWnjZYtOW0OL+SA66oSN8HyKg4MDdTqdDDDCqPDseJe0GCTwLG/bMOXqHpYf+MREos8BNh5CYJxHR0fVbrdVq9VUKBQ0Pz+vixcvqlqthqVw5XJZ1WpVS0tLIbmmUqlodnZWExMT4Z1uRHd2drS9va16vR4mK9ukxkl71AuAB7iDcfA9F6j/7u5uOIxkdnZWo6OjqtVqYetlT2bibAMoRlegjLvHVX2lAP3tGx3xLOoNOoc5AZiyomN3d1dbW1taWVnR/fv3wxJJ//Gw1stYYvbOjb3PyViGY1l2UOYFz9TfhRwD4GImkWtd6XoytANj5NENjTN1Pld9KTSAwLPl/bc0UNLXrl2TlM1Xgp6HeRsfH9eTJ0+C48HSO3cW0B9xHzP/0DXD8hr83f55TF3HBtX7fHx8PBza4+wl9+fzhwe3Xb58WadOndK1a9dULpfDcetnz54NwGJhYUELCwsZat/HPJ/Pa319XQ8fPlQulwset1/DiaHucNLeuLgcejvTdJBHMDk5qYcPH4bPPMnc9UdceJaDU+Y2q03Ic3gecCkUCrp9+7aePn2qT37yk5lkfJyxjY0NfeMb39A/+kf/SK1WK+hH3+fkeeUjHX8cx+jcOFJQhC7k3hgMjtNhPNspeU/sgt7yd9Mp3qE+GX2AiUk7vYuwe16CgxYG2NuCp4GX67HA0dHRcOAF78fY+X7V7XZblUpFksL2qZIyy1+4lkI/+Dp7+tU9SwCGG/9YeXEPwAuvm/qwJAbDFzMy6+vrajQaeu2113TixAlNTU2p0Wjo29/+tqanp3X27FklyYDahOK+cOGC8vm8ms2mHj58GBgK+qher2t1dTVMdIw7P+5ZuRFxyhB5wNuh7XjkJPywquPp06fq9XohVodSRa59d68YiDEe7CzosVtyOKTDMxEAfSMjI9ra2tLm5mYAPWzswrg+efIkgJWtrS0VCoO1ym6I4uNfX5biRsENg3/v89hX18TUOXNXylK7sQHz79E5GGTpaMJ0zFz5XIOViqlqLw7KnbWk8DnP52/a7Xt/uG5Fh9EW4uXUB4cEfQBryOcYCfdUY8bT+5T3eq6Rs5lkxzvIcHswOTkZwBB97335wQcfaHx8XF/5yleCofryl7+sv/t3/65OnjwZWJDNzc2QMP3aa68pTVM9efJEDx8+zOQkkRB89epVJUmiU6dOBVYQnc24j4+PZzxl73+XGfohdmqdqXnw4IEajUZYYeVtzOUGiYYk86HXnHmGRXXn9+DgQNPT03r69Kn29/dVqVTCChTa6omEi4uLGTlL01QrKytaX19XPp9XvV7XxsaG5ubmwgoJSTp37tzRSUr7n/uNTQb3Hj25KW6k3yNlaWv33mEUSKTybWTxzD07nsng1FYs3IAEN/yxUfN2OcoHOceo3e/xJVKOtshid4FotVrhhLsYpU9PT2tmZkblcjnQlfSnU2N8Tr+4AXSlwoT0nQYdmPjeDRRoelBp7PEACmArAG63bt3S/fv3lSSDA0jOnTunfr8fTgEj2QnQhPFDGH3zkk6nE9YRk6wDgicWyEEiUP70uSvl2GuhzXjihUIhbEKytLSkTqcTdglzVqHb7YYYpitHD6E4qAWwksiF4d7Z2QnhE0Ipm5ubWl1dDdRipVLR1NRUSEzc39/X48ePA5uBx8AW0sViUQsLC/rMZz7zoun6sS3Ij7NmcYKuA1gH+PS9GzTpMJ6MnogdEe51dtJDkjEocd3i4+k6xR0JShzGcEbH6yodAkWe57kkY2NjOnnyZCZUhGwgozCNCwsLIW7MskXeSd3Qu8wF122uS2IP2NvmG7+laRreg/yjr91JInfA85AwyoCFr371q3r06JHK5bIKhYLefvttlctl3blzJ5Nj5InS+Xw+rKagL6j/j3/8Y62srOinf/qntby8HA4B4hmdTifkVsRAzQEnMuoAyW0FYzk/P69CoaDV1dXADtPnDmoBA7A4vNedYP8fXT4/P6+NjQ3dvn1b/X5fzWZTW1tb2tvb05UrV9Tr9cKOhNLhjsJpmmpjY0NJkmhxcVGjo6NaWVnR7OysJicnw7H1f/yP/3E9r7wQELhw+f/eARgOOtdXCLiwMah0GBPQKQ8E2mPf3mkMji+ViwsTnmfEHkZo+BBPxRmMYrEYtpNFSWPgyXmgLziw4uHDh6rVamFN++TkpCqVisrlcogtQZ+Pjo5qe3s7gwA9v4F6MOB4y7AOZMQ7AKDQj/v7+yFrnc+h/kGw9HOn0wmZ9mRmw1rMzc3ps5/9rGZmZvT1r39dtVpN/f5gc6WpqSlduXIl0PAoMbxjFDLx/nw+r3a7rdXVVTUaDU1OTmp5eVnVajVs8/n48WPdvXtXT548Ua/XC7kFCDT7BqCwfL+Cer0eNoEqlUqamZkJu4WdPHlSIyMjWl9fD/kQaTqIeRK2IB5JvoezWR4uS5IkhC0kBXDloSaADcae1Q54dowR1/V6vQCgtre3tb6+rlarpU6no3Pnzun06dMvmq4f2wJF73FRN9hSdpdHn5euSD0sCCBzZyFeOeTUd1wf3hGHB5AjBw4U9/DdEYpDAA6uPQExdky4BmBarVa1vr6ue/fuSTq6aVKSJCE/iQ2EoOe9v5BDnK5CoRCW9nrd4zwYdBz384OOazabknQECAASYNsAxM627e3taXZ2Vl/5yle0sLCgv/23/3YA29PT0zp37px+67d+K/M8SUEfwRoRTsTJXF1d1Y0bN3TmzJngoIyPj4d6PH369AjTFLM7sVzgiLLFeBwqXFhYULlcDieUxuylA1rCPDGwlI4uN0cm+/2+ZmdnlSRJyDFYWVnRt771LV27dk1vvfVWOGQJwIyexSZPT09rcnJSm5ubIQT54MEDvfPOO5qfn3/+XH3uNzo0RE6je/zNJ4wrS34jdBguDCv/g37deJN1yVnUMXXjCtcnnncOEwGKxKlnz/blmR4SQHicxna60BmH/f19tVotbW5uBjqLjE7ABJmo1EOSGo2G+v2+Go1G+EySKpVKSH5D0DwRBMYAEMGEZSyYoEwG2AUXGo9X0U+53CBpsFarhWxd74tKpaILFy7onXfeCW3c2dnR6OioLl++rFqtpsePH2cyWHu9nra2ttRsNjM04/7+vprNpprNporFok6dOhU8niQZ7AH+6NEj3blzJxhuxpu6+8oE2sdYbm9va3t7WwcHByGcgzKYm5vT7Oystra2VK/XAxtRLBbDM5EfchUcsFJYIcH8YBLisRHqwnvtdrsqlUo6ceJEUA7EWBm7arUaQEi5XFaz2dTq6moY95mZmYysvExlmFcmDU/scmXt9/C/z/HYO3cWIn6+OxeuhAFmMejjHTyX3+4hM0cdsHhulbcz1pX+g/cNs3j//v0QGmC/C57vYSlYLQ+F0B7ahJ5kDjSbzTCfkGFnZfmfkJszhQAGDDRzj/yWkZGRcPCSh3pxDMbHx3Xq1Cl9+ctf1tramp48eRIM/Wc/+1k9evRIKysroX48u16vh4PAcMQIwVy/fl29Xk+f+9zngiEnNPjNb35T3//+93Xv3r1gbNGtsdfvrF8ul9Pa2ppu3bqVYV75PTs7q3K5rEePHmXCy+6UAV7Qcx7mQr58/xj/nLrNzMxobW1NS0tLevPNN9VsNrW8vByAT5oe7oLIO2GTDg4Ogt354IMPdPfuXeVyOb3zzjuq1+t6XnlhDoFTdnQUMX6fCLnc4WlZju7dWLnSRoB8QjNYTjUxIbyTHKmhiNngxw09E9DpdAyApKC03euIkaN7NPywzG5/f1/b29va2dnR2tqa2u22ms1mOHSDwWGiNBqNQKkT42KiEfMDXZKDwNIoDA/fEccGsEjK7JVNG/f29gINj3KAgvYd3NxT2N/f1+TkZPjelfLCwoJ2d3d19erV0LaZmRl1Oh39zu/8TqC0QdZXrlzR6dOng+JrNBpqNpvhPIfp6WktLi6GiVwoFDQxMRFkDADRaDTCkkmYIR9b6skyPTwmxgmwNDo6qmq1qsePH4dlQc1mU6VSSdPT02F1A32HPHuSIcwAoIrtSpExDjgBwFC3qakpzc3NBbDFNVC/J06c0ObmplqtliqVSjhIamZmJiTK4R28bCU2gFJ2O2gPE0hZBsGNGcXDgShi95C511lFihtPf07MJDDf0HX+LNdDMZPhdaHtzoI4c7q3t6dbt26pVquFBNidnR212211u1399E//dKb+uVwu5PnANOIMeTKb15M5xP2SgqF3hhDd4ewJib4YHjecHo7BaQC80g8jIyPBsHtIZnl5WWNjY+FAnnw+Hzbn+nt/7+/pV3/1V0Nf9Ho9/eAHP9Dp06czMlMoFHTz5k3duXNHb7/9dlhOiLycPHlS9+7dC0ujX3vttYzn7rLk/6N7Hj58qHv37unSpUuSDkEsc3xyclIbGxuq1+saHR1Vp9MJDihsCXKCrWLZtcsHYU/uczCbzx8eu9xqtdRut/WlL30phMt8uTuyNTc3p0KhEFim0dFRnThxQp/4xCc0Ozur/f19/fjHPw7nO8TlQ3cqxKhj2HzTBj5HKJyaprjguIFjUBEgSUGA2L6WDvV14gg274Rqd0/RjYTHK1HisWfCMz0ngh9XGryPNeJQdxhmGA/O6mYistyNtao8Z3x8PNSNAQbkUH9AEv2LYSNkAL3PeQJMasbBY7YIJktReCeT3ylMLxheaM2pqamQ/CNJp0+f1tbWljqdjhYWFoK3OzIyokqlEpJhdnZ2wtHJY2NjmpubCwAFMMRYOtghjwF632PCTpVBJS4vLwd0jNdOP+ZyuRDWmZqaCjJDPJPkRF/zjwzmcoe7jdHPLI9iMiMP7XZbnU5HxWJRMzMzmpub08jISAAQjC+MBwlAvn7Z2Z1Wq6Vbt269YLZ+fIsbBIyQe9vezjg8KWV3NYzp1WEhgbjE16BXPESAF+eMKHIYO0CAUe7nM94VgwNvyzDWw5fZEiYCeMJaAfRhBmGaJIVVPXH2eAxi+J8QGx43bcS79qWZ7u07UGBeSQM7sbe3l9ljhTrGDCb9xrxnh73Z2dmwc+Gf+TN/JiRZ8pzl5WVJCo7S5uamPvjgA1WrVb322muBsfQ+PX/+vEZGRjQzMxPODHCd6qywgyFpwNa+8847Ghsby+gfaaDP5+bmdPv2bW1sbOjixYtBxpm/1KVcLodMf9dt7iAjK8iPh56mpqa0srKira0tvfXWW2FzIb4HEJLAuLGxoRs3bgSAgp7t9Xp68uSJlpeX9cMf/lC//uu/PnSuvBAQOHJGYBEo90QlZTyiYYYcQIBniZCgDPDy/TkYT6fwSOgjNsZyi9i4OZJkkKG9XLnQsZ61ymRy74M6kMVLgli32w0ZsSj/iYmJsPSn2+0GNN9sNjU/Px/6YHp6OghLmqYhqcxpZ0807PV64Tsm171799RoNDL5B/Q36NH7lIJnSsIRHgPPBQCQtIS3ihLgBMdKpaLXX39d/+Sf/BM9fvxYr776alhxgYHM5wdLaVZXV7W1taVcLqfZ2VlNTU0dyZOQFPYEwEtzRQWtjPH2PoGmX1xcDEqJidJqtZTL5TQ1NaWRkZGQ6AN9yHGlrriYsLG8eOY3QIzPqHetVtPTp0+1tLQUsnwBb8gksUHyLWBccrnB0qFaraZqtaqFhQXV6/UXbjn6cS4+l2DO3FgNC+FJ2aOOpUOj4g7IMA+PMY3pfO5xfeL7n+AJxyum3DHA8PruhNTBwbw7Qt4+KbuCgeWwe3t7evr0aQag4gl6eAL5d3oYhgomyYFL7HG6Izc5ORnyke7cuaOVlRX90i/90pFl3yQIc7+zNrSdvB2eTR4BfYExJIznW4B72OCHP/yhNjY2dPr06WBUPbGSM1J+8IMfqNFo6I/+0T8ajC7ykM/nw+6w58+f1+bmpra2tkJisoMA2hHT9e12WxcvXsyMvXS4UyxnuKytrenVV1+VpIzseJ4QbccRwDFGZjykFjNdBwcHun37tiTp8uXL4XvYBvT76uqqrl27plqtpnK5HMDDN77xDf34xz9Wo9HQ+fPnQzjqeeWFgMAT/5y6LxaLGc/ePWqUdUzLOVWHZ4zHRUcj+HSoIz6Ur3SYHQ474HkLLAlj0jh1jKJ3itrzD9w7Iabs69yJp3n8stFo6OnTp5qcnMzsROd5Cz55PSGmXC6HpX8+2Twm3e12AxrHKDlt3m63Q3Ki97ukzHIXCv3MeLAsiT3HUZxx7NGNKfUBjLEcbmtrK4wLnpYDKeh86HBPyHNas1AoBMoN5euKNpYBfkOneuY1E5GxWFhYCIABlgAGg33vKZ43IinIPO1yWY03u6rVaoEhIAEIpcU4sx0tGdgALuSO7yqVSsgNeRmLL4nzZD/30JA3p8el7Ol58ZyOPX+ucYbMnQ9P8KNO7p35ShF0kxtvNwoYQuTR5cFBjifIOUChfnjA9Xpd3/jGN7S8vJwxpDGo4G/6AmMLsPd+43qvF23hfpITyd3xcIAn2dJHDqYIXTD33MBxiqukkKNDH8CqMXep88WLFzUzM6NvfvOb+kt/6S8Fg3dwcLiDpSTduXNHd+7c0ZtvvqkTJ06o3++HhGScGg4wStM0zKu7d+/q0qVLYZ7GQM1ZQAcLjAX39Xo9zc7O6syZM+Ggt+npaY2Pj2dYaAAdeUTsO8JKEnfSvD7O/Ny5c0ePHj3S5z73uSAvOA+53GDp4sOHD/XBBx+oWCzq1Vdf1fnz51UoFAKQkBQSwOOl7XH50JABRhhF7SEEN1w0XDqM73tckA6XlBk0pwm73a5GR0fDQS8oeoS3UDhc5sWz3JNmEJiovMcnc1wnAI4rF6fKGCgGl3YhJLu7u9rd3Q1K3xP9UFAct+lLhVCMHlOiPz1h0iexeylMJgcYTr17iAMwwbiwWyIxqNiw+jJQwJt7Lig8WARWALRarZAAREyQvAS23s3n82GZoR+bHG+ahDJ35e6sEKCNSeTUmVP+UIOADzY5SdM0rAahD+v1emBz4nhjzDjRxy6H9DM5FP4c90jwjsbGxjQ5Oal+v6+pqangFZKM6jFhl6uXrQDw6DuMMH0ahxxdDih8hsF35enXO+Xq84A+x7nxMZGyhg7d5nlGzAuu9+Q9dBTvd/CKrKI/nIrnfcg4K31cR7muovBc2sRvD2O4k+ZhA38GrBxyd+LEiQxbIinoAK+zg6pTp05pdXVV5XI55DExF9mBz9kXThoF6DPu/f5gK+OLFy/qhz/8YTjfBNaDRMNWq6UrV65oYmIi5CzR5qmpqZB86Fs4SwrfPXz4UCdPngzvRyaxE7BzyIgnGrtMTk1NaXJyUrlcLoQJAEOAM5dNwj8kqePAEUZDBt2x63Q6eu+991StVnXmzJmw06kkTU5OKk0HIdTJyUktLi7qtdde09jYWGAATp8+rQcPHoTncRCUz6sjc/W53zxrPBSLCyId58g9XivPIHtsBHqD6xBqBJpnsxMdneosgKN5fseZwp4hjuHCWLiwu4FFITgixMPu9XqB1iU0AFoDUNBfMAPEkkmMAUzs7++HuFSpVArhDgQPJgNUTl4BPxhYWBrAE94ubcDISYehEpAp+yZwDDOJcOzFzcYWjL9nGheLRW1sbGh7ezuEaGBbGo2G7t69q/39wemOy8vLgQp98uSJdnd3NTU1pdnZ2bDzGt6Eb4rkig15kA4BJaXVaoUx9r5F2WFUW61W8NTZPXF1dTVs5lQoFEKMH9Tt4RO8BoAffZvPDzKJu91u2LWRjYXSNA3ek3tKADD+p/7Uj5/19fWQMIuSQXG8bMV1AAUw4GG5FxkwnuNJWK6o3dvzeQzTiILnf/dyfR23MwzOZjBG6DzmvmePcy/fOYCLDTbPZ0yJS+Pp+jbjUnYnOuRxbGwsnF+AF45seb94v6Nf0L1467u7u5qenlaz2Qxx6jisGte9VCoFUHHixAmVSiXV63XNz89re3s7AIJ+v6/Tp09n4ubFYlFbW1shiRK7wPa93/ve99TtdvXqq6/qp37qp7S+vq61tTVdv35dt2/f1p//839epVIpo3+npqb06NEj7e3tBYPpcrO4uKjbt2/r0aNHOn/+fKZtgMUkGWwoRg5SnPRHcfvCfimdTidsruTyOMwuYksZ02q1qn7/cOVZPp/Xe++9p2azqbNnz6rX64WwIwU7ND09rdHRUTWbTTUaDZ09ezbkcd25c0dpmoaQyfb29lCQSXkhIHCvkENXHBk7rcIyPwxV7JXzc3BwEPZSRmkyqeKTrFiu5p4FwAF0x/sIPZAVi0J3yhEBco8fTxhj4IhwYmIisz4X4MMaeLy2YrGoZrOpnZ0ddbtdra+v69SpUwHlsfRNUkh+4UzqTqcTJjfvon5uAPF40jQNSzI3NzdVKpVUrVa1s7MT8hFA/X4fXjJKEeWEYYOZabfbgaZmDezW1pY2NjYCc3D9+vUQPrh//7729vb04MEDdbtdfe1rX1Oj0dCJEyfU6/V069Ytvfvuu2E9sTQ4cGNjYyN4G6Ds0dFRzc7OZtYcO8XuoR36iXYRRyUUAHrHQ+E5AAWehdKempoKO0i6zBDv8/gtTA9eQrPZVJIkWllZ0ZMnT7S9va2pqamQ/EkiIUoGkAfwLZfL4YAajBMJmUmSaHNzU0mSBPbiZSxxOIvi1CneKXoidjKQZa7hfim7WZfLijslPAPdwfyXDhOonaVg3qBz3EC7TkIv8Hy/3+UOcIhhPTgYnGhJcvD09HTQRw8fPtTS0pIWFxdD+AuwixyOjY2FXBjCZDELICmzggjZcmbw0aNHmpub071793Tr1i195jOfyRhKz7ugr3O5nObm5rS+vh7eT+gLnYL3y3xmm3L2679y5UoAwLdu3QrfS9I/+Af/QMViMZwSe+/ePX3961/X2tqaer2erl69qnv37oWj0iuVipaXl8OzYZt9DNI01cWLF/X06dOwWVG8myP9ivfurI/LXC6XC7sKNpvNML4xi+kyATOArUTGJyYmtLS0pFqtFram3tzc1PXr1/WpT31K8/Pzevz4cWA9SFKfn58PenBlZUULCws6f/68Wq2WPvjgA73++uvBZrRaLW1vb6vf72fCokfm6XO/kUI2PXtKOzVLrN6zvt2Tj+PfbpSdrpEUkq2mp6dDhrajMU+8IL7NGlwmCQKIRwvS9lUFXBNTkxgZ91pAX74Wl8KyID4nKQjDtrW1penp6TAJO51O2OTm4OAgHJsJQmTpDfVypcZv2AOWBULDQzkzXm4w8bphEcjc7Xa7ajQaQTgxvB6qkBQ2CWIjItB8s9nU7du3tbS0pBs3bmhkZETz8/Pa3NzU48ePtb+/r+np6bAb4cbGRiYJkP0O6Ds86YODg5AR614l4wHb4kqOceEewBdt8PAK6B+FuLe3p0ajEY5JxYBz4BHjz2RmYuFloYyo597eXtjHgZ3CDg4OwgoL5kqr1QoU6+TkpObn58O9vhvc7OxsCLWUy+UXbijycS7oB0/Ac3DghgYqmr8xtFL2SHNnAJy2d/nle56F14b3DrBHNzHPeAYyCAPW7/f1+PFjnTp1KhNmxOD78dnDEsWkga5ptVohMZm8FJbWYrzY8dL3BfDwCvIa1883A2KuMPfQAXEe1cOHD3XhwgV1u92Qr4KT5/1JH0mHKxvwZqVBojHXolcODg509+5d/fCHPwwrjGAb19bW9L3vfU9/5I/8EdVqNTWbTY2Pj+vChQu6e/euSqWS7t69GzYbazQaSpJEr7zySjhsrdFohD65deuWer1eOI0VYy9lc0Dm5+e1tbUVmJGdnR3Nzc1JUkgu5noPWzo4Yn4+fvxY/X4/MCswuXE+APKKjgGQkR9Vr9fDngW5XE4//OEPVSqVdPHixTBuV65cUbPZ1Oc//3nl83ndu3dPaZpqfn5ei4uLev3113Xv3j1tbW1JUpCzubk5VSoVraysqFqtanFx8blz9UNPSzk4GOyTH9PsTEqnQ+OOwPiCvElica+fSYvH5BMHxexxKK8HoINnuGLhGp6NkDogcMMDqvNYsSf1gMBdQTEBPWkQmn13dzfslJUkSciqBwi1Wq1AEZJsBn2H9w5yRUG4h+KeP3ve+17dngmPInU2hZUJ9BHAZWtrS+12W8ViMUw65ACFBHvTbDaVy+XCNrzu1eVyuZARTJxrfHw81NWpWmcpSqXSULqNfqZ/ULwoS08eQ6ERf0Q2Scacnp4Oe0Nsb2+H5UhOiYYJYnLqtCnJQb5BDIzXyMhIOKvAk2WTJAkGnrHkPsAax6cuLCyE/BOMhsvey1SYt55nJB2eNMg8RJ7pG4/vemgBneM5Np7g6e9l7DxpFQYRmcOb85Ck55BQfzzWuI7UAVDIPGDMXR+iQ5BJv9+T0gqFQmBcW62WfvzjH+v06dNh1Q59STY/zEe73Q6GGX0aOzsYNOqD4bxw4UKGsaUvHEBIh8vD19fXQ1IkfQdDxyobNlIjQRY9TRtnZ2f14MED7e7uhv0J6vW6Hjx4ENgX9mloNps6f/68FhYWMvlSbmtYSglgabVagVlzYFOtVsPZIuQnkGCJnfAwdNwH/f5gp1YcrFqtprNnz4YQJI6Ih688jMPzRkdH1Wg0wrNxstbW1vRzP/dzYezK5XIALfl8Xo1GQ3fu3NH09LSWl5fDTrgwjb1eL6yUWFxcDKzTwcFBYKeHlQ9ddojidqFGsTKwVNInqy8tQih9QFz5guIoJNphzIfF47jfDYUDDF/+wcTzieBKnvgig0UbnD7mnRh8V/IABpQ23jm7BcJaIHQ8j7rwPD9G1Xeg8rXI3McRpBj1crkc2uBLhCgYK56Hwjk4OFCz2QzLJzc3NzOJdkmShFAL3m2r1QpgAKpwZWUlxL9yuZzq9bq+973vhXADipVNg1BYTEjAwIkTJzJGGACDMiGplLEl34JJ6wmdUPCVSiXkhDg9naapVldXNTc3p9OnT6tarYY9MGiHGwgULPUBOLGssdFohBAOfQYISpJElUolJBtycAt9XKlUVKvV1Gq1tLe3F9Znk2iUpqkePXr0oun6sS3MXwwocwyFHxvjWPk6ne/GlwLg9fASBePsiYQ+96RDR4H6UZAv3s88453udcZhzTj+7u3wtiZJEsJSAHbqwL2tVkvr6+uan59XpVI5EnLyOYHMSUfzBzxvgmc/ffo0LP8tFgfbtddqtUyui4Msd8B85YA00Jebm5tBF0xMTOjMmTOam5sLrC7zGQOON4vT8/TpUzUaDaVpqlqtpkqlEk7tazQaIUTCeLnej0PQvqkSNsUZj4WFBa2vr2t9fV3b29u6fPlyADiAQM8j8cI4Ylvq9XoA7gB7xoBxRlYw2oxToVDQ9vZ2MNw/+MEPdObMGZ08eTKT07awsKDTp08rnx9sWPTqq68GADY9Pa1Go6Hp6WltbGxIGjDZJ06cyNiMSqWiH//4x3peeSEgKBaLGS+VAl3qXheo0b14R0agfPfWUeBJkgSqFGPkAozHB7oErWPg/V0oFyaNswQOWHyiOjPBhMELdmSNwgBweJY7yBAaCCW+uLgYVhlMTk6G5XQkkdDmZrOpTqeT2egGwXaF6YmFrBbI5XKBHXDKENpPOgwnEJ6g/9fW1jLgC4Gjf1iOCOKE7qvX6yH3AcSKYeR9GxsbwSjPz8+H/kaZooToR0AchhsQxfhzL22LtxoGZABSoDTJXeAzjD6skJ/6iOHgPW60PK7oWz6zw2C73c7s1cAYMifcE0aRsdrD8zmQMT84adheEi9L8fF2j1k6XKLnzKIbYvfEmZvxags3WPw/jGXwnBJkItY1/E29nFGkvu75ub6QDnMlMEbObni7PSwBU+LhklzucFfCbrery5cvh3wkwACJfcPmkjOm9EnMtORyOd2/fz+cJojRcufFnbqRkRE1m03dv38/7KdC39+7d087OztqNBqanZ3Vq6++GpKXNzc3w7NwmtBFa2trQV+Pj49rY2MjJEdub2/rwYMHunr1amZ8qbuzv5ICQHebwPyKk3Lps7m5Od29e1dzc3NaW1uTpKDTPKztjq3P506nE5gacuPiXANfXcKYAIzd4ajX6/q93/s9tVotfe5zn8swH8ilA4uZmRmlaaqnT5+qUqmEvvc5JA3yo9gBtVQqhVN3h5UP3YfAk2rcsyY5hcY6PQZIYPL6OnAGiYai8KCu8NiHLSMEjcUAhe8pblxc+InReWwQYwjI4H4MRYywJYU9CtxrQdj7/X44qyCXGyQmcpAQIIpYN8bSQxQYIvIvqBsKxUEYuQFJkoS6g3DpF5Y70v8TExMBzOCNjoyMhHPIifMziTgoxGWAyYLi4xAh0D6JkgAUYu0wF+4tMv5M1jgGi0LCiGIYfYz9HRh5SWGJE+3xvAP6zVe4kJPiQIzi8uihmF6vF6hagJYDYg95sEMjytrHBjAD3esMEQYM4PKyF6fhXafExsoNqCt55oqUzQLHkALeeJcbZD6DHpayOUpSVgZdkQ8DBg5OPDfJw6cxkEOGHPA6gOV9a2tr4cyNN998U7/927+dAf/k1lAHnDKcDNfBGDIPSRJmJCcJ3V0ul0NeF88g1+XkyZOamprSmTNnJA32Hnn06JF6vcEpfZcuXQohRJw5B4QYcR+zJ0+eBLaMkCL9SagBKt9X6jijw2ocB+GMEywktogx4v9Lly6p2+3q7t27Onv2rPb29sLz3Li7jSkWi2q325qbm9P29nYIuR4cHISTG1lCSj2QX2cRAErj4+N6+PChfvSjH+lTn/qUpqamMgfYwbI5qKE+CwsLIfcOPcIS73a7HVaflcvlkGz5vPKhIQM6wysCPedxZTqd7xwgMEkRSI9lISgoYjfADEJMffvA7+7uBtTsHc8EoJ7+DB8YDAuTysMkvja+1+uFbTM5sIeEMbKV+/1+iAEzcX27UacTobKcPqcOGHi/h+sQAgQtngDOWKB46C/QKslUKAM/h8JzKsj34DtWIrAFM4YR4AOAICHKDX+hUMicVhgndiILPDOfzwcDSrt8O2H3tAFmUMNxUqZ0yAIhy2R4O1ioVCra3NzMeKHuOfp7ySnhoCnyYkhYpN/c83UvGU+JXIR4jXKxWNTU1FQme/1lXmXg8VPXKxTXExR0hBtdAANjG4cKpeySZB8/riMhL47pOmDg/xiY8n8MGHysHQhSR+YgQICjc7e2toJs7+zshKS7NE31+PFjpWmqN954Q5KC3iEJF30JAKAv8O6p17D20PYTJ06EviJfbG5uLmzOBDBj9U+5XA5LbB8+fBiuX1xczGxDHnuzsBce8sFIYehgpDHWlUolOBl8R919bJ3hxGHiPdQhToKk/fv7+2G1xMmTJ3Xy5MkQDo11blx2d3d18uTJEMZoNBqSFFY4NZvNYIydOfd8OnTA/v7gjIGJiYmwORVhzRjgxPMGZ5YERQy/pLARHE44Cd7PKy8EBNBPkjJxKqgSOosQAqg1TQ83z3Gk7xPG6Svi5yhJ9+jxCECEHobo9/shica9RwQIRYJxB5l68qB0uD+2U4peN4xGu91WvV4PcXBAAgPBwOVyuXBADcit0WhoeXk50y4yzxlMCvF7ju2lLShDB14sPcLz7PcHWcy+DK9Wq6lWq2lsbEwLCwsBgDC53SMlIQYlw4ldgD6WzKCUfLvkSqUSjCTIHOXrSihJkgBGYDZIAPQcC5JZmVDtdju0kz5iIw7qTF4EzABsBXF86TAhiE2U3CNEsbCEy5NFpUNvcmRkJCSN7u3taXl5OeSLOAjBqyePodlsBqDU7/cDU1Sv1wOz42CB+sYU8MtU8G5cebuixaN3R8KBMH87deoMA7LKd1J2OaIzD274pewplm7AXGfxv7Oa6K+4nf4MT16OdRf70zPvXSfStjRNdeHCBb366qsqFAYHf62trWl+fl65XC54gV5HSRmWQTqUWS/5/GAZICsBxsbG9OTJk7AHAd49iY69Xk83b97UyMiI7ty5Ew7reu2118J22+h3AAksKw6bAwWvh68M8tUbeN0kBp47d04TExOBGYVxjJNSfbmqG1IS+HZ2dsLmZLxraWlJ3/ve93Tq1KnMuLksYPjJ1+p2u1peXtaNGzc0OjoaTnocHR3V8vJyoOad8aSN/I3NuXXrlp48eaIvf/nLQYdwHYVdYqkTsughAvIJNjc3lcvlwioM7oElf155ISDw9fZUEBSOAUEgOQXQlZ0PLn+70EJFeVyeiQdqBpVKh5nuLlAYYWhw6dAL8ckfKxUmIM/1CY4AMACuoMfHx8OZ9hhnYtK0a39/X6dOndLS0lLoj9XV1bAzHgYrn8+HTYGYHB77BNXhRVLvfr8f1sLzGZnLoM40TcOE73Q6Wl1d1eLioiYmJjLrbH1pUZzwhaCx3JDr6TPGDQEmTwLABBiYnp4OcUJfOumCD3jgPcgfE8bHk4Q82kB/DQOb/IDWSeiZm5tTq9VSrVYLdC0ArVwuh+Qu9yxcjgB5m5ub4YRGxgBPyMFOuVwOa6RpN+zV7u6utre3M8t2AVUsCfUQyctYAAQYbg8rSjpiiP0zwIIbYqfwHSDEbIGzbu6QENrB++ca6ehhSjwfYx/nMLjn7WwQz4pBB+dT5PP5sBoF9o46kZR8+fLlAAw/+9nP6oMPPtBbb72V2YXVdaJT1K5vHUAByjY3N3XmzJmwnBcWD9llFQ15RLVaTd/5znd07tw5fe5znwsncXookYLDE+chuIPoTKp7+K7/2BtEOlzWyJymztzjADJm5mh7uVzW5uZmJkdFOswfun37tqanp4+siAG0NhqNkLtVKpW0sLCg+fn5kPvQ7XZDiJjlxM58sZSUOo2NjWlra0s/+MEPdOHCBS0sLIR57k4CdoQ+ZKxd5tM0Vb1eD3s3AM7QJdSFhMdh5UOXHXocLPZSnI7z5S4IHD9chwLo9/uZQfaEPyYG3oIbKZSCe9lJcrilKMkoGBYMEkoIdOSKyJGbLz/yNmL0pIFyOnv2bBgM73C82Pv374d2AWhYXggtDGWZz+dDIh797BSgKz1ocZ9MHoqhntQfQw6DMj8/HzbH4fkAOvqNieB1cQqOkEM+n9fs7GxmpQMKZXx8XFtbW2HTjUqlEpJ7nj59GsAba/Hx3PAGYm+K+hI/hFWZmJgImzB5aATjmSSHu16urKyE5YaAmUJhcAhLrzc4JOrx48dhXTKHUnlCoxtxjj7FY4DJQk5RCjAZ9B9gzPsXGXYl3u121Ww2NTk5GSb7iybyx7l42M8NJ4ZEGhhOTwiLQX9M0fv88PmK/Pr6eH8/96N/9vb2VK/XM6t03JDCDjq7xLwGBMaAYZgRBsgAYufm5vSpT30qzDtyUXzvEl9Hn6appqen1ev1gscMmI7ZRZS/rxJwZ4i+p63oMeLmrlv29/cDA4dT9+lPf1qnTp3KjAV9xlh1Op0wx6TDMA7vpB7OfqHXuM+ZDTxrHJL79+9rc3NT8/PzeuWVV8Iz3aP2/wFy5ELgXKJXer2eXn31VT148CCMK/JFvZCrXG4QIq3VakqSwYZhT5480djYmN5//309fPgwHE5G+A/nzxMMee6NGze0v7+vt99+O8gTG8/t7OzowoULR/JXXFe4bazVajp37lxow/7+fmBWkadms/m8qfrhSYUIlBt/kD4erHQ4EX2SesiA+1CCKANP/uM+kkh4LwJOIdblE8DRPArWExmlQ1bCE0vi5ENHYt7pTlNDcQFCEBQGjbXBDjCIsSOELvA8HyGl7fQZ19AvvqTTfzxXAAVTr9fDhk94vq1WS6VSSdPT05IOVyRAk4PqiWn6uMLa9Ho9VSqVTAIorApJT7u7u6pUKhmmqN1uh819JicnVa1WwyTwRCaex71MKpgVp0DZkczzPhhXkDyKxj0DvJ4kScJOjGyegkH3EBTPbbfbYW002yEje4A5lClzAMbBn0lBkTJ+9APtgRpGwb9sBfkZVjynIAYEDvByuVwwjp7b4zkZ/qzYK3dFXCgMlolVq9WMV+5AheJjJx0yktTDWUjmsCfw8Vwpm9dUKAxOOwWcsIc9pVAYrDxyoNTr9XTy5Emtr6+HrXkrlYru3r0b+pJQITkprn/RM5LC/hseonVPFmYSXfvgwYMQ5qtUKiHhL01Tzc7OZsaTPvWNk3g/15CD5U4ewIK+ZB8abwPhjY2NDa2trWltbU3T09Oam5sLQNvfFzM31IeNoUhI7vUGGxr1er2wvS96A7mCVUqSwUmle3t76nQ6YadYmD1v2+bmpmZmZgIbybkRjNXKyopu3bqlt956K9QJfTc2NqanT59qa2sr5BNhPxxUMG6wmf1+P+x46Huw0PbnzUXpIxxuBG3pxt2NJD8YEqhhJpa/HAPvA49X7UtpQP8UbzgTgzg6CRwYI+qF980EdhTlht7pJDxkhIkJipLK5/Nhm0z3cPz57lFwHzsKbm5uhjMMXHFBFeONexa8TzDqR+KcJ1S5lwFAqdfrYe1vrVYLJzNubm7q7NmzmpqayiRE4m1jcNM0DRvjMGnYLSxN0zBhYWt8V0Dvez6j7O3thX23JycnA2XvkwEgEJ9wieFnjLgGJch5CR7qQobwRjhpkbh+Pp8PuzEy+Z2t4h2AJkICbEcM5el5NtTPPTPYAV+zHIc9AB6EapAntnV+GYt7bbQZo+jxf7Leh4XyYL+cfvb55x46z/LcASkbjkBXOC3Lfb6iBP1GkhYG3RkMB5j+vpg14HOA8sTERJAzZxakAfB49OhRYOGY/xcuXNDVq1d14cKFTPtio8v73Zvks1xukFx27ty5wHASWvSQW7lc1pMnT3T//n2tr6/rc5/7XKDN7927p6tXr+rTn/502DAHZqzf74f4edx26semSw7ivC+Y6/Sr2wCcAvTc2tpayI1y8CcdPUI7TQeHLrFXCJun8S5OL/QD63xOc+3BwYGWl5fDCg2cVhhZ9hlgTvvZCrSFPQemp6d1+fLlsGySsa5UKpk8K5d1+ttDY+Pj4yFnanFxMTglv/u7v6tTp07pzJkzgbV8XvnQfQgYHKfYh3n+vgwkRs3xRAX18rkv/3HQgABhUNxrcOGgY1AC3O/UsVPvKFxHkFzPYHl4BFSGh+qJZr6fAvegqNzoAwJgASgIHvXnWZ7ohocCQ0B7kiQJ3rH3jaTgofd6h4cWcVRmu93W4uKiCoVCSJYEBHgs0BkMYt0YPg83MGmgL+k/z9Nw4BgDHBgRkC0AFOGnrSgGNxIkLALGGCv6dmdnR+VyOUPnT09PB4bE68NYA1JJlCW5kvFBcZZKpQACYpl1WeYzj1sDmDyplLFgBQhjC1tB+OBlKw68pewhMZIy/eZz15kz1ycwfNDtyIbHlF15OuDiPZICCEW3kJvCsi2XfYymU9jIoMu4y21s5CWF5XPOZhI2Q4fQDlYgOLM6NzcX6oNjQH85sEKvkgdFvZ0FhZXzsKp7xPT//v6+6vV6WJWzv7+vd999N8PaJkmi7e3tjAPpYMgdBLxZP7k2dtIYQ9f31NmdNgy5gwl0ZByKpv0kSTInARa+cVmn08ms6fexxlOfnp4OYUzygvzwIEInk5OTqtfrKhQKqlarQXavXr2q9fV1/dqv/VpGh7ujh47iJw6b0Z/s40BooF6v69q1a5Kkt99+W/Pz8yH/4UV65EOXHfqg+qR2OshjQC4gkjJGJp6wsAkI8/Oe6SsWeLYr/Xq9HiguBss3o6HjfKAcuVIXFANCAf2C4BD7p04AAiZ6r9cLlDne9M7Ojur1evAkeS/sBmwCIMljeySoIfSsOhgZGcmsLPBDpYizkbyGAmXNO1t7cnDTrVu3dOfOHb399tvh/HD6jGeVSiW1Wq2wpJKMfQdBtF1SMLaNRiOTQc++AMViMeQaOIgoFosBubPyg1UA0O3QYmwIwuQqFovBix8ZGckkotJ/UHnQqiiXvb29sOoAcEpowNd1j4+Pq9FoqF6vh+2YCXngISBTAAtAAP977gztYoXF06dPtbOzo8XFRZ06dUqFQiEABWTnZSyxwedvcldQuIBlv8Y/G5ZE5ruGsspjfHw84ykydhwLi0FFBkh2ZXXOiRMntLGxoZ2dnUC7Mn9cx7nnKB3mOrjelLJr0Pf29sJZJt4nzDfPq6Bd/qxcLqeZmRnVajUtLS0F40pOA3Q4yWu+ayl69eHDh5qamgp6B6Ysfk+appqamtLly5fV7XaD9wm7gkHc3d3VrVu39MEHH+hXfuVXQkze7UbMttJmXxFAceOPbqb+ODGeAzUzM5PRQ3t7e5qbm1MulwsMp48ZxpvnY3c8H6Tf74cxB0SQcIz+Rc8y99HZGxsbgd3a3t5WsVhUrVYLYaIkGaxYeO+99/Taa6+FUAVsq4evS6VSOI4ZgOR6wPXN7Oyser3BapA7d+7oU5/6lC5cuBDkiu3qySMbOlef+40Oz5Jnm1yEG4El7oWCRThdUbuXxIDSCAAB6JdMbxK6iHlvb2+HPeJ5DpSyU0ruxTpVTezRjQMTjWfEp1CBTBFEqHxiihRHdBh5wA9UMxtX9Hq9zEl8ABgGlKQiBDcOa6AAifWjSN3rcLS/tLQUPiPU4Rn67XZb169f1+rqqt5+++0QFpAO13CzrJE2eqiC+BuGDUod+grKzWkuwi0seXRvgoRF3yJYOlyKCEuCXAJYUAyEIbyvoNx3dnYyG7qwPJItg2EqWPVSqVTCVsadTieAGxJyqtVqSJaMFTegzSctKy8c/WOICOuUy2VNT09rYWEhsBNjY2PBq4i3+H7Ziit66ZBtBMDPzs4eOaUOveNGheLeJQlTvV5Pjx8/Duv6JyYmwsmTjx49yjA63W5Xk5OTQemvr6+r2WxqbW1Ns7OzAcBCiT+vTXFYInY2fLz9xEL6gzkFM0G7pGz8He/09OnTunbtmpaWlsLcx0GQDvNd3Gumv9I01cbGhi5fvhxCUl4X9BtyXSwWderUqRCTJjF3bGwsrG9vNpt69913wzLh2DN3PRuHN5g3Pocw+rQll8uFkCBA4NSpU4Fl8PFBbz958kQXLlwIyyYdkCwvLwe7hJOB7JB87Bv4YJ/Qjbu7u5ldJFutlnK5nNbX1/Xmm2/qyZMnoW0skzx58qQ2NjZC8ub777+vfr+vt956KwOSABkOogmJuk5xUMBcefjwoW7duqUzZ87oT/7JPxkYD+wldvqfeadCf5kLt1NwKGrfRhal5z9UimfSWGg4FCOKHg8PQ8mE4T6vC14kyJSldUkyWHeJl0Zd41iMdzK0M98zWHFeAxMnFhYMkRsrsvzL5bLa7ba2trY0Nzd3JEThu3vh3TApO51OADdk/Dr6dhod4MKSJr8eWomtNukvABdgg3HkiFCMPP2dpmk4JAN2x09vc8ADq8BSnGq1Gjxj2pbL5cIOaXhtePPORlA/342RHSVhDu7fv6+5uTmdOHEiE17yxM80HWTtcw2U/PLycqgbyqLf74ddHfGoADI7OzsZcObygrwDNliGhUeBPMGWkHAUh2ImJiYyCv9lK7BesV6QsrkdExMT2traCoyI51dI2X0CuNepdt7hnjZH4m5ubiqfz4cttN2Io38A8xzBWyqVdO7cuRC2GVYwqDzHAR+fIc8AV2crPRRLG50id+eJwn4fJJ1yIJA7ax6WcmPfbDaD57u1tZXZtx/ZI//Gk8pHR0c1MzMTlgUzB9hBE90Qh2l4L0CINqIPa7VacDgBEy4XUnYlBDp8dnY2MBQOXjDk3W5Xq6urYTt45KTRaISNl2B9aff29nZwuMbGxnTnzp2whA8biA6q1Wqhje12Wz/zMz+jr371q+FUUsYYMAUbgs784IMP9IUvfCGTM0MbPEdKOnSsYdJjtp53dbtdfeYzn9HCwkKQFb8Ohw9Gclh54U4nniTjND6D5D8MZgwafGAxVjSg3+8HGgZlCN1MnJo4l2eyu0KhIzg6FoQNOwDa9qRFDD8gBK8TD504Ph6c5yUgRDxTUrgGZgEBwAsnwx9qrlarBQDlfQ0Y4pn0c5IkYTtkSSEcwph4PL/fPzyDAY8ThsAROuewj4+P68SJE+HozlarFQwsBpEx9MN42LBoY2MjLLtkr4Y0TcPaZbZ5pm1s2FStVgPiJWwyNzcX9lEgr4H4vwM+H0vuT9NBstDq6qquXr2qu3fvBi8R44qnT4b0zZs3QwyfkAzgypE14GdlZSUcn+xUc0xjMx7OYiGbhHWkgccPA3Dq1Kmwqxl0I3Wgji9C9h/34gAgZtg8OVA6BFDIKvoEg+tJp/QV70iSwTKwU6dO6ZVXXgn9Njc3p62trbBfCuAO2SgWi2o2m3r06JFyuVw4gdSdFzf03OtxbjfazhLQRs+Yjz1lp4MxUMOoXfQth9gwH1wnSIcHnAGwecf6+rrm5uYy28Q7eOAZDt7GxsZC7Bm9PTIyonq9rsePH6tQKGhxcTHsrRCPOzoYfcfcHRkZ0fT0tK5duxa2aHZmlvZKCvqNvod99VVOzMV33nknLBlmFVGxWAzOpx8IBbuE/q9Wq9re3tatW7f027/923r//feDzqMfYQ1xCK5du6ZcLhcoe4DWxMREZlw6nY7ee+89feMb39Dc3FxmOSGyxSoK36bcHeHV1dXQLy6PknTu3DmdOnUqw9gjL9JhUrMn0cblhQwBRtMNCd6aV4g4tSd4uNdEwRD7Zg14gO4pcJ832KligILHd4kf8RkUlOcm0Eme7OYTmTr7BOJz3s13CGU8AVDgrAbAg+RaNsbwZSqcQY6iYjJAGWMYQPYYH0IQUHyFQiFcj9EBxYNQoeP4fnJyMlD73lZADtcxHhhB9lWAhkc2WDXA8kL633NIPNTjoRiSV5En6gLl3+/3Q14G4aU0TbW2tqaJiQmtrKzoyZMn2t7e1sHBQVhWWavVtL29HdiN999/X51OR2tra4FWy+VyOnPmjGZnZ7W9vZ15J33T6/XCRCcHg1CJ5wwgf75sjLlBroOvxMFryecPd0kEZHCvpAxl+DIVDCdzJzaMJF5Jh/vxIx/Iuusb10VSdoMWlKAn2/Fu9szHMPj85n3tdlunT5/Ww4cPwzxBXt3481mcsOYhA4oftObfxYyHe9T5fF5nz54NjBLfowtOnDihH//4xzpz5kxwmriGfmSPDerW7/e1vb0dNiPCqXFw4uwE9wHCfDxhczCuZMMPa0/cR4XCYEnl9va2Ll68qOvXr4e9AdBT0mFISDoEYG5X0PWss7927Zq++MUv6uTJkyoWi2o0GsEJg8UmuZrkP56zt7cXVmE9fvxYt2/fDrkAp06dkiT96Ec/CnH4fr+v3/3d3w1bOI+NjYWlgadOndIbb7yh73znO0Hnj42N6cyZM3r48KFu3rypP/fn/lwmt80TPWkj/YGsERYl4RHHj74l5w3ADNPhcxAW/nnlhYAAA8WE8pUBNATF5Vvn+sAhWKB58gaYXDQYytgnGkiUeJ4bQi/j4+Mh4Y5GoyR4LxObwcfjdy879jRQXMSvoMEdKEkKiW54KzwX9mNlZSUI6dTUlDY3N1Wr1TQ7O6taraaZmRlJClQ8/YyRJ/6M4PgJlE7TYzjoJyhqX0PP2uu5uTlNTEwEZgDvmAQXqEAML3QjR/Rub29rZWVF586dC0f94sH3+4MdKJ8+fapSqaTJyclwxgGTO1bou7u7evz4cfBa2u12yLrH04e6RakAEp8+fRpADYqGY5z39/d169atANL29/d148aNEJ5YX18PsvPaa69pZWVFd+/eDePHWHp4ZWNjQ6VSKSSHOYPFdsX0HSCBJWYABdo9MjKi7e1t1ev1zH4GeG6SwljQfy9rcYPnzCL7WUiHx5U7/R0bUDfObiyRKT8DA1DX6/W0vLys6enpYHB5Fs9ZWFjQ1NRUZhmw6zjXO4BIp7UBsx4DlhSY0LieTvnyNzoUhoC5y3WEX8i3wPFwOp4+pv5k0HPqKstYCb+5EXf9HSdkw4r1er3AGHiuEUskfbwdYNDPnHWys7Ojmzdvhk2YfDUJ74tDCM6m0F8s4XzllVe0vb2td999V7lcThcuXNCtW7fC8zudjprNpr72ta8FRwpmAJaR/sKGdDodraysaHV1Ve+++25YfuoAJ01TXbt2LSSdnjx5UpcvX9a7774bHDlCgru7uzp79mxgfOOVDNg3Dj/ycBQHFbG3DACB8CU6Cr3H0lJn+HG0nlc+dJUBg+LeMYrS9253z5l4uwsldLpTYmSoOopFWJmEKEGMNlRfnDhI2AH6Gq+UJMU4A5y6+bKcmM5zsODUJPXxxEQMFOEEhLZSqWhtbS0jwCMjI9ra2tLi4mImKc5pZwS0Xq+HuBPhAPoPWhmU6/R17L3iaaPgCAlwjOnBwWADEnbTIl7nqxbYqIi/ybifmpoKdaPvofM8C5yJVygUAn3f7/e1tbWVocxQgkzg3d3dsMsjE5I25vP5sCUwoRrWJj958iTQmmwjLQ1OaCPUQVIkO0jWajXdvHkzeCmwFryXXA5JOnXqVGB5YCtIMALcAWKI8SZJEiYxtGmtVlM+nw/Z8bVaLSQSMq5pmobPXsbCvILxQAG6TmEeuXFjvkrZHe4cVMYGDWaKpNRKpaJms6mLFy8e8Tg9TOG5Rg7MvZ7enliR43w4G0AOE9c7cB/WR8MYBnQVOgn9Uq1WtbKyoldeeeXILqyuY2EaHz9+HJYtPi8fxXWc9zdLg1utVvghOTqXy2lxcTFzXgiFOnuott1uB2BPnB89Tb3c9jAeSZIEj5/xaLVaajabunfvnra3t0M4cHd3V+fPn1c+n9cHH3wQ2BL6MXYqsSl8Tx0ODg701a9+Va1WKxy05DYCmcPmdTod/ezP/mzYsdDBP+8cHx/XzZs3lc/n9af/9J9WtVoNoQzfrXViYkL37t3TwcFgh0V06P7+vu7evatcLheWJGMzqtVqsCvoV2fqnYEZVj7yaYc+IRBQJhTGxtEMncxk8ZAAzykWi2GpF944SJxGujJwdOiKgqVxJMzRcBdmJq8rD0fojqz4LEao1CNeiUDeAs/pdDphN69cLhdiv1Bb8/PzWllZCWyFTy5HyOQ4dDodLS8vhxAE5x8wSV3AY7CAZ41yYjMiEqjYdREQwMSgbZLCSoM0TUOIgH6v1WpaXFw8FCjzrJaXlzU7O6tyuRzoOA4AYbc/qDoMArkWLCFsNBphMjtihi4j4clPQkRhshkTY4gnLx3GMVl9sLCwEDaPQr7wFmgXAK3T6YRJx+eEZZwhgvrHCOKdcdiSdLjUyXff4x2A1VgBvWyFMaOgA5B3QkCERDw27zogDiMCDHAUSEiEcfA5jAMDre1hQ9dJBweHJ/p5yAxDwRg7u4A+pE5853tySNnlh34tfw/78b4DOPGsM2fO6MaNG3r11VePzHXeC/vW7/dVr9eDHgFMOwjxMoyhkQYhyNXVVfV6Pc3MzISjd9EjHn7lN84hP4AXHEVJgSHwELODxZMnT+pzn/ucRkZG9MEHH4SzA+r1etiAjXqjF9fW1vTFL35RExMTASz4OMdjw/duvPf29vT48eMMUPBEUh+jfH6wnfv58+f1O7/zOyEPAN2LPcRB29vb0/Xr13XhwoXA4uTzh2f6IH/02fz8vGq1WmjP3t6eTpw4ERw19PHS0lLIxWKcAcqwSs8rH4kh8MLDEToMFxV1esvpp9iQE6PGCCGAjgbxZvGmGAC8CJ80CDXG2tkDlC4hA6clh/3E7cdL5LnunaBYYBDw6BAmDBbJerOzs1paWtKDBw/Ce4h1eZIiyqTVaqnf7x9JrnOGA/oLw0O/MA6lUinQj+z7jaHCMMK8eIYr3gj97e/GeBOLZNzwgKanp3X69OkQLyfcwOYlfEbylieNkkRH+Mf3ofDlWIwh+zm4ked+9lzwbF5yDFCuMzMzWl5eVqPR0NbWVlBsKHX6A8NDWGJpaUmlUimwDA5SeR9hI94Hg8I6cJaiUV8YJGTWQbSDnpepOM0P+JSyu9ZJCgwSRtu9df52pwTmZHd3Nxw9u7y8HMZCOjT2TuHzburC9cguc4Y5FQMRBwBeYhDDUtIY0LmxjH+jI9M01dOnT0MSsxsegNDS0pK+//3vB4BPLgZ9BgAtFotaW1vLyBdzxN8d0/LUB73T7/e1sLCgmZkZvfHGG2FDNc9Zip8Th0XQm+gF2tfr9bS4uBhWjNGfs7OzeuWVV3T+/HmtrKzowYMHarVaunPnTmYbdbdJGPmDgwPdvn1by8vLWl9fD9vdozuYW9KhA8nybJwQd4y4l/6XDkMs9MPP//zPq9lshqOrGTPCh7BHFJhDZ4pxspNksDy72WyG5ZWcETE5Oan19fXAFE1OTgbnkfcQSod94Dj7lZWVYdN00A/P/UaH9DaN9kYhMMRnNjY2wvUu3B5CcJqd6+gwN9ZkxWNQyY50hO3sADFbBwZQgG7EaQtKIqZ93BjGAwfQkA5PQ3MKyuO+GNc4oQw2YWpqSvl8PiTlEOdk4mOYkyQJm1J4siS0O4M+OTkZnsHE7fV6wZiyThnjxTIc8g88nIHwYlxdQQJO6DfYAsaHBEoyeFn6ww5ZnBHgbAurSVDMKFv6Dg+ERBnkD4qd/BVkBWM6OTkZ+gFZIkzSarWCAQFkLCwsqNPpqFQq6eLFiwGUHRwchCOLPVmUOmK4vR28h9yJNE0zcVIQPYciUT9ktFqthhwKScHjHWaEXrbiwE/Kxt7X19f1+PFjXb58OXzvipt73ZuTFE4gdTbRHQtAXcxgxiFCp/1ZguvhSenQO3Qv0usiKTBGAE6Kg3R++1yInZu7d++qWq2GZWyut+ibSqWi9fV1TUxMZI6k51n7+4MDxr7//e9ramoq5Hr1eofLz3wsvB20tdfr6datW3rllVeCHvKjfWlL3AdeV2cOmBv1ej30HfF0PGkMYLFY1MrKir797W+r1WppaWkphIVjVoY2e1+trq5qYWFBy8vLYQki9sVz33z3SMa32WyGJGB/j9sBSQE49no9/fRP/7TeffddLS8vh0TJTqcTfjzE64DXD8MjXEC/ARZgQqjz1tZWWDbNSjZ2kywUCmE1CToHpzOWSy8fKWQQZ6o60o2Tv+gw6A6EBGoNBcx10PR0khsE97rc+6LjqJsjeRgBj6HHyY0IIIoppsihuPDgMHIxHYcwxHQ9hhaAgDHzEEO1WtXq6mo49Mi95GJxsGMfGa3VajW8m3g/iBYBo18ciJG74LtdUWfqG09ohB6Bhc7lub4pB3sINJtNzc/Ph70Gtre39eTJk5DDQazcKcx8frDHAZMT5cWGP+Qh4OmMj4+HsAYMD5OYvoPBaLfbWlhYCMlP/X4/HAUtDVZWnD9/XvV6PfQdrMTc3JwWFhbCu3xpKmCv2+2GbHXyB3wPAZC6MxwwIYwRgMNlGFkdGxsLy8PoHwzTy1hicO3F2bbNzU09fPhQs7OzIbmPee4hFVgr5oLPyTjEgt7wHCb/HorWjSGgzxm3mNlgLsYeJHV1b086pOAZQ0/QHlYAMr5xmesugMuZM2d0+/ZtnTt3LmyI43WUFEJvly5dyqwEcEPqxpRnoAfv37+vK1eu6NSpU+G0Uu73trvH7d85AOR7T+JDDtbW1kI+GPkRMAHuhCJTPAt94DsJsnoKcL68vBxCylzP8/hxYNfrDQ4+m5ubC7sLIhvOVnMfuvTu3bsaHR3VpUuXMiEwcifQK4Q7kDGcEfLgCHlOTU1pfn5eW1tbYXfE7e3tDKhwZ4rnzs3NqVKp6MGDB3rttdfC/MFZel55ISBwwxcLPd8zSXwiMtiuCBA26RAZkwTnqJ/vMHQxavVYPf9TNyYpf/v9TFAPXTCwKBgUNNeiBBjQYUAARe4eBD8YYI4rZW3s7u6upqende/evbBmFG8UAaad5XI5s9Up75YOaS7ucar14OBAW1tbga7udruq1+shpsQ1HvejfwBU1BWvnv7xhMNSqRSoyYODA21vb6tWq4V+SZJEMzMzYUkOfcAmS+x1kCRJ2FkOj5kljLlcLhhfxs1BJQcuAVL6/X6Ip+7v74e9BwiVcKwwbBTMhR9V6p4bwA6ZzOfzIR+EfkqSJAAOlv/4c8hzGBsbCysvCNnAvPEs5IY+8rnzMhZnmqRDQ+Rev6Sw+Q0hNmQTintiYiKT3My885iuM3awL/5OKbufv3Q0x4E8Au5zzz5eWkf73EMlWTXWW/43c40yLGyKbsT4u26TBjr3xIkTunr1qi5duhToYvoEw7exsaGxsbGQUChll2ryTPrU8xT6/b7u3bsX5hUbNDlL6owq73bdRFsIDUiHu5Ay/4vFwQFApVJJKysrunnzZpjX3g/oes5iYa8VdmAFaHlCKCt0+J+Eu0qlonw+H8A6+6XwPurmiaKuY9FjfN9sNgPr63YnTdOMg0OBqSwWi9ra2gr6AyBBuInNljgwCd3IqiSOgWeuYLMKhUJgXFiJcnBw8MKNiT50p0KEBwFEkEFYvJzPESIXNJ+ICAMDTQcADhAwV8AIIdeDjmLjHIc4vO6+9C5G5u45xJPQDQPGwT1p6uWgAHCRpqkmJibUbDaDIJJMMjMzo0ePHgUvgHiaCxKDRygBQ5zPH256Qz/kcrnwToBat9vVzMxMiFH7ODqz4CENYmjNZjMc8MIkrlarwdslJsWkWllZySTOQMlVq1WdP39e1Wo144VIyrRNUqDImcSMGWAJz5uJ7zkb9C3jC/pmuVG/3w9xy7W1tcBeTE1NqdPphHgcNJ+HbQBtyAOUvqQQHnGFzhpgp7h9i1OWmcIk8a5Go5HZWtdDTqz2eFlLzG44q8V8ZedKlDIsCns/IPvu5bthcjrX56fnY0iHBpk56/Q/dUPu2LPA57wbwphtZOdASUd0h7OlDo68Tq5HaasDCOYQBfYM5o4t2JnPpVJJd+/e1dmzZ4OD5Dojrj8AnDrs7Oxoe3tbn/70pwOtjcNH4XnOTtAm+sGvz+VympqaUrPZ1MTEhM6dO6fTp09rf39f77//vjY3N4/0T7lc1htvvKEzZ87oW9/6VmbzN4ASMoZDRpv4PpfLhWS7u3fv6syZM1pYWAgHmQFcMPCnTp0Ku1Z6m2Eh6/W6Tp8+rZWVFV2+fFm1Wk3379/X+Pi4XnnlFUkDcNlut4Nxp2Br6BvkzIEgv2EWAMqPHj3SmTNndPHixUzOysjISNisan5+PuRgOKAhn+B55YWAgKVUnrnvxgoEitIChXimfpxcQvY4FXOFyKSHUmYgmGQsy+J+vFA246HhICKEAmXOvQ4sEJbYYLoAOw2GEDoLAGXjSXnuYSOM0OasBy6VSqrVagEBxjHNRqMRjAcK0uNN/L+/vx+WA/pyy1qtpoWFhQwD4ooJRYmhceqdVQFPnjwJmf7lcjkcGjIxMRHqwD7/rGvGGzl37pwuXLigpaWlsAsc3gfXkuOAwSOxDNljq+dyuRxiaCwRJL4PciZBz4ERiH5iYkLtdludTifsUEhCU6fT0cbGhhYWFsLWpZ7xTP24H5BHkpIrwL29w2OnnR2o1WpheSQnX9JG4pWEUegfj+Hu7e298FCSj3NxcOVJqQ7cd3d3w/zHm2QlCudfxF4iBUMnHd3shxwjj9mikzzR0MEx+UgAktgz5zkexuF/5N8dD/eWqaP/5l0OvgGDyICzB27EpcEOdQ8ePAj97DvReWiBODLzxEME1PHg4CAsg83lcuGALwfAtM3DAOisWIeRX/bee+/pypUrIcntjTfeUC6XCxn2W1tbWl9fz6wEIZfg4sWL+rmf+zmdOXNGW1tbeu+99zJnxsRsB7+73a5WVlb0/6fuz54cv6/zfvwB0PuCpYEGGr13T89GcqjhIoqULMmUHNux7HJSlbKdK1elklT+h/wnuUylfJNKJZVKpfyVJcsqm6QkituQnJmemZ5e0QAajaUB9IJGA/hdIK+DA3A49C+58XyqpmamG8vn817Oec5znnPea2trqlarOjo60srKivVSuX//vk5PT7W1taXZ2Vlls1mtrq4qn88rHA6r0+no8PBQ8XjcgAIMZrPZ1Jdffml9XRDwdToda499eXlpp5eSVuRshdPTU8ViMasW4OhiDoLDLl1dXRlASqfTdh5CLpeze9ze3lYoFDJRv++yOT4+rlKppHQ6betqkBHz1zc2JmKR4fBB9Bg8n4cGIJB39xEOiwT0ivPGiPJaPp9N6kWFsAhE6iDnqakpy9H4vgiI43zdpc+ZsWg9DY1T5JlAXizuUChkh2wAjjxqx1lyaAqnbVEqyHOSy6lUKn3jhaMkF4Taud3utjxut9uWG+PQp7OzM1PHo24/OztTLpezCN0LKlmUzCvgiu6Cp6enymQyVsefz+cldXPvc3NzRv0NDQ3ZCWhc4+PjunHjht544w3FYjETslBe6sEVdBvjLvXaQJM3PD8/t3azFxcXBhYAP4hZJZmehbE9Ojrqa7k6KDz1hy/5JkKDESjPR3qBumne69cnz0jfcKK0SCRiDAprH6PL+pVkTYx8uRAixBe1DwHP6dkhnDiGC0Ele4lAgfzt16VP/L7zTt2zjV5R7wV3/v1Sf3l1IBDo024QzbGHANM+9dZqtfrq6FmXgD7vRP3FdwyyAzT68UzD4Ge0220tLi7q/v37Zmu9w67X68rn81pcXDT7kclkzOlIskOe2u229vf3Va/XraqJqppKpWJltj7IGby3drttjjCfz2tzc1OHh4fa3d3V0dGRhoaGdOPGDa2treno6EiFQkGSrM0v8z4y0j118nd+53e0vLzcJ4Zkr3qA5sEZvxseHla5XNb6+rpqtZqOjo40MzOjbDar5eVlZbNZ3bt3T6lUStvb24pGo8pkMjo4OLCA4+WXX9bjx4+VSqX6gjpJZgfW19et9wEiQmw0exs70Wq17AAtbGOn020lT2oBgDM5Oal6vW7iSoIY0gaSjKHl86vVqh3ORHWVtyXfdD0XEPi8NIaMPASDQimUp/qDwaAtKCh2Nj8TRl4WY8qGYWJxDAwaA+376+P0iSzYKESJMAtsFByv3+y83lOUUs8x8WwsEE9re0YBVmF0dFRLS0v2vCwuXytfr9fthL1yuax6va5cLmfPfXl5aQ07cDAAEsroEAoBXnyeDjWrZwWg6HwOkQqHUqmkbDar3d1dZTKZvsNlJCmRSGhmZsYOIwFAQKPx+fPz87p+/XpfRzgv8kTt6tErG903jvKpKEAUUQ25urOzM8ViMcsj8vyMy/z8vI6OjsyIMIesJdbNyclJH+CjPJQ5xYHgkPx5Ahh/1iP3SIMRRKGSTGtRr9f7TpnDmAIgGo2GCYJKpZIB71gs9kIfbjToeHEeUo+R87Q96yUcDvexCj6iZc8TVfJ+WDwfkftonM/wkSWAwjsZ3++ez/HPAajBSRIwYR/993oQw//9eh8UPAaDQWuZC9tXq9U0MzNjr2F9Hh8f28E8Ozs7ZkdGR0eVzWZVq9XsdL1sNqt6va5YLGYHlzWbTWuHy7HiHJBTKBQsCPFBE/YPUE9qLpvN6tGjRzo4ONDJyYnZ006no5s3b2plZUVTU1PKZDJ2HgBMIJH2xsaG3njjDS0sLBibxmdQTcVe8yw0c8Jn+lRBMNjtB3N4eNh3Cmqj0dDCwoIODw+NhSSoqtVqBsJZq/yMNdZoNJRMJvXkyRO1291a/6OjIwOy7HWfRg2Hw5b/5/wEdFisS4CB1ANs2K3x8XHzH4ANbF8ikVCxWFS5XDbfyTjh954FSrmeCwhwMJ6mZzJYHHRKwnBBdfJ7HpAN4icP4RcGgGg8GAwaheKFiWwwTx/iQL0AcHJy0nLC/qhgf3mjgtp9c3NTR0dHNvAYpVAopOXlZY2Pj6tQKGh9fV2lUsm+n+fiGUdGRrS/v6/j42OjonGenU63m93u7m4fxcaGJor0rTNxOD7XJMkoo3A4bJ38yMNKMuEaGwJFPI45n8/r4ODAjn2l8yDRAwIvcou5XE4TExOanZ01bUc0GtXy8rKWlpa0vLzcV03gx9znrxh7FjTsBRsP8AUCJ2qgxIYowSuN2XCc/BYKhUwYhu4BgOvXMV3BOMrYRx6Ap5GRERN3AhTPzs7suwBt/uha2Ar0MVRrEGVALYdC3dark5OTNheJREKTk5OWTiGN9iK3LsZIs0e8bsWDo2cBMZyud97e0T5Ln+DZgsHom6h+EAiwHwEnVAB5yt47Gx8ETU9PGxP1xRdfKJ/P27r1aYyVlRW7z2vXrvX11+e13Pvo6Kjy+bw++eQTW3MzMzP2PZ1OR5lMRjs7O5qenlatVlOxWLSUQafTPep4YWFBFxcXpmBnPvyzSb2S0EQiYaLIo6Mj++5Wq2VAlaCgXq8rm83qiy++MGCCc8cZJRIJAwJHR0fa3d3V9PS0lRlykujS0pLu3r1rjIAHAn4dES17RoC9KvXSs4MpoUajoWKxqDt37qjT6ejatWu2X0dHR3V4eKhQKKSZmRlFIhF9/PHHX0lhwOjG43G7r6OjI52cnGhsbMwO1pqYmNDl5WXfiY6NRkNLS0tmZ3DuRPE8M899fn6uw8NDnZ+fa35+XlK/oJuSSMbEl/L7hmz+6HXG4uuuf5So0Df38WINFq1XZkrqc/4+38a/vZgCR0mEyEIn1+zFXORIYCsYEKgaNimHSTCRLHryX6RBuBfuO5/Pa3t720rLfNVBIBCwev+rqytlMpk+5TgGHMqMkwCJfgfPCieXlkwmFQgElM1mjf6HGsIgeUDko0oWktRrqVur1foMWLvdVi6X0/7+vk5OTvTee++Zqr5Wq1ljDKnLhExPT5vuAEDRbDYNMFASOTs7q8vLSy0uLioWiykajRqV5Wl/DD+CT6J8onZJfeJNqH02Q7lcVrVatc2DIUMdzBqSugB2fHxcMzMzRnsyP2hQRkZGtLq6qkAgoP39fVsPrMNwOGxAEKPGGgd88j2lUslaN4P6mRvEXYiVADr0JgBEEIWOjY0pFovZWuH8DuhqOrO9iBcAACcPa+OjbQwhAEjqdZz0EY2Pjr3z9iyDLzkGoELhA+K5Bw8GPPvQaDTMqPveKgQ7rGm0IMlk0u797OxM29vbJib2OgCABgDx8ePHlhLDEWMnjo6OlM/nlcvlFI1GLQ1JT/yLiwvt7e0pGAxaDpz+B3w+zq5Wq2lkZMTSkLB00WjUuofyvePj41aSC7t6cHCgw8NDZTIZFQoF/fKXv1ShUNDh4aG1MvbarNHRUaVSKS0tLSkWi5nNQ1zrhaKRSETXrl3T0tKSgXipX4xITh62abBsEzvuWSb8zt7eno6Pj5XP53V6eqrj42OzEZIsB18ul411jMViWllZ0c7OjqLRqPmC2dlZCzxmZmYUDof15MkTS1eHQiHt7u4aS0iam8PLvE6E/icPHz5ULpfTu+++q+Hh4T6/wx4ABObzeTUaDS0uLqperxsLQKXB8PCwpqamjEHw/vby8lLFYvG5WqTnAgJP9THZPvIjNz42Nqbp6Wlb8J7a5GdseE/j+YY7fDaTSPQOekaw2Ol0LCr3dDqficAM50NUhtjGRwRewMPxtPzBIfB9OB/yxETSLFQ0AgAC6ChaBRcKBRtPoutQKGQ9Bvb29mzTgDRhWRgHnKgHMfRHgMLyFBppkK2tLW1tbVluj1w6i49OhhzYg2MCZcNE1Ot1zc/Pa3V11Sgsmh0x1gA/qXesMQ6S5yGyJxfoVc6+eyCMCGuCZh2MCcpbUPzo6KgikYhtYLQSQ0NDVpd8dXVlwshKpWIgZn5+XiMjI9YEhnnGkWBkeaaxsTGdnp5a62OOc/YCVtgIANJgrTDgplgs9qVWyAMybsFg0A6KehEvX0rpjTZjBN0uyYwqtsWze54ZZA8T7QxGkf47PA0v9XQDfj9K6gMsiDj9nuM1vJ65hMmDOfACZl4HsMFG8P2PHj2y1JmP4jqdrjjtyy+/VLVaVb1e18LCgulx9vb2VK1WTXQ5OTmppaUlnZycqFqtWlkd1DRrjb85CfT8/NyO7ZV6ZYCABzQ4kUhEH3zwgXZ2duyY8UEmkFRxNBpVKpXSwsKCHYxGaoLU28zMjEXSsVjMqpD8PHk2GZaS/ec1aD7N47UiUlebcHBwoFAopI2NDV1eXioWi6nV6p55MDc3p2q1quXlZc3Pz5tNmZyc1M2bNy29gq2iP8bl5aW+973vGatL0EGN//j4uGKxmLGgsDYw2ayp8fFx5fN5HR8fa3t7285fwMdJ0tzcnNnz0dFR5XI5Y7ZhqqmG4H6azaZKpZIFd/gzBJxfd32jqNA7W59784aPm/X5DJy738ReXOidAIODo/OlQ36hMpAepfOgnjkA2fpcJYBgaGjI0hvQSDh+DD6RGAyDjyJ4ViaTBcki4fmJhOlMiDCMBUcvAhYfTg6gwvj5ceBZPBqmyoEGRj4CAowAqohaoemDwe656vF4XKlUyp6TNqh8F8wMil9OSPQHDZGH9KIbQBIb2a8fKD/YGMYU0cza2ppF7syxN2LBYNBq1YmKYIxQ9VKhIfVOpATgIPaEsqODmafzPZr3rAuom/sA0fv1w3fBZkxNTdlawglSiUKKhz3E3ru8vLSKlP39/a9Q4y/KNWgLBh2fT7dhFwBjvMY7Va/tkfQVG0JFAcAO58FrBxk0qXdADXvP96TwIloEyt6p0yEOVvLo6MhEp4MpA685IL05NzfXF6Bwb9TYX1xc2AFgoVBIOzs7duYGUWej0T3M5+///u/NAZyenmpmZqaPjvaBBICf3DbjdnXVbYUM6I3FYiYeRtjrP4Pga319XfPz8xoeHlahUDDhMqxhIpEwoHfr1i2jz70ui3nFVngAiM3A+RJo+vlljvmc1dXVvuoqUsD0ipienjbB4OA6m5yc1MzMzFeAJHR9KpXS06dPzW7B2no2CrvO8/n0Ms8Zi8UUi8V0//59LS8vW4BKxUcikVAul7PUeCKR0OXlpZLJpA4PD40hwkZj32gKx1kynU5HxWJRH374oX70ox89c68+FxB4ah6KjsUNPe5Bg68q8Cp8nCSbg/cycD7f49XHAAMcOTQYm8aX6oHcASMgMVgIHDRRAc8xKCQEcDCZbBQocL4b58P3eiUyTp56fsQ7p6enduRwuVxWKpWytqsTExN2giAGE9EfkSLoD6NC7p0TtXy/glAoZJ9JpA0yl2SsAA0uxsbGVCwWVavV7EQxgAPU99zcnG0QT81SbYDR5L1Ee5KMFiU15Ol0ABq/g070zY2kXv8KgBfRFhuODUM0jqiv1WoZKPI9vzFwHMzC+vKAy+ebmRfSPbQ/vrq60uHhofVHkNQ3DpOTk9ZzAR0FGx6g6JkZzlTY29tTqVTSzMyMdnd3X9iUgVdOD7KE2AR+hlPyjlvqjxa9+M+nL30u3DeoIUIdZBT8+7AJ2AipV6KFQxoMiihBZa8iVPZAknsigOIMDyJd0kjk6T1w6HQ6pleam5tTOp1WNptVPp/X7OysZmZmTAGfTqd1+/Ztvf/++5K653VIskOavMoc2p57hikEoJKDZr2ur69rZ2fH0gJjY2NaWlqyNNfc3Fxfq93Ly0uVy2UT+8J6Qp3fuXPHgoJAIGA2CkfrWQHPGpCewfb4OfMX80c6gv/DYHrVPT9jTcE6eH/iU1bY1ng8rpOTE9VqNXO8+Enu3fsFnzolgMN27u7uan5+XhcXF6pWq9aAi/FFi4S9xLaHw2FVKhUdHBwYO0HfiE6no4ODAy0sLCiTyejBgwd688039dlnn+mjjz762r36jYCAQZJk9C2blgfyOTLqQ310zkQ2Gg1rJcviYfCYGEACCJqH9w7Gb0r+xkh7QQYRNI6y0+lYrt3n3jHQOByph1aj0agJ/UC3sBAe7PAcRIJs9EAgYDmbZrOpd955RwsLC4b0aBxEDuvk5MQWGM6SXBIIFweF42SBzc7O2oYfHh7WysqK1a3Ozc0Z+KhUKgoGgyoWi+YUARnNZtNa80KzDw8PKxaL2bixOT39yQXyJZLyRxL7Fs2MB0I51hTdvnzKBkOBc5Z6J1zybzYkf9i4HkiOjY1ZtUUgELD5mZ6etuf2zoHnoPMiaxch7fHxsT13oVDQq6++qvHxcWOCarWatR4OBAJGjxLtDQ8PK5PJWKQIRb6/v6/79+8rm82q3W7r5s2bpg5/ES/2iGcTfbTEGpNkjpaIltLhwWsQBHjg5gVmUo/m9wwE7/dz7aNSfud1Dh6EkOZgvUPH01cEw08OOR6PG3OFfWANAH6wIx6EtFot60lPZDwxMaF/8S/+hW7evKn/9J/+k1555RWtr69baiyfz9txwtlsti94QedyddVr9OWBAWJi9l0w2C2du337tvb29jQ0NKT19XXdunVLu7u71mOjWCwa+8YppkTZoVBI09PTVn0k9SrYKNeTZMDIM0inp6dmwy8vL3V0dGRNy7x6nkDOVzTBKHsQiM/wnQO9bsM7b+baMysEHfPz89re3lYqlbJzYhgv/BD2y4NC1hkBFKnYR48eaXR0VB988IHeffddSbImQ48ePTJ7t7KyorW1NWONzs/Pdf36dT1+/NhSwm+//bakrh/4X//rf+nLL7+0ardsNtu3pgev5wICRE3UwuMIJRlSxIFLspy5nyCoHiYdJOqrF3B8OHAGFRQHTTU1NWWolXpwnIHvbxAM9jpS+VwjTgqw0Wq1rAoA1sJHCTgZHFcgEFA8Hrc8HAAGxO2B0vLyslU7sOFgIKDxt7a2VCwWlUgkdH5+bj0ATk5OtLKyokAgYBs4mUwaOIlEIkZ3E31S+8piR2yCE0smkxaFlMtlDQ0NWX9/jJrUpflTqZSJZ5hDUgc4Vygx9A2dTn8Dq8HIzwsIMUSAATYhmgyilHg8blScVzoDkGBjPFOE0cXAwhYhKvR9MVg7UK6IyDhKFEoUh86a5kAZInwqYji9kSoHzjYPh8NKJpO6ceOGrSnuEZaBSLNSqWhvb097e3sql8uKRqNKJBLqdDovbB8CnKw3rjhDOk+ybsmRp9NpA5KeNfT0qw8AYPu8YJU1wppiHjHQ2BccBfbDOwXofQALgAMbgE2sVqtqNBpWKoq9Yb289tprVkWCHgCWi/XAZ/n0ZTqd1tzcnIrFosLhsMrlsj0XQcxPf/pTK9frdHoiW6/0R+PFyXi0DecPzCFUtD+NkKZeN2/e1MLCggKBrgj66OhIgUC3EiEej0vq6YYikYhGR0cVi8V07do1Y8qwGyMjI1bhg+gQB4mI0wd+zDn7ln3KfPjXkgYhn+8dOuuIuSYY8raA+fdrlgANe9tut/tONMWu+JQDdtWzXbAmrF9E3YVCQSsrK3r06JGVm56enioQCKhUKml0dFTJZFLFYlGvvfaaRkZGtL29rc8//1ypVMpAM6mYzc1N3b9/31pAU1Jaq9X6hJuD13MBwdTUlCm1UYRCx4HCfS6Exja8h98xKFBTRHEs2uHh7oEWxWLR8rd0g6tUKmZE2fQMMLlYH0X4vGwoFLLaezb19PS0SqWSOXrAAZ9LWRzRJM9M1M4fqRvVAlAwaDzb/Py8otGopqamlM1m9fTpU+Xzef3d3/2dZmZm9ODBAx0dHemVV16xjYIAKBgM6tq1a1pbW7NNipgFJM7ilmTCRK+raLe7jYwQGFH3C3CJxWL2WbALk5OTGh0d1ezsrB2XTJoE8R4b0gvuQOPMO2V6jC8dt3CuGHLy9jwHiJ3uaHQFY+6peoB+LJfLxrbAagxqW3zeDUrO03mdTkflclnT09NmvGnRzO8BnjwDhm9+fl6PHj0yUSn5/qurK6s8AHxdv35dq6urKhaLmpmZUT6fVyAQ0O3bt3V8fKxKpaJHjx7p/v37KpfLKhaLtr8ymYxRrC/i5Sl3/s9ehpGRetUIRIXeIHM9i/L36Uep1xmR/eDTPT5t4C9oZN6P4xgfH7c0Ht/XaDQUDoct2m+3u5U8rEU+7+qqW1e/urpqAlSiROwNlVGwIeVy2VhFjg+vVCqSulVQmUxG+Xxe/+W//BcNDw+rWCyqWCxqamrKSuGwBRcXF3rjjTe0srKioaEhE5nRtGt8fNyO1iVgSafTtt8qlYoWFhZ0cnJiqvX9/X3t7OyoXC6r1eoewYx9J4qlUonyWWytn2PfY9/PrQ8WJZkDhcEj6sd++O6Wfo35OWQN4fgBHay9/f19bWxsmP4J3+RLS6VeJQMp2tnZWYviqdzyaVJJxjrS1RTwR6qcg4jwEe12Wx9//LHm5+fN/qXTaRWLRdXrdX3/+983FnplZUU/+MEPdHJyotdff90Y1vfee0+/+c1vTGeCJuThw4fWf+LrrucCApq3sJFQXjOZk5OTfcYStEbtuD+ohrpWImSOvmRiGFTU9b7OHIUmkZtX1DP5RPx8PlE4tJWnkRG5kFssl8t2z2xS6F1y9hg1SmcAO+SAQfbU1aJo3drasiOAi8WiLWpy5jiR6elpE46wqebm5qx/tdTr/U9pGjkwNifgCEqcKLNcLls9Mah6ZmZGGxsbWlxc1PT0tDkwDDHj5IU+9Nr3ER6UmD9fwCNvfg81SU7PN+yBpfA0pRedEeHxnNCyBwcHVv0B6MAgVqtVu/daraY333xTR0dH2t/fl6Q+ajEY7Jb1zMzM2PzghJh/ynoSiYQZ/GAwqGQyqUqlounpaROKos9oNBrKZDI2X+R1Gbfj42MlEgnt7+9baRm9IFqtlh3oBAW8vLz8vO36T/by4j+pF+l54MbrvAH2rBK2g33/LNrzWVT/YMOrQZbBCwulfmEnGiRfNeVZTK83OT09tUO0vHaE0ruHDx9aEMU6pxppZ2fH7gE2MZfL6cGDB0qlUmo0Gnr8+LG2trasFS4RJfYQWt4Hal785p8Nuh7757srSrK9dnR0pGg0qo8//thAKgEa+xrB7MzMjBKJhDEanrFlXyKoRZ8AYPdMDs7Y23Zfkt5ut02Ex1wwdvgH0jA0U/LMIDYbZpfGbE+fPrXA1muDOLactfLaa6+pVqvp/v37Nn78jg6pBLCkNC4uLozZicViCoVCprugZHN+fl5bW1v63ve+p0AgYI2hCGqPj48VDoe1srJipaIEpFQdfPHFFzo6OrKSRJiqmZkZZTIZbW9va2pqSnfv3v3avfqNGgKcP2ILystwRqAtBh2DT9QN5YsB8GVFp6enpi8gUmWCcbKergEdesoFSgw0z0YfBCssRsrTmLRIJGJnA6CQvbq6UiQSUSwWU7PZVLFY1N7enuVx8/m8arWaOd92u21UMRqFZDJpecOdnR3Nzs5a325fXTA0NGQlNycnJ0aZcsSlz9X79AdGMp1OW/vPer2uTCZjp5ttb2/bOACOAoGA5ubmtLCwoNXVVRMW+gY4AD8oScAcgAiBIgBAUh9tj1EHWHQ6HaVSKY2MjFgvdSIKaD02Ps4cJoOo/uTkRMVi0cSC9Xpdh4eHSqVSCoW6PQlA69T5+5PBlpaW9Omnn+rBgwcGQJk71NxsPkSIbHKvB0GnQR04AIg2s5FIRIlEwmqBDw8PTfHNs2SzWROH3bp1qy9KPDs70+npqaWtLi8v++qaX9TLO2ueF4DuHXMgEDDQhWOHRfQiw2eJCv3vsRs+ZeUdP6lBLq+F4uewXkR0VLXwfoS+wWDQALUkpdNpLSwsaGpqSnNzcwqFQvr2t7+tnZ0dNZtNU4DTG8RX0Lz33nva29uzpmz/5t/8G8ViMX388cfKZrNKp9PGQkUiEZXLZc3MzOjWrVv6zne+o0wmYyAyEAhoe3tb3/rWtxQMBvvOmqGXgdQ7ZMs7t62tLV1cXOhnP/uZnj59akJjL4gLBLqaqTfeeENzc3MKh8PGtGFDeA8UO+lNPsfrybzWi7XPfbNOSJtR+QSDSFDB61qtltkQ2hbzp1wuWxr69PRUhUJBq6urOj8/tw6xrDEvYm+323rrrbf061//Wr/5zW/MxqDX8DbP2z6pV8XCOo7FYhbcESiMjIwon8+b77i6ulIqldLR0ZFyuZwCgYDu3bunW7du6ezsTA8ePNAHH3ygw8ND/cf/+B91fHyszc1NbWxs2Nr3wRJz/zw78lxAQCSMUQVlgYyZMIwjVLLPnzDhIEG/EdEmkM9iMZDXIscMuienDfVD7tfTNGxsPhOhHCCkVqsZom42m4rH4+bIksmk5YFgRtjogUDAjqt8+PChJicnlcvlLJqjnhw6hqZECwsLun//vtHzACFO44O+CwQCWl5e1sLCgiFo7pG8OdE98wI7cXnZ7cS3t7dnXQdZ7HRYJFcXj8d148YNq2xgzGBIvGAwEAhYH34cPnQuaRj/cxZgMBi0kkMMfSwWs/Frt9vWQGl6etqiD1JECIfYUCcnJ9YohXXpez0sLS0Zmpd6de97e3tqt9v6l//yX1pqwAuLAFmwLaVSySIMfoYjgMrNZDKW4oJd+va3v61AIGBtnSl1CoW6LWBbrZaePn2qx48fK5PJ6PDwULlczk5bzGQyKpVKfblAv/5xeKRvXrQLY4RzBswCNqVeiTOG0ztvQJnUc/REwN6R4Qx4rf+cwbI0DLUHtbyeCJ77pKxVkgmQ2+22ZmdnjZpfXFw03cja2lqfQLfdbmthYUGRSETDw8P69NNPVSgUtLOzY8//4MED7e/vKxAIWJe5sbExbW5u6u2339bLL7+szc1NYzOpmGE86vW6fv3rX2t8fFy3b9/W9evXdXx8bE4RLQR0/fDwsKV38/m8lbJVKhV9+eWXOjw8tOCr0WiY0JA9v7S0pJdeeklra2smyoUOJ4hkronSCcRoqIbNZz48g4w+CPaAuZqZmTF6HgAPaMtmsyqVSta6t1AomJ2gGgB7yVoDfJyenurOnTt9PUK4WEM/+MEPLLVHqbRnxPFtBK7+4hlYf16QzPXSSy+ZrUkmk/rud78rSYrFYjo+PjYf89d//demDyCI/J//839qd3dXp6enFsBLvZOEfVr86dOnX7tXnwsIyPuALC8vL03JODU1ZZE5Tg6RBTlkmsOEQiETYyC+ge5hkSD8GgQTg3+zAUBanpaGgWAAzs7ODMhgsNncICcMu6dofbkMUcLKyoqurq704MEDPX361NqOhsNhnZycWORDXm5/f1+VSkWLi4t688039cUXX+jg4MDybojREOXgpKampjQ/P29j7bv7VatVa77jRYkcbkSHP0ARTUWSyaSCwaBWV1e1uLhomxIxJGML5ebForAz5FFJv8C+eHU3eT1fCQL9+PDhQx0eHuro6EiSjJr3r2EjX11dWfpCkrEW3qkAphgzKH26rhFtz83NaW1tTVtbW8pkMhblQZOydprNpokKoV+9oFKSzQliQLQm3/nOdyRJn3zyiYGCi4uLvlMPM5mMnj59qnq9blUUjUZDf/u3f6urqyvTQyD4Ym2zrqAdX8SLttoYd08RS+pzyKenp1Yqx9iTnhkdHdXMzIytXT7bl6CxDnyPEGwKgAEwyFpi7yEi9PfEXE9MTJjW5/j4WAcHB4pEIhYMjI2N2T4GDEMRcx+xWEzf+ta3VK/X9eDBA33yySe6e/eunjx5opGRES0sLBiwoey22Wzqb/7mb/TWW2/pxz/+sf7mb/5GpVJJZ2dn2tjYMCOfy+U0NDSkiYkJ1et1pdNpxeNxLS4uKhAI9AVtOBwaeB0eHurzzz/XwcGB7XP2v9eHzc3NaWlpSTdu3FA6nbaqMy8U9o6R3+HkSWkQdAHAPDAnbUDqQOqldur1ujY3N/XkyRMdHx8bWIPJ5jRSQKLvR0E6yl/8Dt9QrVaVTqdVq9X6NA+sjd///d/X3/7t31rqcnR0tK9U1OvLYMQHr8E1z300m0395Cc/0cnJiX75y19qe3tbv/M7v2PM8cjIiDKZjO7fv69cLmdn4DC2f/VXf2WBGj6Atc1rAECwHs+6ngsI2ITDw70zC7z4DiEKdBCvBaGAvMLhsNHMRK9jY2OmImeD+kgYlAZIYIL8/3FCnkb3VAmbywOOYLBbm0qkSBUF5TycXU2OmYmbmJjQ8vKy5a739vYUj8f11ltv6cmTJyoWi2a8EX1IUqlUUiKR0MbGhon7iL6JlEdGRkydDK3OhNJBr1wuK5/Pa2hoSN/+9rd1eHiora0ty5UBSoaGurW+Y2NjSqVSunXrlqUoyG+xyXDEpEugIBkDolTEovQxYBPBDlEWBFBD0Hh+fq5CoaDd3V09fPhQpVJJhULBKFiiejbs6emp0X8+hy/1IjmMOkLSRqN7vCqCSN8g6ebNm/rWt76ls7MzbW5uql6vW8oII065KrQklQw+QsWYePUxURYd4prNpmZnZ9Vsds9096km0mgAN6nXEY520KFQSJubmzo/P+/TVZCbJoX2Il7kUj19ipH3Tps96dNjRJKkJTndjf0SCAR07dq1PiEYe58jddmXAAMPIKT+E1C5vKYFBy31Uh5U4UgyHRA5fSJlAD+OClr87t27xuh9/vnnmpub049//GPt7Owom83q8rJ74A1HYk9NTenTTz/VzMyMvve97+mnP/2pVSTRddCX8cGykYrMZrNaWVnRxMSEtre3jRp/5513tLOzo9/+9remAzo/P7dADxu/vr6uN954Q2tra3bYFPPZ6XTsPIOhoSGrUGD+cFKkBAuFgu1VbCB6IwAXYw8jcXp6qsPDQ3322We2j3d3d+2gMKmXEvJziO0enN/BaJ3v2tzc1DvvvKNSqaTj4+M+zcePfvQj1Wo1PX782AInr1vzejfEpqwxwMGzvpffUzE2Ozur3d1dxeNxE28+ePBA9+7d0507dzQ2NmZgYHCf0EL/ww8/NFsJk+8BCCLVZ13feJaBP5SHvA5d3KBeEB+CyIg2ycV6xTBReDQatRw9C4bFUK/XVSwW+8SMXlAEKm+322ZsQLS+uRDOCdBB6Q2CHj6baBFDwSJFfILzQwxSKpWUy+U0MzOjZDJpoi9SIMlkUvV6XVNTU5bvpi2wP7UKdfrVVbe1MeUls7OzSiaTpi4nwiTt8O1vf9v66EOjra2tmR4CepJDOojkJZmgkr99/o1/k94JhUJGu2OM6bAH2BodHbUyHMBDqVTS/v6+3TPon8Oerq6ujColIse4UjJEhO9RN2CStQJI3Nvbs0Yt9HVot9u6ffu2rl27pi+++EKHh4c2tpVKxQ4jQVtCf/NAIGA6EAyIN1JcMFTcF+ItcnscP10sFrW2tmbRGgwGz8A84PxxGvycORqMbl6ki/HDCHr6UuqdHMrhPUTqPDM6mFarpWg0aqVztVpNc3NzdrQ0h7gQMeIcceaAEO80PEjxugTSZj5dAHhB+yOpL1dOp1Cc0/DwsKWafHe/yclJ3b17V+fn59rZ2dG1a9c0Nzdn+4XvWV1d1eHhoTUnymazts8R99GsjCDr3r17tm8SiYQWFhZUKBRMpLa9va1CoaBWq6Xvf//7KpVKqlar1rGv1WpZwLSxsaGVlRXNzc0ZSMfuA05Ji9CIDWYGpphx293dtVbIvi03bA6sAL6GEx4BApRvNxoN7e7uWqdR/JKfT8/+cHnGx+8lLyq9uLhQoVDQxsaGnfUiSalUSu+8845+8YtfmF+CJSUtCrgZzM/zPP57/L8BBTSha7Vaun79uuk3OC/i5ORECwsLpkV78OCB2U7SQZRx8n3z8/P2mT6Ie15g8VxAAOr2qNFTftCeoOFKpdJn6Dwti2iQ86E5AwEHTsTnczD8nnp6NjsDKMmMKCITHAb0IXlxL/aAVoHKvLi40OnpqTXGYNB8CgNBJbm3QeWrFz0hvJyYmDBBi1+ICIkAKfF43PKQlDuGw2FjDIrFok5OTmzCEcyEQt2Tua5du6abN29qamrKoksiYS5oPeYKkERkQVoABgV25/DwUDdu3LCe2GgwmNeRkRGLYuv1up4+fWo5NqLoRCJh7ARgyOs8pP5yJAAJURUbkHtlfj0dLMkEfxzaRKlhLpczgFMqlUy/4M+6QCMySCkDLmFAiIgAUScnJ3ry5IkdIBMMBpXNZq3fPEB2aWlJiURCpVKp71Am1p8X2YL2ofqYkxdVQzCYJ/Z7hnEmH0zNu9Tf8hgni57Fn/CJk2KNQ++jzeG7/D2wx59lrKVel1ZSSf69/ucIioncms2mUqmU2SeErbCGrP25uTm99tprOj8/NzuL0S8UCtre3rbU6/z8vOlvHj9+bFoEqatVqtVqunHjhtmCVqulWCympaUlLS0tqVgs6vT01KJqSgih1mFlg8GgfvzjH1ukih3xdpdnIJU6PDxsKUjGkYZcjHOz2T1P5c6dO0qn05Zm9n1CAPjNZtNOT9zd3TVd0cTEhOLxuLEP2FLv3L0zfJbz8yABJkrq15c8ePBAf/iHf6hkMmlajb/4i7/QwcGBdnd3LXjxfWgG9QZ+nfNvfo6tetaay+VyymazqlarSiQSyufzKpVKBnT//u//Xv/23/5bXbt2TYeHh8bK+DXLszWbTWUyGU1PT1ugyvc9K5XB9Y0MgafXiF64Ae+YyT2zUP1JbUTikgy58x4ifXKBnsrHIYDcB9E84ASBEs7FK5e9UIjmH0Tp/kwDNqrvkib1auNHRkZMvBSPx/uqCwAwtMelZpSxmpiYMEEbLSdbrW7N++rqqpU3ohVoNps6Pj62+z46OjKBDCCj0+ketPHd735XN2/etPMFECMyX57W4gKNMwYsbF9mhVAGzYIHRf5qNpvK5/Pa2dnR0dGRHj9+rFAoZOpY1gCdwcLhsFU9MEe+mqHd7pV2sql8VQKULeuDdUiHTFI2RJj5fN5ASTgc7mtAhUCMVAf5RwAf69aPIRsc5sy3pWafsOZZV2x05o4cHudLECHj9OhjALimQczzcn//lC+fn2dOMdiDxhTA540l7w0Gg6rVakYxe2aRGvjNzU1jfnAO5XLZKF7q1rElXoPkgSAghD3lIzr2x/n5uYlhiZJhmLyjvbi4MAGiZ1tnZ2f1yiuv6OnTpyoUCjbn9+7ds3X36NEjdTodLS8vKxAI6PPPP7djeqXuEegbGxv6vd/7vb6KoGCwW731q1/9yrQ2pKwoj6NKanh4WH/wB3+gN998U4lEoq+BE+PiU40EP+wj5hAbL8n2KmAvnU7biX/YVmwd95bJZEwjwP5HsEhwg0PGtrFvBlMF3mexflgP/Nvfi7+nXC5nwIV1tL29bUdc890+DcZrYb9gbbx+AfvBOPp7vry8tM6knEtADxeCZkna3Ny0JkPoVfBrPDf3QprcnxXB83/d9VxAwIDRfhaj7MUcni2A3vSOFhSYz+clyU7bI7/MaU2fffaZRkdHNT8/r0AgYKpKjov1hhbnTQkf9wO9zITh8ChDoyyNVpWSzFENUj44ZxbcYHlILBbTzs6OHj58qMePH1s5IidQXV1dqVgsamNjo69sz59bEA6HdevWLWWzWfuO4eFus6X9/X2LYAuFggGPsbExffbZZzo4OND5efecbLQYXvzGeHkgwALBAfrUAewMOT8YEuhCPpc5JlIulUra3t5WLpezhi0zMzNKpVKW38OR+WYxgCfQK3oVyhARFobD4b6ugdwj+gGYEMonaW4F9Xx2dqbXXnvNSteq1apRu9yvJKsaIS3BPcMmwa4AoIjwYQ9OT0+VTqfVbreVSCTUbretVLJSqei3v/2tteCGiQkGu6eUIaD0jES5XNbs7KwxBYFAwErTXsRrsL58MF/voxtvwLkmJycVDAa1s7Oj9fV1K/HF8VDn/Zvf/MbKficmJqzUbG5uzsCi/34fVWIwO51On93wTbkajYYqlYrR9zgSSgypOjo8PNTs7KzNGeuH8j2aCS0tLenp06d67733lMlkdH5+bpUsjx8/VqfT0RdffGEHkFUqFcvBe2ZseHhY+Xxejx490tLSkn3P0dGRpTER7dIj5uc//7m2trZUr9f11ltvmfjYgySpv5zTzyEAAIeFE/atqEkJk3LwQEKS6cX29vb0+PFjS4UsLS2ZPQ8Gg2bzPRDwAIT79D6H++T/MM2UfJMiJY1DDn56elrZbFYvvfSSlpeXVSwWdfv2bb399tvWC4b78mkwQCSO3NP1gH8qzPg/vrBWqykSiej8/FyJREKnp6eKRqNWfo4NeP/99zU01G2FTYk6qRM/T3zn1dWV+W+C+//rToVQ+57yGKwdBqlgoMkxB4NBO5YT4yvJRHOo8cl3sXAbjYaV4vHdgxsXtOiRrC8TgjEoFosqlUpaWlrS6empMpmMotGoUWjcK0CHZyLaIAplwH1eDOqS6LDVaikej9vxu2xW9ApEi0wg5w2gV+B8ARYwFQuxWEyVSsVKLkGwxWJRx8fH+uijjxSJRGyBsBH4m80DUGu324ZcMWSU5CAi8tEv+VtAAgs+n88rn88b+MC4oVfwDIo/g4IqBJ6HNA1MxNjYmJVKki9GVMZmBpyiwWBdsKZqtZqtIXQfOO9oNGptWpkDDAnlgr6CxQtLceQ4dUna2dmR1AUOnBtxcXGh4+PjvhInSVbVwrxTzRCLxRSNRq1klL3Hc5Omed455v+UL8YX5op/cwUCAXvGQaMmdfcDkSJplrOzM0UiEUutHR8fq1qtant7W/V6XW+++aZpOqamptRoNJRIJIwxxG74eyCy9t1UAcH0gri66h5ZPDc3Z0HH6emp4vF4X8tg7p8/VKVUKhWzIaj9ae/729/+Vu1227Q/AIrx8XHNzMyoUqkYe+rPPclms7px44bR9vQK4Xvq9boWFxetJJAU1fb2tqX7fvrTn+rP/uzP+hr9DIrwsCveQQ0ykfwbIADDQqSKYp6g7/Hjx8rlchofH9fKyopVkfAcBEj4mampKasy8fae7xkaGjKtFg3fZmZmNDU1pXA4rGg0anbEs6mDFH4ymbRyS0qtZ2ZmvtKmmPfw/0Eg5fUMMAisG+zK5eWlNjc3DeQSeCJ0B2RKvS6cnAHh15pfc8zdxcWFrl+/btV9kUjEQPGzrucCAiYW1AW9g8MfGRlRpVIxZ0Q+ic3EAHpHEA6H+7ppVSoVKxFBaEfd+eLioqlaQecenTEAvhsWIKFSqahQKJgRHhsb09bWVl+pJGIWnBPKc0nmQKmb59lwRuSBT05OND4+bhqEVqtleZ9Go6EvvviiT7OAoBJWo1gsWlRIJ0Doa54FI8MCRaMhSYeHh6pWqyYaQkSJ42fjQt3hjDyVxVwy3wAs7oOGKtBluVzODMbc3Jyi0agODw/7Dk4pFAp6+vSpAoGAldMhxmLTIorinAFyw7ABNIziubzoaFAT4nUnsA4wJDRqonqDlACblgOiWEN8J6wX3zcy0jsGlzPsA4FuXS9of3R01BoTkUYg1XJ1dWXjhbCRCp5Go2Fir1gsZo6LEjzK6V7Eywv2+D9zJ3XngDa5Ps/LHJM3DgaDWlpaspQUoIKeDkQ+pL4uL7uH4dy+fduab3njP+jwAICSzOacnJzoo48+UqlU0p/8yZ9YxM5Z951OR4uLi3ZmyMTEhHK5nM0XNfA4UxguGKZsNmt7LJ1Oq1wua2Njw/b4wcGBgVyaVnl6GMZP6ok3t7e3jU4mGCEiham4ceOGMZmS9MUXX+iHP/yhlpeXDWD7sWGsGDfsfCAQ6IvUPSPgq4VarZYeP35s76XlMpU66+vrCofD1kwN5jgYDBq7DIDGTuDcpqamFI1GFY/HTazOXucP4AjQgoN9FvhpNpsGTBB6+/y/r2RhDQzqBbzuxVc78J3cF0zoysqKHj9+rFKpZCXkr7/+utbX1/XXf/3XVg5KYEZKlmDNz5fXTcBUbGxsWIUTjeyedX1j2SFiLi+W4MJJeQEFjocFySbE6IXDYXNGbEAGDSHEyMiIOVwGFkGZF/2ByHw+x6NYjrgF1LBBUQ8zwRcXF6rVaiZQJG0AxQNQ8PdCy0uoSiI7SdawhvGBZYACxznCdMCk+DPEaVdMaRq550Cg27gEo1er1ZTJZLSystLXxINFDnWHEWZsaGbUanU7+0GPsmGgnBgHxHeIhECZ9JdgDGq1mt0vSPvmzZsW6aZSKdu03CPRjJ8/5tZTjxhJ1uUgKmYjtNttE0+yaX2lAKI1qXuaJRsNEDZ4VHMo1DuvgbFivILBoI6Ojuz4Y+7Hi6XQyoyOjmphYcH+zZrhfgC7lF8x/0NDQ3YWxYt4+QoDDKYXpgJeMby8jtdGo1ErDaaKhcO6AoFeyRaOqFar6Ve/+pUJgN94442+ShsvKPQsmtQDnlweINBQJxwO230AREqlkqLRqPL5vMrlsjEXBA/8ga2CGsbu/MM//INmZ2fVbre1v7+vTqdjpwYixIXhY9ySyaQCgUBfqd/U1JT1u2i1WtYfhjJN0qiTk5MmLiQY+uyzz0wQiR3gYqyxAYyRr2/nNUTf7GH2CWliIneOXvenu3Y6HdNgNRoNK7mNRqNaXFxUJBJRsVjU+vq62RIYSHyPv7gvP27eQXv2W+rvqFkul61JFL8bdLgw0/73g37JgynPKvA7UqvFYlGHh4eSuto1AjF8JwFdIpHQ6uqqbt++rc8//9xK2aXeCcXMA6mn1dVVTU5Oam9v77mnpn5jlYEXUPhIcmio1yjH56/9RqMPvFd3T0xMGNWDgWdRDQ8PW+MaHhAUxfeDQH1qAJTsNzgNlEZHR62RRKlUsujUI0ROqWNhgarJO3vKl4GmjLDT6Yr7UMhi1Lzm4uqq29p2bGxMiUTCDg+am5szx0tFBIAFimdsbMxYhPPzc9NB+Jzm06dP9corr/Q5Tx/ZMo9QrYAvT/khsMMpnpycqFAo6OjoqI9WDwaD1iFtbGzMTutC+EjpYTgc1iuvvKLXXntNq6urhmZhC4i2ieoDgYAZPNCzT+mwDgFlrAlvzH3ah/UUjUYtmkEoKfXSTYAemJRGo2HROcaPdU/eFqYKoEG50sLCgq1PL4Si/DQcDiuRSKhQKJiKmHRTs9nUwsKCMQiwJJeXlwY8n6cO/qd8+fv2AQNzC7vmAwBA2vj4uKWNWq2Wtre3tb+/rx/96EfGKCKaA8Qlk0k9fPhQ5XLZ9jMpBx/Q8G9Pc7MWuUjxpdNplUoldTodHR4e6vz8XNPT08b6LSws2P0sLCzY3I2Pj1tFEFQ3e4y/6X8yNzenbDZr+gXEkVKvHTuOdmpqSouLi5qfnzfVuRfm1ut1O8wsFAqpWCyaKHp0dFSffvqppURIkXzxxRd66623lEql+gAZwQ+0O3PHWvdiNbRJBHmlUkmZTEbZbNaCRKJ8Imj6h0iyFuSIH8/OzrS+vq7vfve7unPnjra3t9VsNnXjxo2+KiofpfvLix55nRcheofN+2EQSHV44SrO3qfN/Xd5IOD1Vtgp76PwEVQRVKtV7e3t2TkNVBbBRq2ururg4ECXl5e6ffu2njx5olu3bllrd6l3CvHk5KRee+01q3LJ5XLa29szfd/XXc8FBL5rHXllHDTGlO6EGDUMAHlkDCl5PrrjQRUzyPS5Pjg46IugEIcx4LAKLGKcCAiZiUIomEql1Gw2rZkEkwmleHV1ZSgdp4Ejgh7G8NPEhnEh555MJi2HOTk5afQVr5uamjIh2+rqqh13HI1GbaKoUiBPiPqe1qMs0lwuZ62UWSTtdluFQsH6fBNJstnIe7NIQY5EXACIq6sra350enqqx48fa2JiQslkUicnJ2ZwmOtgMKgHDx4YK4AznZ+f1xtvvKHV1VV77v39fQ0PD1vnSL8RvfrW075EjoFAwASWOH+i6larZSWnzDMU2tnZmQFQ6FwAJGvBl63C5gBAMBhejQzYJOpgg9H/gMgOTUkul+sDi6QbEomEKpWKDg4OrLPd7du3dePGDV27ds1OrqP+mhzqi3gxfjh7LsBqLpczBbpnEtjrBwcHWlpa6ovu0GywpjC0wWDQUnKSrHtlPB7vW2eDOeNisWgCZe8s2CN37961uUSXMDc3Z4HH+Pi4dQ2dnJzU/v5+H5Pmc8+kROlxMDw8rNdff13xeFzZbNZEgKxXnOjExIRVy0CPI5AbGxvTkydPbJ3CBvheHgQJnU7HzleBeVhZWVGz2W3tPj8/L6kLhignJidP0EKwxD4iQGGt12o1FQoFq5bCZuFcAUgcxLa7u2u9VWjHm0ql9JOf/MROhO10On2HDflgwYPJQWGk14x4at07cG+LeG+pVLKDy/ADBJ4eMPF6v7bxhZ6NAADxeh98SF0wFI1GTZxM5dzy8rJqtZqePHmiZrNpItJAIKC33npL5XJZX3zxhWnIFhYWtLKyon/2z/6ZnaBbKBT0s5/9TF988YWBh2dd31h2SIc0v6kRnpFrYdN7Sp1F6R2RpL5N6Bsp+HwPlFoulzPlK0YeJOqdv18E/Jwoa2hoyKgqJhLxD/3xoWRIBfjFNTTUO7MBYyB1qWbKn6AOiTBWV1cVj8dNPU4pHxUOqEO9uI4UCcj78vLS7r3VapmTAWxNTEzo+PhYS0tLNhcgTihBykBBrDhX5ov8NXqLq6srVSoVq7OPx+MKhUImppudnbUWuuTAua/x8XFdv35dL7/8snVFI3qm9p4jYD396NNJROCerseA+zwlqQTfm4LX4ECuX79ukanXRyBy9ZtX6qZ5SF2QTvICIMADRgHDsr+/r4mJCd26dasvXSLJDCZ12efn5/r000+tRSqK6oWFBaVSKS0sLGhjY0Nra2tWiTI0NKRr166ZiOhFvLyDxT5gyBHxkW7xcw7rWKlUND4+bqV7AKNQKGQd/bz+g7mlVHh7e1tra2v2Pu8cSC1SWsuFDUin0xodHTWGE7ZxZKR7EA1ncRBUEPWz9gcbu2Fv0BXhRCkBpOFOJBLRwsKCxsbGDByQtkDP02q1tL+/r7W1Nc3Pz1ufAp8SJOjxFTJST+CGg19cXLTKH6kLuDKZjBKJhAU3CGaxZ+xVAkIqBqrVqgnjEomEMQbQ6wSYCBrPzs60t7dnjYtefvllvfnmm1pfX7eqo0ajYb0A+D7fOl3qp8sH5xFWANvDGvC/HxyXQqGg119/3Xr/+899ls+hoZlPeXIP/NsDBOYmGAxaqvzmzZsKBoPWX4LUZyQSMb3a+fm5/tt/+286OztTPp/X4eGh2u3ueRkvvfSSbty4oVdffdVYxkajeworLC7++VnXcwEBD8jm8S0poXr5cN9tioHHWRNlsajj8bgkGS1E8wlUkDgRFiiqfRwIkwMFhfFmQj1i4/yAw8NDqznnJDt/0BF9yTEs5Nok9TU3ggaDKmRxYdxpuezLW3Ai0Dfk5GlKQutREP/JyYlqtZqi0aghYu/wqeH3QkqpP+rxFBepBJ4fjQJNSqBCUTcDHOLxuOWwpK7KHo0DJzKmUimtrKxoaWlJc3Nz5nARQCGS4V4AUQA7/rBp0HzQKpvr6urKasiZD4Aix84iCD0+Ptb8/Lyi0agKhYKtj2KxqGg0anPJZ5GCwZB68Z6nDxlfb9RyuZw6nY6mpqasfIgKhGg0ahsylUppZmbGQGWr1VIikdDa2pqWlpY0Pz9v0RPjz1pBjMbRzS/a9SwDLfVaQrN+Pa3K+7AdAERYo6urKzud9N69exY1Mn9Qp5eXl+Z0oOC94+fYaeyWty/8TeQeDHabTo2Pj+vs7Mw6h1LVMjk5qcXFRaPnsYco+wkCWEekI6rVqg4ODswmcVbMrVu3FIlELLBhjAAQRJydTrdPCjYMpgrtEsyaV7b7uQmFQmYLYUFbrZZmZmYUi8V0eXlpJZ4Ii5k/0piFQsFEspQrs4+8dgkbwDyxL4eHh/XOO+/otdde08LCgqX0qBbL5XJ2ANG9e/fMVkiy/eyZAK9tkGQ5eF/OSoBCh1ICCuxBPp9XsVjU3Nycdnd3+1q/ExAwn9h4mGu+n2egv4bXrwCwJOnJkyfGJHMAGg3s0um02fM7d+4YqCTF3mq19OMf/1g/+tGP7JwcbAj3V6lUTBg/uAb89VxAQCTGIsTJenoXJ+WpF6+C5edMMMAAKpyyHSJs6HQcAn31cdxMBBMDJYcxhd7H2JCjxYmD4FqtVl+ffKhlXyKI82LjUKbCopZkETyO+OTkxNoaIxDDKJDDhMEgSo9Go5qdnVU+n+/L/0OJIazyiByDUKlULDXjoxGfr8KQEI1TsggT/09p7gAA1f9JREFUAFBjgcMEeGqcVsx0m0wmk1aKQ3kgmwpREIAoGOyVEFF2xcJkXInivdjR90XAAHCfsCcwFjjtXC6n/f19XVxc2AlxnGIZCAT6NjQGhQ6FNKECrCGY5LnoTwCjc3h4qEwmo/n5eZtraFqEQpSOptNp3bhxww7DurrqHmh0+/Ztq6bpdDp22hnOBK2GpD7h6ot2+SgMuzA0NKRyuWx72O9vH8FJ/WrwpaUlW1vVarVPbAvYv3v3rh48eGBndXCaJI5fkh2kRJ8NbIgH1tx3tVpVKBQysRspUfbizMyMrUV/yE+5XLZ1xpoYGhoyoEcVkz/Tg9LiTz/9VN///vfNpnmhLetzZWXF1jSlu5OTk31sAOlIgDRzgOOXZEEGjZbQDmCHfR8BxqNYLCqTyahSqdh5NdhXbCV2GNvq9zDpxNdee80OTBoMvBAnc0gTTOHR0ZFVJGHvpH7RoH8+zzwxBpOTk8ZMMUZUBu3v7+vRo0fa2dnRP//n/1wffPCBbty40XfCpA8SvN6CABqGCOaR9UUHWsb38PBQX375pe7evatEIqFOp2PNzACOwWDQetjcvn1bCwsLdiBTsVjU7/7u7yoSidgcE8izvkh/Mddfd32jhgBxDBQwAzBYr+1FQjhvaN2RkRGlUimjukOhkIEBPhPkRq/5fD5vC49WneR/oc5wKEyAFyQx+dS/IuIA3Jyfn1vEGwz2muLgAD3TwYIiOmShASR8zr5eryuXy2l9fd1UwCMjIxbFUlNNbr/T6Wh6elqzs7NGB5Fv5rslWc6OtAOba3Z21oR9bMbBlq5E3VQ/gJYRCBFBeDU9Dssr5ROJhJXE0aOATdrpdCxCbrfbRsES7e/t7Vmd/uXlpRkumCfWEOwKtLLUi9IxcvyN4yX1VK1WtbW1pcPDQ4toPvjgA4XDYavppr0zY9VoNKyZEeJKqF9/4qLUBQ4wAycnJ8rn8zo+PlYymbRzHkingeKZC+Y4Go1qfn5eFxcX+vTTT2398l4fheA8aGc9Nzf3vO36T/aCFWBfcRE9cQS5f71nEkZHRzU3N6dgMKibN2+a8K/T6Vi+2VcgVatVvfnmm6bWHx0d1f379xUIBOywMATRfn5Zf/ybdVcoFNRsNk1Iyj4cHR21KLJYLEqSNjY2rIyVmnucqD/4pt1uG+3OniafzrM8fPhQd+7csdSTB8OAID9uIyMjBtQpU2N/eoeIA4MVa7VaWltb071796wfyujoqGkHeC+2ZH9/Xzs7O4pGo/aHwA6tjmd2isWirq6urPSWM0VItVFKTTCJGFKSlVMzr19++aUymYwuLi706quvqtPpWMmn15/wnB5kcvm0gCSrJIN6HxkZ0aeffqoHDx5YOeC9e/e0t7dn6yeRSBigoW0/fXhopra7u6tms6nl5WVJMpHs4eGhgsGg9SnZ2dmxNCd73/eUIRBIp9N66aWXtLKyona7rWQyqbW1NX388cfG2hKIEkRhRzk0C/Hr113fWGUAxY5Ij43tnRZ/PG0DPcP7GDxJRlkfHBxYowiORqbTHYpcn8fP5/N9v0fMgsODhgEYkItDjOPRtS8HBJBgCEBYntpkkyLuGmyiwsZG0bm7u2uAwIMknDEbDCDj61IZJ/oASLJIx0dT09PTun79ugqFgqVs+Fyer1Kp6PT01FTqLGQqLWAYMJx0Yjs/P7fmULOzs+bM2Lz+QCgcGimUSCRi6RPaGj948KAvp8n3eVprUN0LMGGjAwJINYGwQeGwA8fHxxodHbX/BwIBvfrqqyZEg3HCMPtoijkCjAKqaFUbi8VMIEs6wvcbSKfTfVoJ2jRfXFwom82q0WhoeXnZ9A8wJZS2Ur2Csbi4uFAkElEsFntuh7EX4bq6urI0kGf62FtSf0dDL96iCgcQyu8JHki7Sb3OmDMzM0bfEiEdHx+rXC5rbW3NqpM8w4eDhGngZLnl5WWFw2FrxkWgQepQkuX0b968abaJNB3pKahz1hx6A0A3NkHqpug2Nzct1eRZPC9aw4l5sTCRubdhXJRpAlxDoZBu3rypUqmkdDpt1VMwYs1m005bzWazOj4+1sbGhhYWFkzYjRgau8m4oEWQuie3JpNJpVIpA3gwzIw5Wi5SewQa2WxWn332mfU2KRaL2tzc1Nramj0768antb0IkLll7OgAi73L5XJaXl7W9va2dnZ2bN8+efLEulNiawhE+HwErgi/Q6GQjQnCSq+n8+p/SkKxfYBkSQZUzs/Ptb+/r1wup8vLS83NzWl9fd3GD7BNugyRLin5YLDbKHB+ft76Ojzrei4gILqjix0AwdekQ32xGT1T4AUUHilDg7IIcKqgZyoOGLxisahms2mHOSCYA0mSl4UpYKFTGwyoYZNxLCplfbOzs0ZpzczMGOqD5obugeEACfNsRNhszrOzM+3u7mptbc1OdIzH41YXjfM7Ojqy2mZOTBxUkzN2HBAEzXh2dqbV1VVNTEwonU4rmUxaTopOgtVqVdlsVsPDw2bYQObT09PW1AJnxxxAw/K9a2trSqVSBmqI7HxZKWNA9UapVNLjx491eHhoTVX4rkwmY+JU0ilEMnQPBDT57m+wALlczub75OTESrfy+bwBHHK8o6OjFgH4/gO0dm21WnZ8tM+1AlYoSUURzOcQEQQCAT158kQTExOKxWJaXFxUs9k0oaZfF/6wLJijdDqtSCTSl6oiL43oijz2i9q62AvnSMFI6tMPSP0amEFBqY8AuUKhbhfKDz/80IxhMBg0Bf/QULe74/HxsV5//XWFw2Fls1l9/vnnKhaLSiaTmpqasvbSCDcRNRPoEDhwZsHV1ZVFvV6ou7y8rIODA2UyGS0uLhpDSsMxH8FeXFyY44jH45an9+xQMBjU48ePdffuXdM/wBTADuAcz87OFI1GjTHB6XnaXuoCHpgmnFAymbQzDPyJjcFgUIeHh8rn83r48KH9rtPp2P7x2gYEle122xiKer2uWq2m69ev69q1a9bEic+BESAQgiGDjS2VSvrss8+0u7tr0TJMxcOHD21f4RcICAHz9AABdBOlc0T06emp/QEk7e3t2f5GK4VvOj09NT1PLpcz3QUsBQwtawK7hWCbQDoUCpndZRx/85vfKBgMGnPy9OlT7e/v2zwT0MzPz1tllRc1IgLn9c1m0/wA6Yr5+Xk9efLka/fqN1YZSL1SMDaIpL7cjUefLHiQMEbA3ySbm25uXrFKnT0HAJEnkWQRIcIiT7eSfvCbASPrERTRH4toenpa6XTa0Dsoj9pbaHXoSI+IY7GY/R8hD4u5UCgok8lY3T05J58vPzo6ssY4KPehr8lT1ut162TVarWsjeXIyIgWFhasUQrRDLlAxH+UQWIASB1AZ+Nwj46OlM/n7XjSsbExxWIxzc7OGhgYZGJA4MwzICqTyejg4EBPnz410ABwIKrjs1AKY4Qog8RAsLagHC8vL/tOizw7O1MqlTIFOHPUaDR0eHhor8tms30dBFkTXrx4fHxs3+lpUr+eWIdUIgBqnzx5orffftuifHLOjBvH4HojIfUaLgE2MHhUdhDxRKNRox5ftMszhwQKGFL2jdQTh/FvXgeg4vfMDYwUNf1QtewnVNb87P333zcdzL179ySpLxLmXj3tDHtRrVZt3fA+SaY/mJqaUiKRMJYQduvi4sKAqS8BJn0Hu0DpKcEAz3p8fKyDgwPNz8+bHomUKazi6emptra2tLGxoUKhYCXAXkPAHqNsGCfc6XT08ssv6+rqykSRp6enOjo6MntECvD69et2JDs2GFYRoAzI4RoaGtKPf/xjra2t9bXB9+JaNArsJ4SWROqHh4cW5GFjq9WqqtWqHj16ZCc1ojeCLZR656cAEPFHlHQDFq6urkwQSmqTBnlojNrtdh/DiFCVNYofIlhiXcFmeTGhJAM9rKlKpaLPPvtMf/zHf2wphaGhITt99vz8XHt7e3rnnXf6bBhzjQ4O/8Qaw/7iD1ZWVr52rz4XEGDkmXQvEAFNEcGy8IhwoGzY9F4gB128vLys+/fvW14e+rXT6SiRSFgeu16vG/UPfQuFBiICsbIIcR5ep0DOf2pqyhYldZ9QexyrSj6PzYnxYUORqqCDGsZE6rW8BUGyMCVZ1QRgh4VCuVqz2fxK+dv4+LhWV1ctMuaksna7bcKp8fFxe65kMmkOlI5gUEsg8svLSztcisU/NjampaUlpVIp68bHXOKEAQCBQMBKoKjFPj09VT6ft0NayFECQnyaplAoGNWOsfLRDD8jigfEYUgwOiMjI9btjHmORCKmL4DerVQqdsANjAD3g2gHJ+wVwT6aZT2jn4lEIqYRIIVQKBRULpetLwX7Znd3V3fu3LHTETFOOzs71kyGMliiBtYyryef+qJdRIIYUl8m5vewZ09YFzjnk5MTxWIxc8Q4XEn6/ve/r5/97Gd9LM/+/r7C4bAWFxc1OzurTz75xKpd7t69q+HhYdO10PtekuVcPQjxpcaS+tKFgHeajpHawE74Q8mI8mk6tL+/b3sAQdhgYywYqDfeeKOvsqDRaFhUenR0pGQyaQIz9AxcOCz6HUB9s48l6Ze//KU6nY4++ugjO5n11q1bGhnpniFy7do1O+KZ/v60Rsa5FgoF1Wo1JZNJLS4uWuURoAlxMSwp4FnqNVNrtVomssMm07iIHg0+YDo+Pra6elKvjBHPhg3zTCY2F7tD6srT+4FAwJgBGG7YCd+TAb/H/1nzXsvm9Wh+DbOG+Bs24sGDB9a3B50brDIgksoQxJAEKgRVABSCYfoBsdafdT0XEJC/pLQPQ81As5iJUNnQkizNwMLzdeTeiRPRgtApdZyfn9fJyYkODg50dnZmjTgAA74VKZ2ZMKjtdvfEuXq9buhR6tWFA1oCgYCWl5etM1Qo1C0/pKEGtC45MXI/bFZyfyxoImD+TaMNDAIOjkXDooQGHB4etg5kQ0NDOjg4sO52N2/etM3HiXy1Wk1///d/bw0tEONhKDkgxVPvXqyCOCcej+vll19WPB63LoJeR3FxcWEtPAF/HvR1Oh3rund+fm56BTowgpjp18C40U3NjyfpGhwhixsQCRgDpHGyIB3gOD2Qem70I9R+A15olIQRQB9ByoV16qshGAupSw8vLCxoZ2fHngMQQMtT2BHKR0HofhxJcRBh+RbZgGRK1mDKXrSLOn+qV3g+csi5XM4cqtTLA7O32u228vm8dQTFsLI3Eeuh/8BIBgIBvfnmm9re3jbalPNVrq6utLCwYGAF+0VnQb6DyL1UKpk2RlLf3/TSX11dtTRYLBZTLpfTkydP1Gg0rMXu1taWWq2WFhYWjEkqFot9wjiAt9Rdgzs7O9rb27NzHPg5wdXe3p7u3r1rwAS7mEqlJMnKIOPxuP7yL/9S//t//2998cUXyuVyarVadnQ5Go/l5WVr1OVFlgRBBCk48C+//NIqNt544w2trKxYAzLPKiO6pnyR4JLXFAoFbW5umlCQwCyXy5nKvlAoqFgsWqpakkX6OD6AAewA381cw5wAKlqtlpVX4l+8Lo758CwpNp5x8+zX4IV98+kwQMD4+LgWFxetQ+PQ0JA2NzdVrVYtxYBjZy9ls1l961vfUjAYtEAun89rfn7eKrRgFHiN118NAkZ/PRcQUF/LQvdlgltbW2bMQ6GQlfTEYjETekHZMQgYdeh4FhTKVnJ6wWBQ169f1/vvv6+zszMlEgm99NJLGhkZsdae5I6CwW5tMCIPaCkcoe81AMVeKpUMHCwsLCiXy2l4eFilUkl7e3t9SnloaXJR5XLZuhPyTJ7mQ0/Bc3/yySf68Y9/bAsTQQqGkeqC27dvm4Dmu9/9rsbHx/Xpp5/q+PjYqGu+D6VzpVLR8fGxRcwcIOXVpegIcrmcMS3Qj6urq0omk5qZmek7mIg5xRiQ3sFQk/qh4VOlUrFGJLAEjUZDU1NTZqTJ6/J5bEgP7oiOm81uwysiM18aJPVaatPWk45n5P+J/onkoO85ShQ2qVwum3iHOWYumS8iBMAiefx3333Xegv83d/9nRYWFkyISIQFy8P3j4+Pa35+3uaSsjuOREUU6qPA09NTOyPCg+oX6To+PtatW7eUTqftwDGaZ+3s7Oj+/fsKhUL63ve+ZxUHROAnJydKJBJGx/t1SU6V+Q4EAtYbJRKJmOj26dOnFpm/++67uri40MHBgSqVihKJhEqlksbHx62WvlAoKBaLKRgM6nd/93dVLBb1/vvvmzO5e/euAoGA7t27Z0HQu+++ayctSt01ms1mJXXBI42MCBQmJyeVSqWM3cJp4GilXjVAu92tOFhYWLD9zZ5AO0BH0bW1NeVyOUUiEf3lX/6lOp2Ofv7zn6tYLCqVSimbzZq4mrHksJuRkRHTPAHYuQ/AG6WAlISPjIxodnZWb7/9tubn5/sCH3/5gIu0CZF4vV7X7u6uNjc3dXFxoVdeeUWFQkGHh4em+4nH40bn4xw988j9e42J1ANO2AZfPcLP2u22sauDOhWvbyMwIT1Fp1legw2TeimfQaaRtU2a/F/9q3+ltbU1ffjhh/rNb35jVU6kKjwrD6MQi8X6qi84B6dUKpl2ggZ4Q0NDdkz9+fm59Z35uuu5gIA6yDt37hgYQAzz4MEDo0yJwjhlyvdVJtfHIrm6utL+/r6ePn1qpTjVatU+g8W9uLhopUFvvPGGXnnlFWsNDNWTTqctdQETweEct2/f1vj4uJ2KRW9n6mahUG7fvm3le0dHR8pkMrq8vDS6kXEgOseJhMNhyzkj9vP0Dyhye3vbGJLR0VFralKr1TQ2NmY17ND4l5eXunPnjs7OzkyQV6vVdP/+fVUqFdtEVCCQT5R6oOvy8tLoIaoFqH2dn5/X3NycjQn6Du+IWGiSjLLy30MzkpOTE9Xrde3s7BjKhqW5uroy9IxTA6lCs01OTloERr7NNwYBQLDRAaBSj+3xupTJyUk7hhY603cNDAQCisViCoVCVq1BlQl5N0l2Dz7vFwqF9Morr2hqakpnZ2d6+eWXLa31ySefmCFFeAswBFBSVkYuj3QceWSMM2CR+2Ejk599Ea9sNqtf/OIX+r3f+z3LY5MfJ69/dXWlbDardDqt2dlZLS4uKp/Pq9PpNswi4vGswf7+vh48eGAsVzab1cLCgqampjQ8PGzVMVTo/PCHP9Tdu3eVyWT0y1/+UsViUefn53rllVc0PT2t9957T81mt91wKpXS6Oio5ufndX5+rm9/+9vWJOgHP/iBncpHhPbGG2/o+PhYy8vL+s1vfmMt2JPJpF599VWNjIxYe9mhoSFtbW3p+vXrisfjOjg4MHvkU3IwU1TMIJILBHqHlmE7cW7r6+tWWXH37l2VSiW9/PLL+vzzz5XP5/Vf/+t/7ROrMp78m3w7IJ9UBloI8v7tdls3btxQKpUyJ4+j9xUQUs850hOGlu+1Wk2Hh4fa3d01PdfQ0JDy+bx2d3cN5DcaDT169Mj6jfCs2A0qSNizkvpAA38DbHgvrwE0kLMnMIBt9UzoYDqBtcjzS/3nJXiQwN/Xrl3TjRs3VCwW9dJLL2l2dla1Wk2bm5uWbvYaBC5SEBcXF3ZqML11/OmppDMoA6eaghLr59mR5wIC+jiTx0LJu7e3Z+0QufGDgwPrlFUoFIzeh47D6ZRKJX366acWpd+5c0dTU1PKZDIaHu6e5JRKpcwJLC8va3193RZtPB63fPX8/LxeeeUVo71CoZBu3bpliuxqtap4PK54PK5IJGLHzvrOT+Pj41peXlY6ndZnn31mk0AbzvHxcXNgOP719fU+KoZKAQw5dL4kO74ZkSR0GZsMsIAID2r5+PjYSqQox2FRDFKuoVC3bSbVBxwGQ2R/8+ZNy50vLS1ZDtyfzgdSBrhIMuUz9dQ4b4AKB1uhMMaxIi5EIwEyZzNVKhWj+zkGGYMEwwTQ9BsQtIzgZnx8XEdHR6ZshjnxBolqlXK5rFdeeUVzc3NGlZITZEMiMqTHhWd/WHupVEqlUknHx8eSpLW1Nd25c0dbW1vWtIR14YU/5XLZFMOAuZmZGT19+lSnp6fWz4I0V7lcVrFYtDRBJpPR7u7u87brP9kL6jedTutXv/qVlUPdu3dPZ2dnunv3rp4+fWrNeDgIbGdnR2trazo8PDRniSOs1Wr6zW9+Y9HaK6+8YlqDyclJK+0kxba6uqof/OAHJu586aWX9Pnnn+vi4kKpVEo3btxQoVDQ9va2AoGA/vAP/1DhcFixWMxKCWdmZhSPxy119c4771iFy9XVlbXupj211GXM7t+/b+ctIIqem5uzMwnIo7PGSWtREsd+8u3YYb8ajUafWLZarerw8FDHx8fa3d21JmGIzACtPiXjdRukyDgwh6PE2e+vvvqq2Whf6sd+4vNIrUGPUyePvSI9MDo6apR5uVy26q92u63p6Wlr/uW7ljKGOHZ/SibfyX1A/XuRMj/DJwGC2K+kfZ7Fcki9E0gHAQ/Bw7MYBu7r6upKd+7c6TsxFSC3vr6uR48emb2UejoDb4dopUzQQNUGgI5W2rCVjH0+n7cD6L7u+sbGRDMzM1amBzVbKpWsw12r1bLuVtAYX3zxhUXqw8PDmpubs1KL3/72t9rb27PFc+vWLS0uLqpUKimbzWp6etrUnhMTE8Y4QM1Qo+p7HOAomFiEbdDY09PTVttdqVS0tLRk3fKg6ckvgxDb7bZ2dnaslTAq1qmpKRUKBYv0oDXZbCj5+d3w8LC+/PJLvfrqq6auJ3rf29vT1taWksmk6vW6Rdw4dqgt31+AQ5owjnQJA83CVEiyhjbz8/PGBHhKj3yYF52QGgHdQmNyv+TLJfXV4vI+SX3HQiOEQkWPMJP3E/V4pTnziJiVvCUVH4y5JOv3DSsDKsbZI6AZGxvrO3rbbzLm6eTkRGNjYxofH7e2sl4zgabGiyOj0ag5Ex9x+RKnyclJnZ6eWnoFodTU1JQdTQsjRMlnuVxWuVy2plOtVstEbS/adXZ2prfeekvNZlMffvihUqmUiVpHR0eVSCRMLQ5z+ODBA73//vs6PDy0NIIHrvfu3dPOzo4Z8ddee00/+tGP9J//83/Ww4cPjb7mhNNkMqmDgwNTwdMcij4VVB8gesxkMsrn8zo7O7Py0cnJSTu5slaraX193RTyVBrF43Fdv37dTiglbbm3t6disajZ2VnNzc2ZvalUKsYOoiOBKYNdYu9vbW1paWmpTzS2tbWli4sLffTRR1pZWVE2m9X9+/dNx0MZNY4QJ05ETbTO3vU5d+ziyMiI4vG4NjY2lEgk+vLlPq2IvcD+eacL5d1oNPTkyRM7wpr1f3R0pFKpZE3L6vW6Hj9+3Nc+n3EhOMJ5e9vn8/U4bH8f2BnsiE9dYLMBXNgVf7XbbevV4FOMPm1A0OZTEL6qCEYwFOr2KqBkeX5+3jRz3CPP6T/74cOHZp9isZhGR0f18OFD7e/vmwaGQA5dE6ke7NLXXc8FBIhlKpWK1WWzUJkkbpbocm9vz9TdOGwo55GREW1vb2tvb88it0ajYUeLbm5uKpPJmPNEY0ApDSAC5TxnelNKgXOanp7uM+4zMzN2kqI/qxuxnCTrE0+TC8oAh4eHrSacZydvw6SBuHzZDFFqvV7XL37xCx0dHZm6HqdcLBYNfODMqJlHKEkkUCwWjQqFneFeiDJoOrS0tKSlpSU7JQ0mhE3hWymDlqHOPd2F8cV4IXrBqFC/jYGg1JLSHzQGGDVOfoTBAb2iJqacaGhoyCITKGYalvgKBxgB5i0ajfZVNXQ6HdOnRKNRO0aUBjP8rlgsWlUKjBD5aDoQ0vJ5dnbWylNhHogYyBlzQW0yj6yp1dVVY5SazaYePXqkcDhstdGcMAfLgLF5kfsQ0Ep4ZWVFw8PDevLkiZ0MmM/njeUB6H700Ucm4JW6xvDo6Miaau3v7+vJkydW4XFycqKNjQ3duHFDP/3pT/Xb3/5WP/nJTyw/Lkk7Ozt96aSFhQWroioWi2YrEBHPz88rk8mo0+nW3b/55puKRCJ6//33FQgEtLGxYffFoTF/93d/Z/t3aGjI2LROp6NCoaCdnR1b35IMjOO02Hse2POzv/qrv9J3vvMdHR0dGVAcHx+3SgnOduCCBUDgB/CAWZBkBxXBHMB4TE5Oan193cTGpNhwcM+KyAFAXpTLd6ErazQaOj4+ViqVUigU0uHhoZU3hkLdPib0cmg0GpaC80DJi0qxuZ4V8DS91Cth5V4HBX6ADJgNRMnsQf/cgUD3wCtSWP7yDAE20ftHfr6zs6N//+//vR4/fmyCYbqU0jfFix9Z/1zValX5fF4rKyt97OjTp08Vj8dVKpVMU0AZMxqIZ4ke/fVcQMDpYpeXl1aLTtQJNXz9+nVJMoV8vV7X4uKi1tbWrNe0r8EHmdIeFlo+HA5raGjIxCSbm5s6PT21MkBSDExoMNg9ESoUCllP8WAwaKVHx8fHFo0jjtnf39fV1ZWBAN9hC9EkTUTo9R+Px63FsRelENmyiFiIUMI8Kw4FqpJIgBa6CEAQU+LE1tfXFY1GzSEQiZByoPEJ1H86ndbCwoLC4bAmJyetSxufycagXJHNA71N90bAUrPZtHGTepEDxhtlN5FEJpNRJpP5igDJU3pXV1emneA5KIPk/qjtpb8D3w2jAb3puxx6A0H1Sq1Ws8+YmJjQ6uqq0um0VUMA7mAWrq6uFIlErLSKSIEc3cjIiA4ODkwLAUianJxUMpm0qAZjiN4BAErFDZUjksz5b21tKR6P91V08OwAIOnFPcvgnXfescNa1tbWVK/XdfPmTaXTaUvDXbt2TYFAwP7P/Fy7ds0O/WLNsOfIZ5+dnen999/X66+/rtdff13vv/++7t+/rz/+4z+2PU9FD+fJDw0NaXZ2VolEQrVazajqWCxmOXE0S6zxX/3qVxoa6nbgPDs70//3//1/1sTI/829LS0t2Rzfvn3bTijFYbEvJPWBAf6NPZG6DiGbzRojQqryxo0b9ns+h/fwc9jUiYkJYzfZM8vLyxaFp1IpLS8v6+bNm1pbW7OKDC4iaKmX3sC++Ijc6wnIibOOR0dHFQ6HrVqAfR2JRHR0dKQnT56YraRSADaO8Rms9MAm810+Avb3yH73zAE/xzZ1Oh07ZIhqLq7x8XEbFwCDr3rxGiyAgZ8L7v/x48cGMkmPjI6O6jvf+Y4ePXpkPolUqr/PQKBbcpnJZKz/ytOnT1Wv17W9va1MJqOzszMrX/T2nueGeXjW9VxAcHp6qsePH1u7YMov6KxWrVa1tLRkNDAOe25uTvPz85Yn8WgplUopk8kY4svlcpZ3n56e1u7urj799FPl83mVy2VNT09b17exsbG+lq44BEq8WKigLAaVHA+0LspyAAA5QZwjE8V3ELn6ygOcKA1HiLShmMlZ4dBLpZJ1A+N1ODVQNAe2sIHJMQUCAc3MzFgOf2RkRDdu3LCmQaRWiFTJJ+HsPMpl8XmkD7WPAwdIQBfiWKH/0RYcHR1ZSVOhUDDnC+3qdQ5oGgBFbOjBclb0EET6kkwkhXiKxQ3IQKzE+0H7ExMTWl5e1szMjObm5hSNRlUqlRQIBGyu/TUyMmIULoCNcjOM2MHBgZaXl62kCfABo8NnYjibzW7bV0DBkydPjGHIZDJmwGiihAIfsIbzY42+iBdd5egaiAFfWVmxVCFKfChscuMrKysGchkPKox8Hpd1ODQ0pLm5OX366af6+c9/rmq1akEAdmNkZESHh4d6/PixpF67atY3lzegXlSGQ/VRKGI3qedoSqWSlYyhKgdsc7H/AX28n9/5n7XbbR0cHBjVPjY2ZlGhL4lk7XP/kUjEmFTWLV1cqTTyrKJvFIet4565J1g0Sji9hgCNF89GuoDPohKJEsSRkRE7g4TzU5grgAV2jzn3DIrUEwKTc/f36sWGXuzHZ1OKfnh4aOWHUq8h3+XlpdLptG7evKmVlRWrHqpUKs+l3/keqQfMONjv+PhYiUTCUjvYVUnm57DPfh1i8z7//HPrr5LNZu1UWZ4PNsbPi2crvu56LiBoNBpWJ89iZiNy7OLs7Gzf4RudTkfxeNwiVEAC6CmRSGhyctJy5NSoDw8Pa3l52XJJflPwXpwdUQGLx9Pe5G1xfERyOCOcL5/LIuG95JYxDj4vzGLEYCFgI6L1r2eSUcLWajU7YIecOoYGLQMNnMLhsObm5qw9JXQ/CvlwONx3NCpz4ycexM5C85sCo0ZUw/NC7ftn9nl5FPHtdlu1Wk35fN76LFBjz7Nz/gXjxvOSYmEjQddxb6wjohFPw3mDzfMAzACkgJFQKGSNmUZGRiw6LxQK1sub0wkHjRngIxwO2xHPqVTKNjKdvgBbrAnEjr5qAEEVHdE2NzdtThEnkjpgPAaNFhT38zbyP+ULISksIqm8iYkJffnll5KkRCKhcDisqakpY7hSqVRfi1Y/JrOzs6YvIhdO1cB3vvMdbW5u6qOPPuo7wptUHkJjtBpEaXSVw9awvrzd8UBa6nfaXkAt9TqlIir1//efAbXP3vNRpRfTBYNBHR0daWFhwdY2YNg7bYKN8/Nzay5EOpV03csvv6ylpSUTCRKNDoricLIwVti5y8tLc6SkA3wFjb8oY2y1WqZ6Pz09tbTh/fv3zfbgQxg/7snn630KwAOGwcjfAzjvnAcBGD4ChgfAAfs6PT1t3QL39/etVJ3eFt7pD34+995oNPTmm28qkUjo/fff1+eff67vf//7krpnbkhdxtADAB/I+avdbuvjjz82fRdiZOwwttLPo/+MQV2Ev54LCMbGxkxpmk6n+xw8zSKSyaRRtaiHoV6JDv1NcFwugMKfOohBYOOwwKCbfEfEZrOpTCZjgzK4ET2q9/Rwq9Wte/ViEO8EQb1clKhRp+rpFgYZ5wb1BHBirLzjAnWSN+Q9ONNQqHv88EsvvWRjhzCNjoijo6NKp9N2nz7fjzHD0TIGjAMljrAj5DCJSJknT/Vxqt/R0ZG1DiYf6dv4SupzbuT0MSp8P4bZU5fMG0wCIi7mlE1OvkzSV1qDMjZe4czmIJWE+pbX+nWD4ZqcnNTGxoZisZhRvwi2yHvDahEJ0f8CGptcOBUdOPpisah8Pq+RkRETDnoq1qdx/HobzCm+SJfvtb+ysmJOnxx4NBq1PiM4Rt+N8lnG7Fvf+pa2t7ctl768vKzh4WF9+OGHkqSlpSXrNYCDYv0gNoUS9k27vMLbO5hBMOadp88V83qp1/jGp548e+bpYA9K+Xz/mdxTqVTS1dWVrc1EImHVTUNDQ3YI1tXVlaanp/XGG2+oWCwqHo8rmUxaoIEtIS3sgYr/TuwGtDsAhHskTeapcp4D4HB1dWU6DX8o2KNHjyylgq3BbrP+EXMT+DGHg0GXD4A8GGA+PKAbTDVih/3+xY7OzMxoenraqsTOz8/10Ucf2RHrfh795XU/77zzjv7hH/5B169f1/Xr17W3t6fNzU398Ic/NMYbG0x76EFdmg+OAoGApWnn5+e1t7dnvXiYR5/e9vczuJ8Gr+cCglardyCEP+9akimwoeVxpuS5uQk/QYFA9/jRtbU1a9JBzrxarZrgjNOxMAyUcoEeaUEcj8ctYsWRo3mAYqVbE1R4IBCwdAKLDWYAwQ0ORZLRx3RV9Epkv1H5dzDY35cgm83amQfn5+d9zASRYiDQbVDEkcETExN6/fXXuxP0fxwoCx4mAacB5eU3pAchfmMAGjAglO55toJUCRsml8vp6dOn5khPTk50dHRk9BcUP/fO2LFWYIDIBXqDKMm0ETwL4+PTFRhLQAXv95vQ90vg3olMpa5TYr6ZV6j4oaEho3YTiYSWl5d17do1TU1NKZvNWjQ7MjKiYrHY11GQ9ATluQgdSZ0gTAIwe2U7ql/vgNCgkO7xEdKLCgjoiAk1jXgNAAZ48k7RR4Nc3tB961vfsn72RG6PHz9Wu93WzZs3Jcm6O2IoiZr5rHA4bAJU0lSMN06Q1z4rEPCX33eDP0Mbg07IG2lfcusjWcZF6oHcqakpjY6OqlAoaH19XaFQyNJRtVpNU1NTWltb0/b2tkWl165d02uvvWZiWQAR691HpFJ/Ko5+EQR8VFNhJ2HTeCY/frDLsIMHBwfa3t7ua+tNBQh2GsfIXkfbNTIyYqDZU+u8zkfj2F2i/EHK3APvQbbGzyGM8/HxsZVcUhnDnABKnjX3pJr/9E//VPF4XJ988knfusCmoqmrVqtKJpPWEMszD/45WROSrOEcts/rOFi3XAQ+38QyfmMfgpOTE+t9Tc14u9223DgTBN2NoSYC5GGYlKmpKS0sLFg5DApXHp5SLAbk/PzcNgIPHAwGLWcGdeNpbk/X4liYREl9mx962qNj8vk+GuX14XDYnAEoEnoJVoQOfVDnkUjE8nz0AU8mk5Zb5wAierVPTk5aiZ0kq3K4uLiwzYoDGoxUpB7NB6DDCPpohgUNNeqdNuMZDAa1u7uro6MjAxI+xUGfAa9TQB+Bah82gEhhcAOzfvz9YxiZP/87gJv/nEAg0MdMUKHAYSD+uX00wzNBfQaDQaVSKa2trSmZTBqAoAc+87C9va3FxUV1Oh2rHslms9rb27NySNYaTBC6DWrFSS/AijCvvrc/ESZM24uaMhgdHdXTp0/18ccfW08M1hx9JGD1mCuMNSAa54QQj3LmsbExpdNpqy5CrCzJ+hnQ34PGN1Kv5TBrEhuE8JaLfYDzlr4acXI9y+DyHAQkRG0EOThMji9n76D0554/+OADpVIpK1H2xwPTEnplZUXxeFyJRML2AiXf7BF6QtRqNdOFEeR5x8keRE1/dnZmVTm+wgyH7lk6mLPz83OzC48ePTKGjfSkz/vzxwtxvYB7kMHwbIHUsyWAAKn/yGfmjrmFPWVuvK0HWFAuXK/X9emnn/aND6wfl09hMBa///u/rzt37qhUKml6etoYbXpCfPDBB1pfX7eA8eHDh/riiy9MV+Cf2wMBnsNXiQ2mszxrwb89uP6667mAIJfLaXd3V+12u6+dJ5Mn9WhXL2Ijn8SN0j4Yg8zDSOqL+judjvWmPzk5MYfD4PvvjMVidhQxrRs9eoRCI8r0C5kuT+SZ2QCeMeCz6UpIWczi4qIWFxfNMBGhe2aExUqdMYwBgGJkZETXrl2zFrqMlW+6dH5+bo1uJFlums+lNTSOw+eY2+22He5D22BYCH+Ogz+gA20IvQVw0px/jvCKfC0G/fz83MAZETqAAUYlEolYVQprAaU+zABGEuMMyMAwYSBgfsjb40g7nY79Px6Pm74E5TBsDPfP5yBuxbDFYjFTtrdaLUUiER0fH1sfgZOTEz148MCOUMUhZDIZ68yIQQe4YmDotIbR4X4BWjg9wLR/zkE690W6zs7OdHZ2pr/927/VH/7hH/alBlgnPm/PfPM6QDuVAHT03NvbUygU0szMjEKhbk037XQnJiZ0/fp1HRwcWGkbTJR3eNevX7d5oNSZdegvH1nipLxgWeo5Cr+e+axIJKL19XVzhi+//LKVQyMQ5JnRAGBbG42G7t27Z6XUiHfr9br+6I/+yMTHPvVJMADgJUijRh2G1+8xcumAIqq7CEZgipkT75Q9YOfnsKKcnliv1/vmG/EipXHNZtOYaJ8y8ekzAhfG2+sJWD/ch2d1sLMwrjhcmBJPx+MH5ubmtL+/38e0+jQk38V7vHN+66239MMf/lCtVrcaJJVKaXNzUw8ePLCU5fHxsa5fv66PP/5Y6XTa9HOUCJJqIT1M1RdpGtaotyncj2ctGEf/jF93feNphxj64+Njra6uGsVBhMnrcMaIzKDJPJXLjfhzDnyk6+lXUgXkqNlk/mHm5ubsIXHyg3khBglHxeQxcGxwkDoVCsFg9zjhcDhsNeKdTkerq6vW9pcNK+krwIOfQ53DrtCQJplManR01HKldBOjOx0tSdFtwDgg8iSXh0PHiZOnH+zvzdh5ZOsNmSQrCaJVs9Q7cprN5lErlDaOVur2iACQ+JIaGBS/Qfle1gdjB6L1lB/rg+eFbh6kPFH+A4R8cyTWKNQkG50ySnoZ0DP+9PRUU1NT2tvbs34KjUZD29vbVmnQarWsHwb6h2g0amJbP8YIf1ijgAb/3Bg/0gTeMXlty4t0cUrn5eWl3n//ff3Jn/yJRcOzs7NWXUOEztkO7Huadp2enppYGYeCsJA9SXTsI1C0ULBKCAwvLi60tLSkGzduaHJy0s6L8IwX6wtbwr4mCMJuQKvzXLTmHR4eVj6fVyqVsi6g5PZjsZixBFJPN8Be82W0r732mjUH4vekMllDrVZPbJ3L5azc2VcNYB+mp6et7A9AhJ4C4M9eGaTSfbqOFIRfm7CkNIZjn7EGvIbIH8PM+RPYet7L5YXegEnswKAt8Iwx9gpWhnWBHfE+hXH3dnfQgXpKf5AtYqzefvttY5Xa7bb1jaEjqiTdu3dPt27dUqPRsNQkDBcVM3fu3NHMzIyazaaVPD9+/LjvRFTPznjf5kGVZ6+eF1g8FxAQKZP35LwCNtXp6amVPIDeMpmMVlZWrHc7qn8vCpG6YhapKzyjUc7R0ZG1peTEOARsnqYCfb/yyivWp2BlZcWqBwZFMtTXe4oOh9But+2zQZCFQsEiAN5DPfLk5KQ5D1IZvI/XQ3kh8iEa73Q6Vn7FM/M9nDlAzgqdAwut2WyaKGdsbEwzMzPGGniVqc9LelYEAaAXmtCMhKYlR0dH1hsCwRVj75G136i0bcVAYkT4vW+7DCDwFBdCVMYBg+rFQryH9Aefx7zyLDw7IIhNxaZNpVKm6pdkvcvpuomeg+9HYyDJonto5mq1ak27IpGIJFnrbkoWidyoSBkEONwXa5bN6x0E4wSL8CJent2jrBNwenFxoVKppK2tLe3t7ZltKRQKWl5etkYrw8PDlsbxaSjyrm+99ZbS6bSq1aoeP37c164Xx4NuyZ9o9/jxY7377rsGAH2lgN9H2C8fWHhbxJrzQQad43wTIKomsBM+jeDLkAkeJicnrQLLp5M+++wzK3P1LEW5XLbe9YCDZDJpwKjd7h6XTDr4e9/7ngKB3hkavkeH1O+Q2+22SqWSfR9BCmlZH4SVy2U9ePDAjuYFUPvxxG61220ryfbVRd7WDP7M+xKvSfI0Oe/zjNCgXoJ74b4BiqTyPDBhXxIU+zN6JJm9nZub0/Hxsa5du2Zlx5SFc78ApFKppNXVVR0cHFi1AQEcZ87gy+gLkcvldHx83KePYN16UDKov/nHMIzfCAhAXZw1MDMzYxTwxcWFDg8PdXBwYINZr9etPI6aV9/7GceIMTw7O1Mmk7EUQbVatbwNtMjp6anlBxl4DMq1a9d0dHRk9+yjaaJcaDAU3DhBFgw5ZBwSdBfduSSZYbl+/bpVCkDzsVD4DkRTGA6iXzadb6eLyI62xWywXC6n1dVVS5/Q55vzyGlwAkvgHT2Lqt1um+gKg9dut03c1Gg0rGNksVjU48ePrYSIA5iOj49tTKF+odRoPOWFOZQUMg6gZ6hef3G/viMdi9+rjaVeiZ+PpqVe3wlJlr6hTA/DxhzByvC5lLdxNgXnCHBAEwp1bzQQAOXzeetFT8kcZVSUOvr8c7PZtK54gD0AC2uV8QJcMo8+1/oiXkTysVhMhUJB/+N//A8rwc3n82q320bt04Hy8vJSExMTfb01fH4f6joYDFojsSdPnlhQgVaDyOrionsoG6doskbv37+vP//zP7feJIFAwCh1gC1rc9CBcE8eBLAPCAaGh4e1tramZrOpW7dumTh5dXXVwAHpAcCs1GvhzT35dAoAcWVlpY+xkGTpRkR9VBJhf/b3963pGwc3+dJL9qtnBNkvpBkYV+w8jpr7evLkiTY3N60PA3aBNC7sIvY8kUhoYmKiryyT4MPfBzbAOzafs/c2AcDNHvPibJ928HolSSZKl6RkMqlCoWCt0PkODsii6RWfcfPmTS0sLFjX3ddee81sIz1tPLshSZubm0qn0woGg5qbm9P09LSuXbumer1uKV4vqKedNvfj2d7BtIYHAc/67mddzwUE9Nwm2uFLyL0TsWGscH4scq8UxwFDa4HCPJJlI1KKyOfykNBZRH+FQsEoNCYeNsLnlfzm9dQKix8KEqrK5++4X/KPTJqnYgbVrN5QkK/GKUBRoQoGKPmc4+TkpJ35DSACkKBe53c4O1+778UyLMTh4WFrQc33FAoFe/ZsNmtHS0MXMgcYJ0/JAe4AX4ASnpF5Jwpg3IkkMKBUVWCQeAZvYH1KA7bD03SATmg0aodplgSIoEQQ40C52/r6uk5OTvTkyRPrHEiTIsCBL10DsK2vr+v69euWDllcXOwrgQXcIXgkQvIqc1gnLzCUeqInP24vKkMwNDSkV155Rclksm/uaT8OaMW4+nIuP//oQwDqOzs7ymazph8AOMOokfv21DeHniE8JPhYWFiwngb0h3+WyFHqr4DwLM4gbR6JRDQ8PGw9DwqFgtbW1hQIdPU80Wi0b98POiee2Ud+kkz9fvv2bTP6/v3+HqiuOT8/V7FYtFbF7AMO6WJevAPzTsVX9+DIAWWklBuNhunOKPNljH01mO/ESZM7npUxxk5iy7zwXOp3cFyDaWJYR7+OKLv2TIJ/D+NIKgWhOD0R/L/93N+5c0c/+clPtL+/b0fSc8YPKYFBnUEg0G1jXCwWtb6+bqn4u3fv2rkmOHz6PZC69o59MKXBz7ye4h97PRcQTE9PGy3HpHGDHulBdaFWBQDQdY9oqd1u9x3iw7G4g60WYQYAEDgivzCvrrrd3YjwWQz8wYnhsJloBmuQBpR6EQBaBup5JVmXL1gGPgtUzWLC8Q8qUHFgRB5e7MM9eEdxfHysfD5vlQqgZX+ohgc+Uo825x7YvD664vXDw8N2FDT3BPL3ghs0BzjiUKh3dLCPnjyVx+X1BjhINqWn4wB0zO+gweW9zKe/mEfPljBfPgoHUFKuSknWxsaGpV+krp4hk8kY4AVQoISHPeLfRJxSt8dGoVCwSAcQwNhWq1Vbr6xD1pTPUbMGSdd4tulFvBYWFuykPtaUT5UwXhMTEyqXy2q329bNLhKJaG1trY9tq1ar1ttgZGTEUm0IRFutlqUFfBCBMyJCxGa89957+nf/7t8ZeACMAZYJMmCbfK8MD1awI6xZnJ4/L4HACBvp9UZSP7XrnTHr2zONaHVIxQUC3Y6mPgjb3d1VLpez47Ovrq4sDUO6DyaC72GvcwUCAQNVkozJRHuTyWS0tbVl9wU7xxijzYAd4+cAL9KKPufv74k97XVkPqXhKXJsjB9TXgPVT1rSH17k55G/eUYPyAiyEomECoWCrq6u9PLLL+tP//RPje0jdb25uWlpGuYJX8Q9EcRw4mO73S2H5YRHXxVBmsBXbwwCyMHLg4F/DEB4LiDgAA5QNfkznJenxrwymi9FQMIGvLy8tBPHYAkwfP5UNxyg1F8vCvUDQ7C7u2v1vd6getqfTcq98nMWDZ/LvzudjrEB5ItJJ3ja2yMwwAvvJ4IFdbO4EEienJwYICD3yGcx4fv7+7p//35fWY/UdZ4YABY/98g9DIoruedWq2X5xaGhIeuUR2kXn+kpUh9tST1hG8aU+fWLjqiY3DoObRB88UwYby5vEHhWHKdv58wfKDRJtp5geog2iWIWFhaMHk6n04rH49Y3YGJiws5koBFUp9MxkSuASeoaxcPDQ4t+gsGgMUfeMNKBDdYFo+uBEyABw+PPzfDz8v8P0v+ndK2urqpUKpkOp9PptvWNxWKampqyNQ9Tsry8rImJCd24cUPxeNx0B9iWarVqff1zuZwJBqG/cZyDojhJffPBHHz44Yf6D//hP/SB19HRUWtTTnDBmseoe+DKXufiM7A3MGroJjy7wJryFLB3aAB/bCilrru7u4pGo1peXu6zb/wdDAb16NEjvf/++3b/ExMTGhsbUyKRsICEPe+Bh3ceBGYAN6oPUL1zuqlvLEaJI5+BU8RZIqj1ZcBc2B1AtR93Ps/PqZ+Dwc9C+MmaODs7MyEmz+PtL//HuftqCq4HDx5ofX1dExMT2tjY0Pe+970+PVowGLRjr0lHBoNBJRIJlUqlvj4vnU5HP//5z/UHf/AHdlwxdqTd7lb3AWqpmPK9Tbi8P/KpgUGgw++/7nouIIhGo1ZqMjMzo3A4rEgkolgsZmLChYUF29Qs/kgkYrnai4sLO6IW2oxT8qBucCA4fGhobhynOrhAnzx5ou3tbb300kt9zAF5SC/c8TQNm96XqbBoeB1OioGlIc/i4qKSyeRX7of3QZmzIUh7cKxxoVAwB0AtsZ9canhPT0+tfhVAgiHCgLD4uUe/kXkNbATP7Xte83vGGvqP10u9trP0ZgCASDLjhiFnDr1gkrGF0eBZPADz4+ibjmAAWOAAKKIMDCr3yf2Q0vJgEuPCwSWDvQCIPhgD0mQ8K0p1hJiITxFi+TmBjUBPwQanSdIgEwLzwti2Wq2+NMqgcOxFu66uugfH3L17V5KsfXc6nVa9Xtfo6KjeeustTU5OmkAZJgzRLOlF9lE2mzXxLRUIlUrFmB5ocX8PpCQYU3QbHMcbDodNjwTVOzw8bGWBrCdJxsINGmV/sZewhbAbR0dH1n/Ba2I87c96JX1K+d/lZffgtmw2axF6IpGww7N8lI/zPj4+NpZC6lVEMSaDdsR/hv89e4W+BNTLSzJGkSAQZlOS2Szsr9QLfJ4Vwfqg0jt5bzM8APPjDviSeiWivA6maGpqytJ46Nz4DM/KnJ+ff2Xe+ZxUKqXFxUWNjIxYKrDT6faQ4QTPVqul5eVlK0P2dpZ9zjMzd9gf5p81Q5Mnf6gcY8J9EyANBhv++qag4rmAgMYMIyMjisViViMKuiMaHrwRxGvP0gfQpQoBoUenlIx5ZONziSxgBjWfz+vg4EAbGxt9OXOiYtrJ+sHwn8tiwhB7hOUjCN7Lud0sBCJzNgB0I4IeDBSG3Z9HHQwGtbq6qng8bsaC6gUiU8r9oNu4DyJyctce6LDQACP+2Euen3v1tK2nraE62UhoKjwKBaRh8DBeoG+pV7ZKdAI48tTf4Kb2hoh7g6qlHl/qzzF61gGjxHjxPVB3nU7HqkAkmdHnNdB0foPBOgCuiPAODg60s7Ojk5MTHR4eWjkt4+4FlgBTzyBJvbJQ/xxcniHAGL6IF7nYdrut2dlZ0+HAuvmDYgCoVL3MzMzo4uLCqo6oOOCs98HgAgcr9XdKlWSBBP/2189//nP9+Z//uUqlkjkc9iosGFG379DKGnmW0JA0E2kf1jVBDHoTqedQSaNWKhVLpzI27A0Cmd3dXUld8dv169etoZi/6AXAvfBdjI/UX8+PDeH3PD/7G8aN6P7q6sqYH29/iezZpz43778b2+Pnyc+Pz//7vD/BkX+NtyXMB/fF5yPo9t/DvHJffgxh7nz6kmtmZkblctlO5cXR05iu1Wrp5OREyWRSlUpF29vbfaXHzGe9XtevfvWrvuPjuS+6pJ6dnVnvHXQy3Def5e+bdenZD/+7r7ueCwgGS/WIgBETnp6eWvclBpcyQU+dguABBGgIyNX5HDvUNPlfkKBHlzijRqOhYrGoVqtl4IXPolGQ7w8ADc1iYoJ9HoYNx8WCwqFvbW0pFouZ4QcxMya+MRJ/aMbD60mJfPLJJ9rY2NDo6KiSyWR3Qv5PjTAiOJyVbwft+z54Z4/DxYCxsXGSg/k1UgXk73DsPq9ItEYekZ4B5NHb7bY1LsLxcw/e6DIvUHHQcV4HwXPyf1gerxFgDfqN7AFRu92trEgkEqb3IA10ddWt5mDzsoYw9r6NKBoS74RxNjxjrVbTkydPzDnVarU+48QaPjs7M5HaoLoZrYJffwAK9p4Hci/iFQ6H+86Ox0GxZ6rVqj766CPdvXvXxqxWqymbzaparZqDxOGdn59bZ0jEtlIvneYb8XjDC9BgjFkbwWBQ77//vv7iL/5CU1NT1oVV6uWtPcsFEPACXZ8u8IwWr+Ozzs/PVSqVdP/+fa2urioYDFqFFT1IBkvvPJUfCoUsMse5/OxnP7P8ue/NgjOhRbm3o4NAhv3kI3IcPKkK9j/3wrP62nmpd2AZ1yDwkHopQA8GuG/2OXt0cA96u+3TLD41MBhE0szO67v8vhrUg2Bn0EsxVuzH+/fv9zVkoyomEOgd4U3PEqrS/L37Mbm4uNCHH36oRqNhzLJfu9h+75d47+Ca89ezwICfj2ddzwUEIG5Ok8O4YQwBBB6pcN42zgl6CYbAl3H4BYlKnn73OAYmlGir3W73RX8Ai+np6b66UJyTp2f9pPN8fpC8qMVTvjT9OT091eHhoT7//HPFYjF7P6AAZCf1yuTIXRM5e8D06NEjE/nQRpSxGB0dNWcF5QhAAhD4zeKflU3davW63PFz38+BjQEjQCTgNyebifGjaoJoDgM9PT1tDpUFyrj73Ka/AARQ5pKsYoBnGhQg+o0EgPALnA3K9yJko0si65dNBjXMWgTl+14QntWguyPzu7m5aeCLMkVfIulzi6wVr8GhEoPn9fNJamUQXL1oF0aQYIKe+ENDQ+bkd3d3rdUwfU+azab29/etDTbgoV6vW/mV1Dvu11fbeLbMR6WsSXQjnHVCKmJqasr2ciAQMErZOyieCfuIAxmMIn3Kyj93s9nUL3/5S42OjpoolXXj96oPmHDEAOpisWhOulQq6Ze//KWuXbtm6UwcP0I+uqIyJoOpDp5lkNJnbfsyTEDQ+Pi4ne2BYyfw8FErttWnaL0Oimfkuxl7H9n793qw5hlLSQbCfGO7iYkJGxf2FevAC8L9HpW6dpHSUQ/+CCwIpChtpdLCt9onWJidndXY2Jg1JvLAoNPp6MmTJ2YfC4WC2U8CMQJjn77wLADP8I/Zi8+7ngsIiGCkXpTJRLBpELhgUH1ZhEeYODeAAUeg4oBYlIgEvZoUUOBzQ51Ox84Fr9frFhHirLyzxsmyqb1BHvyDMzg4OLCI4vj42DYrOUCEeSx8xEteYUuup16vm7IdFTUNK7wTxwB4qhzn5gVSbGzoJt9TgfcyT+1225xmu93uc9r+nlnUQ0NDhnQ9EJN6NL1nIGBguF/f0MPX00s9wSIbks/zUdzY2Jg1XJF6lCLr0c8hwi2YDV8F4CteGBcvAmOevdEl1w+65wwDejLwOb60EmEsaSJAm4/A2D/8DgPp1w3j67UMzBn386IyBAA35pzmNhwpG4vFdHJyovv375tDPjw81OjoqHXsDIVCFonS8Iw0jNf/oNT26QECFi/+g3ljjN9++209fvxYr732mrFfGE+/tpgXv6cw7IO2qlgs6uHDh2YzSEdI3aNunz59qnq93hfNYjd90x4PMqn9p2cGQOG3v/2tRkdHdefOHXt2wDWsA+nHwRK+QXaD4IP0AGNGYMBYsifQAngHzuXXMJ/vHSvvwTYMAn/G3GunBteWp/z9vF9eXlr/C2wO342dJZU1OTlpPVlI0wDk6ZHgn4s5x/7u7e2p1eq2KeY0T9bP7u5uX+Xc4PhIPfsQCoVUKBTMnrbbbWPN/Xj59z+LCXjWd/xjrm9MGbD4UWUSTZJfo6kFuTUWHMiYxecdmkevkkycAwqE1oGKA5WyGYnaQIOZTEYzMzPmKAEh0GZMoKfBQXZsRBZbo9FQpVLR3t6e6vW6Li4uVKlUTABYr9eVzWYtf889e6fptQV899jYWJ+IBuEgIkyip1arq0bm9bAeHqF7ap55kNQHBoisEfixODmrAI0BC8azEZTl+E3LfA2KL73jG6QKWdREDkS8rCsPSLxoEoPNhvRCK0lGhRIZIiaEeeJziOa516GhbsdJf0om88f/ASNQy/yfOcYBeREgoMunUVinfDfjwhhgyKB9fUkSawRn453Qi3j5Hv2sH5hFHN3Z2ZmePn1qOhrmo9PpCnrHx8f7KGvWotSrwPDMDZenermIOH2E9uDBAx0fH+uNN96wFrKeOvf2AXDj7RNMJY2AyC0fHBxYiaQka1ccDof18OFDW1MwWb70EbCKnWq1WlpZWbFzShDGMn77+/u2nllDrFfOQWA9+gDIO1/v2Ima6etBwEe6GAbBlwVK/aXYkvqCMA8MvA3hvj1Dxh+fKuZ7GH+pd/KgBxetVsuOLvZA0DNGaFsuLy+VSCT61ghOmHvzoC8UCikWi1lnTIAoY4d+jfu7uLiwElq/5vj8QYft0zgwEdwHvWEG9QzMn//bz+k3MQNczwUEHpmRg/LGikn1HahwQF7AgoMEdTPw5NMZGKkHQhB7eVrHLygiPBrJ0PcAdT50i88t+1p/7s0DF8ADbYRBdYjliCoqlYpF0r4+3UePjA/UKIsxFArZM0sywyH1mmLw2eS2eR+LzdNGg5Q6RorxBDAAUNjMfn48WoZB8OkLvt+/nr+lXnkq8+sZGsaFTYkT9nMJ+GCuvUEZzG0yPp7i9ywHTkRS33yyETlBjg3nqxaazaY9C9E865B78doF/2dyctLKVNGyeHqVdAO5dA+k2COMt2eNmBtElS/ihVNhXUYiET18+FDxeNycm2e9hoa6/TYoNSTlSPTmWR2AAOvDsygYWz/WHlT5WvunT5/q5OREn376qaUwfPmwBweeUeLn1WrV2DGc29nZmbLZrN3D8HC3/fLExITW19d1794961RH9O7vCXCAwz0/PzcHPzk5aaeQEqzVarWvUMo4Yw88/dj4/cI4YQcQ3yLq9CkExMoAN8bd72v2qrdH3uH7VAEBBb/zjPCzbIN3dH6v8HmpVEoTExN9c8d9cY98Dvub8UfE6bUhjA1rYGNjw5i7lZUV7e3tqVwuG/AiUCEIpHcA8/msqF7qgpSFhQVls1mrMlhcXFQ2m+17nWdePFgZ/Ezu+Vm/e9b1jYDAd7Xyhhvj7+vQyZ2glvWLwC90FiULns+T1LeAiLJ46EE6nEjh+PhYu7u71oqTnvxQ2ND4RKceFHiA43tNU+aDc7x27ZpFregcfGTNPaMZYDNx/LEfF+rkyUVdXFz0nYvAc/vGFIwhDA2Ohoie13jDBRAApLEwMbzDw8N20tjo6KjlYYmOGA8AC8AAw9DpdKzbHFE28zUyMmI5e+hGn77BWGBAMXoAH3J8zEer1TJABmL3f5rNptF3Uq85VqPRMFFPIBBQMpnU+vq65ftgp8rlsprNpiKRiCKRiJUYYmS4F8bTaz2owpmdnbU0E2vCt6fG4DH+rHGf8mEMPKPG+15UhgDDRsSJofYRK0adfPTs7Kw15vKaGd9UyLM/fu37iMgzjgBtXx0gde3Rv/7X/1q//vWv9bOf/UyvvvqqarWa9vf3DVB7ByX1Tjb0IINqIA9m0Ugwt0tLSxobG7N6dBw1vU8At1LvMB8ftMTjcT148ECZTKavtJf0m2fS0FR40DwYbWNP2+1uj4KpqSkbs9PTUzv7A+aLccR++Wf17B6fPUhpD1Y68Hw+isdGA9L5bv95Pp3jQQLsC3sIRkrq5dixUcyVT8/RV8SvW97jg6w333xTKysrOj091dzcnMbHx/XrX//aGj6trq7q0aNHqtVqNjas3Wc5ZuYtlUppbm5OmUzG7m92dtbWC/YSn+tBHfM/6Pw9O/D/pCHwNK5v4egpM59P5gE40IKJ8nkPNj6bzFPQODicAtEZEQYPTjTFiYMc1uEPh+AzMayoWtkUDKCPzliw7Xbb0gQ+2g8EAnaeOOgQ4QpGAfGhH6doNNpXF+1Vu9ybZxegsnzKAUU2Y+3TH9yz9NVDP3CsUK1EsNBakgwMkIv3Rpp5YHMAilgLRC1+AxHBwXJ4URJiUTYn0TZrDecI0pd64A+EzdrEKJPOYK3hjFmfGEOqPjAq9XrdKGrue3x8XNFoVLlczqIfaFvGhnFnjImqqAsnF9npdKxiwVd58NxDQ0MGxrygi437LHboRbyIamHpxsbG7Nhh1hDOniiW48cxqJIMHHAxPlxejzJoFFn7g2uQNTI3N6dgsFtKevv2bUtJeDDAd/vcLoDOp5TQ48ASVCoVc3g//OEP1el0LK/c6XQPAuL1fKdnQPgbYRwpMmwp696XsJJ6nJyctHXv2VqpxwBj3whQAMJ+7XtgBRhgbfo+C5Qne2repxIGWTxvq/hcz1h4WtzbOD6X+YNB80eIY0v8GPn78QCbtJ9nBADiPJNfZw8ePNCNGzc0NjamR48eaWlpSQsLC8rlcioUCrp9+7ai0aiKxaLte//M/rn8Oh0fH7fzUUgpA6bZS54hGdREDH7e4P+/iSX4xiqDQToTx8bNeHTlJ57oxi9wPoPcNw/lKX2fk2eR+XytX4hE0DQloU0vkTiLi/dBmQ+iTDYLTg6qmE2Aw4Nx4JQ8n1cE2OCQPNU32GAFrYB/dhwG7ABsBpvI92SHygwEAn29870x8KDLR5w+1yb1IgTACxGL1EPzpBFwin4xX11dWUteQCK5/GQyacCGz4JuZL4xRn7h+0XrIzMf3bAm2MgwJV6Y6XP3NBCiKQz/B4xMTU3ZccnT09MKh8P2/VK/UfPRCnuD/C+aEFqysn6hYVlbnlZlQ7OHfO8F1sTXiapehAuHWavVJHXHcGNjw9gqT4k3Gg0rHSRKZUwAqd6gYot8hCT1WAL/d6fTMYbAR41TU1P64IMPTBCdz+cN1Hmb02w2LeJnX2KLADRSj53j31J/t0HsDL9jb/M6/z7vSMLhsJ0T4G0u/wbo+L0NKMe+YL8QGXLv2JPBde6ZFy6fAsbGo+kBfPv3+P3oPxswgmMfBDge8HuWaDD9QO8W7Alrzu9VXu8dvmeKWTM+GPFpZ17LHL/33nu6ceOGpqam9PDhQ01PT9t5GI8fP1an021rvru7a8/j16zXETG/wWBQuVxOIyPdk3RXV1fVaDSMzaSXBc2JPDvix3Twmbj+MWmD5wIComoQJl+AA+TAI4waEwqt2+l0+oRdMA1scCj/VqtldDPleZVKxdrHjoyMWG4XyiQQCFgbTnoO4CgwQEzss+ggjzK5PxAq7/GljpJM+MUC8dGnR/RMLpEr+VAOKeI1ROS+MsIvPEAPyJz7wOnhzBhHHwXhvIlauD+MACkKqcckkP7A+cD6zMzMqF6vWx6ROQBswBJ55TZjA7h5VpTnnaFnPNj0gDt+PpiP9CyT3wzMB8DQ03WFQkHZbNbOqTg9PdXk5KRSqZRCoW7vgWg0qmg0at/NsyCMw5gC5ILBoJ2AOD4+bqwD88K65ax37pnxYaw9/UcqAoEZ6agX8RosN5VkTCJrHkfJXO3s7PSxUt7Q8TqvO/Brwu9Rvp9/k1Yk/dlud0//bLfbxhL49ejz2ThTdCDMlbczUn8acpCtgwFh/n007Z2DtyP8fHl5WZJ0cnJigY13MtgRbBhB18zMjAEymqOhY6ISyOfpJfWBeO6Dy6dmeAYAD/fNnmEfe7bDv47P8QDCjxs2DuZl0IF6kS+f4dMafL/Pt2MrBtPPg2uKEkHu0XcIPDs70/379/X2229rbGxMe3t7unv3rl599VUbO46uxjcOzqe/Z/4ul8v67//9v+uP/uiPTNxO8IRPCIfD1q7bp035jOelBf6fUgbQUN5Io6Sem5vT0NCQoXqi+UgkYk4f5+yNNcgLx4jhJGqmC+Lg2dnk44mcQaWoj6empiytQU8CWiYTYZPG8MyEpxwHF6qPysvlsh3W5I24R+hcqPRbrZY5fU7AIq9FlDI8PKxUKmVjCOAql8tfiYpAwrQpvbi4ULValdQTwRFx8T6f14QhYKPAdACEyI9LvQ3t0Sd/iIT9nHp6H7EVYr5ngSUcNj+DcWEO2exc/EyS3QMOEqqTDVsul1UulyX1GjkBYBuNhra2trS2tmabjLx2Op02B+QdAvsAw8n9Mu6tVldl/utf/1qxWEyxWEyRSMT2Bu2deQ/AjfH1kSX7hjn6pg38IlwYaJpvkf7K5XKKxWJKpVKSeuCctGE8HjdHi1MAiLFPAKOMI+kb/zrWlNQF4YVCwdJlAOZkMmmpO9YKwj3uDUAPo8F+YP/79TlID+MMK5WKpah4nV8XBFTPYkECgYCKxaJR3YM0MfsFZ5PL5fTZZ5/pxo0bikQidqAPbAE2jOceZH0BHT6i9Qyk1AsaGUv/3B4AMPbYcW8PvPCNi+8F3PPd/j1UmQ062EHnCxDgPtGpwFZLvUDEpy5OTk7sfkhd+T157949vfTSSwqFQtrb29Ps7KyWlpb0+uuvm7jQdyj1rJRnkXhervfee0+Xl5cWWABevDDcg06/3vzFWvJj+//EEBDx4Xj5/8XFhZ0t/yz6Zm5uzgbZR284CWps2bzkyH1eD4W4N5A8IPQQTmR6etrQMZPPvULt4dgZFI8m2XgMvM9d8e/Ly0sTQxIV2iD+n2f0KlbuPRwOa2xsTIeHh3YmABQ3QCgej5uB4z4BC17HwQKhpTHAiaiAMfSbEPDixXoeMHjjQg7XO0WejXlgzHGSAAufC/eRymBKAKPPnA4KvEDBvnzS02seBftx97/3ZTq+NI1NlclktL6+rlgsplqtZhQdII7v5zkGjbqvGvGfT0+OyclJOwfB05KMNWuZfcHzDdKsfnxwci/i5UsucUahUEgLCwtqt9u2nxlj/iaKlnpd8/hdo9EwQWyn07FcORoh9ifVCTiAaDSqk5OTPq0Sr2u3233ndczMzOjw8NAApS/FlfqNqwfO/hrMPZNG8kbcMwzPSnuwDpLJpHZ3d1UsFvscNZ9Fmov/X11d6f79+zo+PtYrr7yidDqtlZUVjY6OmmgatoD3eGDvo1d+N8jI+MDKA39P78OsYh88E8nz+sh/cMywITh19s/g/fo15NNvzD9jGQ6H7fuxL4PBId/ndVywWHznycmJCoWCjWm5XFY6nbY+Or5DKd/jNQ2DdD7jeX5+rvfee09/9md/punpaTv3olqt2tk2fv15p+/HzttN/7PngYJvrDLAmHtqApEfQjSv/vQRFJPnF1O9XlelUrHfEU36PD4bx1PePveDY/T0MZPtBVh+sXv0ymcNonuPLP1Ach/kyTzt5D9z0CiQ1xsaGjLRkL9nDAPnphPNQs/zrLTQJTfNxvA0qQc8GFxe4ytCvAAKMMGzeiDhUSnpjlAoZDlJ78C9UMgzMB7MsXYGFyNjK/VOUsSZs/E9jennyD8f89vpdCzKDIfDZlBYt4DSaDSqtbU1a9oyMzNjTsWX+PhWylz+WTzt12q1VKvVLMfrqWaU9d6ZYCAG85kwaMw1juhFLTtk/fEcsCVeQMixvdiCQCBg694DhUAgoFqtZg2+mNdUKqV2u21tX/ksKH4o3LGxMU1NTWl6etruB/U2oNUHMul02iqDAInsm8F14aM2qV/zwmt9aavXMvhobvC6uuoKkwlKvP7ER+9TU1MG1mFGr66utLW1pUKhoNdee82qndC1sD987xZvB/gewD2/531+7bP/BtMB7CEYFh8ZD46XB1T++RhHxszfJ3vQ2zwvcPTsogdhfCe/G5xPAqzx8XFztt5xX111zy24c+eOlpaWtLu7q7m5OWuuValUNDU1pVKpZO95VjQ/OGbM+dHRkQEAvtsHiF/HIA4Cy8HfPe/6xpCDDx58EDYylAiUjkdd/NzfDO+hccPk5KTRtj4X4sWIviMZkTIREwjOo0VJpvRlsr1gZRDR+jweC8tHJ2wy0B6bSuqBCiJxqRcJQuPhVAfTEz6i9nksKGhJVsJGNI9uA0YAtO1zdl7A4nP2UIN+g/NazyjwGY1Go4/eI0IFVHhWiM/zDtwDE/+dPlfJOPnUyyBg4w9szyDqBRB46hVmi+9n7hiroaEhazrEmQ5+o/nn4/Jrx69tfs46oZMeho+/WVNEtR7kegDEs/kc4YucPvAsog8wcNw4asYD6ttX5ngdAKVlY2NjOj09Nd2GTy0w5tVq1Qw6XS1Zr1NTUzZ3dE0d7AMwNzeni4sL3bt3zxg+7JJ34s8y6vzcByNeK8F7fJTsx8uPXyKRUL1e19HR0VccF68nJTaYFpW6RxR/8MEHikQiunXrVl/KjnHlXn16UOqv8vGX1708i5Lm2bwIcjAFMfi8PmjwAIvXeyDmgyLuE+DpmV7uz7/fa3l4Fr8fPbDwQlQfDPr0ydjYmJLJpHWlxe4Plh0zBt7++ef247e9va2VlZU+FhvbM/jer0sb8DzfBAS4vpEhAEkyAD7PgvP34g0iGig6nwtlk/pcoNRrroOR8M7NU8bcw6Da2m9Ob/Q95RYKhexAIp/795vSL7xBQQoD75EiC8YPOj8HVPjSFk4xHB8f76PEr66urLGJz/PzrBgztAlsgpGRkb5aZKmXU8I54SylHihCQe2jMQ8KvHH2bAZsj48S/Dwx9h6Q8H/fY4ENwRh5dmUwp8fGHjQOXABPryrmuWE0pH7DDP3sj3P1at7j42M7hIvvZZ4YC+/kuUj1+GgLAMCBPjybX6+sccbFswvMgWcQXrSLfeKdj5835tODcS7Saz6tR9kdIk0PAlivzD8gAIaM6Nj31uh0OioWi5Zu4vPYf8lkUnNzcwbO/XocDEQGKXB/3/wsGo3afuKZvR3icxivVqulxcVFK2vliOhBUBEOh41Z5dn4bpg0mIKlpSXlcjk7iwDn5stjPagYZP8IGhiDrxsPD/b9z7xN5Xn97wfHUeod6e7HCJCNbcSu8DlcpDj5GVoG7mNw7Llg99j/g4wFAJIAcW9vT5VKRScnJ9rc3NTBwYGJOz0I8qyRt6NcwWBQh4eHfSwk6RZ8q+8K6z/Ps5bY1cGffd31jaJCNhL/54ufRS3xWm/gmVgWL04PARiOF2dwdnZmuUCABVEwA+vvhcjTR5X+b4R4OEiQ8bMmwSNLqT+Hx2bxP8Mw+UXiGQPGpF6vG1I8OzuzlAfGjM/mbyIWFhxsijeggUC31I0OWHwXE85rPCXtn8sLozwlD8gDLCAM9AcaccFsoPfAmHhg4deJX5yMs2cLAD+MLZubsfR5uMFn9mkJqGLWigcqbKJisai9vT1jWXg2qD5/Gif36p+d56HygBQVgIR54f48HesdhQe8g3/4PA5KGWQsXpQLLYcHhVRP+HbY/ho0aAAKqcdQjY+Pq1KpWGSPA6fluK/S4DOxMScnJ5qdne0TI/OZPq1WKBSUz+fttDypt548UzAY4eHkB1N3kuwMFh8UeEfrjTdOr9Vq6eDgoC9VNjTULZdttVoqlUrGmPi1gu3yFUDHx8daX1+3VM3u7q714idg8hHnYITp2apBIOMBziDbNxhc+c/2IMB/Lq8Z1BF4kMx38RrsCM/vwbQHjN4m8Tk+9RgMdnvMPCtA4vsKhYI+/vhjnZycKBqNqlAoaHNz00qcfRm3n+tBkP8s1qfRaCiTydg68WnKwTH0///H/vtZ13MBAXljjz4YfJyjL/djc/jXcsNsWlA6eTgcoC9x9JvNDxxO3TME1OETKWNIidL4/mcpxGE/+Dd0Iu/BUKOql2RVEL7u1k8s/8bQhcNhE5jhsCj5aza7nfEotcTp+6iWfOf4+LgikYjlpyRZuoVDUDqdjv2OCEnqaRlY8FRo4PSIxHkmABkGMhQK9VHgGPiRkRGrckBH4HsVwGZgiHGeg0AAA+wjZq8S9wsZoODZBIwYhj8SiUhSn6KazyFKp6dGKBSyyKJUKhmNjf7g4uLCDizhbAmAjiQ7Lhdg5PtXcI+dTsfEZJ5RGtQ9eLZAUt/38J4X8fIsD/YBm4FOhQCANeoN76DosN3udgs9OjpSoVCwA9ECgYCVmVKl1Ol0rMGLr6jxDYRYt1IvuqKLIH1Orq6u+tIU2K/BenCADyxDOBy2PiTZbNbSIL75mKfDPeiVenZobm5Ou7u71hkvHo8rnU7r2rVryufz+sUvfqGJiQk7QCkYDCqRSJhj8c6PwCMY7B4wlUgkVCqVDPwzBh6UeAYAmzdIQ3uGy//Maw4808f1LKDg2Vrv8HyAyef77/bfy+f4YIjX4DeoHqACA+DOWqABlE8x+6A4HA5bO/Th4WHF43FtbW2pWCwqkUjo3r171kqf0mPSvYFAT3AJs8Ncce3v72tjY6OP3WRsfNDtfe2z5syP8/81Q0D+LRKJGDjodHpq+GAwaKVfOA4WE0YdKodoB+OKAfeCE+o2iThxZGxejvD0OePp6em+86N9GgPnjrNjwBlcf0AKxncwPYCxnpiYUDgc1tzcXB8F6lXNbHQv/MPhX79+3b6n2WxaIxxKr4rFohmQlZUVa2UKSCFlMDo6ahHQ0NCQHZXpjS2LBRAyPDxs0c3W1pYJ7kZHR40y7HS6+o6JiQnlcrm+kw9RuMKs8Hw+CuZvWAPmybeKxWkydjhwBGCtVqtPOInDZ5MSUSJO9QeKkHKhJ0WhULBzIojGfAUFmg/GC0r/8vJSsVhMi4uLJkhLpVJKpVK2ZlnnGCGaHVWrVdOt8L2sGyK3+fl51et125RoNOjEyXxRFkf6q9VqGXh90S7WCbbAA3yiZgSEAErAISCByApjCdgeGxuzw4N8Os3TvIh2Q6GQ2TTWGDYHHcnV1VVfd7mhoSFFIhFjJzHk2Df6pwQCvfMmWM+s+3a7bZUnfJcXn/mU3eC/cUDtdlurq6t66aWXND8/b04onU6rXq+rWCwqGo3q8PBQUtchvPTSS4pEIn1OA+DjUzWTk5MKh8N9B555Tc8gW8AzSV9NETyLlvZs7GAawNsO/x4fkQ8ytny+Z448s4YP8HZ5EFh7Zpb28j79yn09evRIwWDQAiTPZgwNDWlmZsZsHqwkZ3TQ4IyKulQqpe9///sGvCYnJy2oOzo60vn5uZ48eaLDw0OrUMAusm+elQrFHnH/+DSvVyCQHtRdDF7feNrhIIrlC3y9OFE+N0DzFgw4RtyzBH6C/APykESI0LgYFE/rSLKzAPwgYEgikUgfvYdB4NhhNjU5KC9K8/foaU7EI76kzeskvFp5bGzMzninDTKUJXlMDmQ6Pj42EDE7O6t0Ot1XrsUG8WkTxlqSNVvBUcFAsHGof5Zkzh3DyAIhf+pbDnsDPJgq8p0PWSehUEjpdNqekygZBobxwskFAt2yRRgDEDmf68fZGw/WB5sepx8Khaz/BOuTzUX6Znh4WNvb29rb2+vrcDg/P29pEh/B0BcCMSLGhmdknUtSNBq1ltqcwMnY+FSRp1Wvrq5M9MgaIJL0wtEXlSFgTv0el3r9JHB43rawxj3zxNojwmK+o9GoBRnYGN7jozuMuhdBA+C8s2T8sXHMEWsHxs+nPAbpdeYPrQL0PowItjUWixnwbzQaxhYGAgE7MAuWEMaORmcXFxd6+vSp9vf3tby8bMJI1m4ymfxKfwVKN0lh0HyNIAcGxa+1r6Px/eVtpfcT3tE/i3Hw/x/UU/icO3PkP4/3YSuwF8yXB2TMt9c6+e/1Akt/n753DToVPm9iYkIffPCBqtWqFhcX7Ttv3bqlUCikTCYjqdthkooa0j6jo6NWeeZ7W1AJNjMzo1gspkQiobGxMaXTaQtQEIZKskCiUCjYnpidnbXjl0lV0+GSI8e/7vpHnWVwdXXV14cAahrH47+AB+IhQWDBYLBP6MYks4m9kIiNjxPGCXggwHtBiaByHDMI2Nf8Un8L4+Bz7Tzv4KSzOEgV+LOuB1MMAALuZWxsTOFwWM1m9wx4UiUeGGD0iRR9ftyXu3gmAsDFBgqHw315el87y+fjdKD6Eb+hm/ARARuHVAwLnaoOHDYg0DMiRG6+CoLx4xocd4+6oWL5ft/QZ1A4gzMn8ufylS/ki4k4+U6ajqTTafu5L331gs1SqWTzx7wMDQ1ZLTzzjUHnkBgiVtZhs9nU0dGRrX/mF3CGQaa0TeqvjvGpqRfpYjzRhviKCl85JPUiQwIKD3p9L4Z2u21d9xgfDwa8DmZQpCj1crasvcH8eSgU6mMyMeKJRMLYo62tLWMMsBXsPQ788k4a+9ButxWPxy2dyF7ge1utbv8SDkLCSVYqFRUKBeVyub7Sx6OjI6XTaTWbTbMvfn9hI/l+5oHPJM0YCoWsWgNb4nVTnmkYdO5+DAZTCYPal2elGvzcexbBPwM/py8Er/WA0qc6uHwaDrvEe7HjjBllqawhL0iFmYZ5HR0dtbngFMtSqaSzszPNzs6qXq/b0fbYkXK53AdosMPMjQ+OTk9PdePGDb3++uv68MMPTVR6cXGhL7/8Uu122zQw/rTNi4sLO2ab8aV3jaQ+Wzl4PRcQgI5ZQNyoj559T24eEifP5LTbXWU7yJNcDZ9FXpbo2jscH7V7mgpED+L1dDZNf8bGxjQ3N2cRG0iJSNFTVNyvFxV6wZcvkySCIVrwOTDG6ujoyHJUoEBKnTqdjh2vGo1GdXR0pFwuZ2OCZoBIEhp1aGjIvpvIhg5kw8PDlvP0eVo2Ac8yMzNjkQLAgPli0Q8NDSkajSoQCKhcLhsT4CtKuD/GEYPD3BKRDOo+vNHAoAHoaCfMmHkaEPRON8XR0VE7Xxwgx7ogWvc6FVgMnFO1WtXp6amdt3B1dWUnjFHW6scGOpW17xE+YG5sbEwLCwuKRqNaWFiQJDvYBrbEV51MTEz0aQtw+l5fAcCkbv5FvIhyJfU9G4FEu93uU/17ncjl5aXleWm8wzplfftSO5yf1wp4vQLG3NfDQ/cSSGBoCTrYP6+//rpu3rxpxn5ubk6//vWvValU7Fn5ftiy8fFxTU9P2/NwBDYHnlHN4G2r1NXBTE9Pq1wuW5dVqmFgCcLhsIrFour1ukZHR/X48WMdHh4acKVTntTreSL1l6nBhvgjzGEfAPQ4YR9pe6fuNQL+4vU4IM8CDTr9wdTDIKCR+lMGPqWD/xmsHms2m2Yv2feDaWFYO2wzKcvj42NjS1utlh125u+XPU0AlUgk1Gq19ODBA7300ktKJBKq1WqamJgw5tEz6KlUyvQpjKMPsmKxmP7gD/5A5XJZExMTWlhY6GNp0bBIsvQ5QNSLwQn6hoeHlUgkvjJP/vrGlAGOhMGG8uKmGCQMJYOL8fSlHkwChp2z0M/Pz1Wv120DMUhEWDSI8FQWCxMDgjP31Pr4+LjC4bBFbZJ0dHRkrX9x/uT1WAD+e3DwGCOiFBygR/c+yq1Wq5YLJlKAZiLvjPPf3983ygcq0Xcr9AxMu9225k5UIOBcpV6+FtQJpQpLsLKyYo788vLSDmshf85nkr+iRBERFPOLIWu321ZGxZz5xc1csaG9uhcVOEBnkH719DxzwbrzgANKFW0LIBJgGQ6H+4SmRPfHx8c2N4wFEZl3YDwHUevk5KQ9x/T0tO2J5eVlXb9+XZFIRPF4XPV6/Sunx/GM/AFIAGIBV1Ivz0v/icFy2xflOj09tXEHvPryNqm/oqfRaNipdVxQxoA15vLk5MSEgTh+oiwiewAqItNBYTK2hPXLHj8/P9fp6anC4bDeeOMNra2t2T5+9OiR7t+/b/lhAK0kCxp8FOv7rMBa+Iohz2Jw7zs7O9rb29P4+LhmZ2dNW4Sd5JTXTqcrPv7ss890cHBg+i7sEuyV1GNIms2miWRZd+w99BekRnwpOCyIZwKww4NsixcQs/cJpHhOnDl5bj8GjMlg0AmgJCAjaPJjyb+9D2Pf+/U2qDWBHcBnDA0N6ejoqE/s51O2gAMayE1OTmp/f1+//vWv9fLLL+vWrVvKZrO2Pmu1mq3LSqVirDfjNDw8rKmpKb377rtaW1vT1NSUqtWqnYkTi8VULpe1sLBgLOTISPesn0QiIanbZrnZbFpZLqlh7NfzUo/fmDLwNessBoyup5290WOR4EjYCOTNKSGkJMPn+IgKMObQ5Wws/wcanQYzfrHwfThLJtRvAhYe+VtaNEsyh+pzVHwuUSQABE0AizQUCikWi2lmZkbxeNy+E6PD8cOdTsfQvzdQvq0qf+P46/W6qtWqRbiNRkOVSsVoU8YepoY8Et+HIr5er/flylHaszDRevi0hReugP5jsZgmJib6+h2wgL0g9Oqq22uB1MWzUgG0UsUpsp4wNDgUSX1rkbXB/cHIQJ9C+TE/oHr+TfSF8aM0lMOzAHY4jKGhIavQCIVC9jsUx51Ox3oYULHgm+OwQWEv+BljioHyorpgMGjnM7xoF86PqN1HOJ4F9CkdGAMuDxBgfjjhlD06OjpqQMGvUeyXb+0NoGedkeP3ER92amVlRel0WpJs7927d0+PHj1SIBBQOp3W7OxsX/dDADL7DSfN8banp6e2P3CWBCXYTbQvGxsbJl4LBAJWzlYsFnV8fKxYLKZgMKiTkxOVy2VzxjMzM8a+sQ8Jfs7Pz3VycqKtrS2zBV5wLfXO8fDj6NOaAHvpq0p2nLBnbtjnnl0GCDD3vIc/3k57+8Z3efCD/WGdcV/k7z3Tiu0gem82mza+2DLujfU2yGJ4DROBK063WCyqVqvp9ddf1+zsrKLRqEZGRvT06VMLPDwYw2dg6xcXF1Wr1fSzn/3MUt0vvfSSrl+/rnw+r7GxMc3OzvZ15CSomJubM9uBvQbctVqtPkbrK3v1eRsZShSHzyCAFokUmSgmFXQ5PDxs5RhMNKgVig6EgxNjcfAzHzUhFmHDxmKxPgU7ToN7OT8/1/b2tlHFjUZD2WxWhULBDAhH0oZCIdtQLAQWnCTTDhBRA24Gc89eOFev180pVatVi8rpI87nTUxMKB6Pq1qt9iFlEKo/oAmDhOPa29vra8KCQYI2GkTOBwcHRoHizL2mgYjX5035f7Va1cXFhQmgmF8oc6JpaE2iYNgHDA4gxIu2GCcifr/WeA2pAowJcwNQwuhjEDBy0WhUUu9sjkAgoEgkYoaTtbOwsGAAFqfdbncV4vF4XO12W9PT03ZvsCVDQ0MG0C4uLszIkL5iboLBoDFE5LgBO4ARIiifu6xUKhodHTV68EW7BkVqgBzWuU8T+FQekSSHRaE/uLi4ULlcVqFQsM/w1S0YWNakj44Zb/YsIJM0GYEOe0/qsm4ffvihRfcHBwc6PDxUsVjU6uqq6YSq1arNK3Qyjof9kkqlNDIyonK5bFEoY8Mck+Mm4GEtSd2Ogzs7O5K6OphSqaRoNGqpp1Qq1ZeG8yI9ApezszMVCgVtb28bM8le4Rp0yP5nHmQBxgiOIpGI2QkfHHI/BJE+zcDzs8/9usB2eQDiU478Tur1HEAIiB/ByQMEYI3wJ4AKglr0QkNDQ3buDvudMcV2UPmDTQ+FQpqfn++zYYjRI5GI7ty5o6GhbpdUGHQ/LpTN7u7uKhwO20mVyWTS/Gs6ndb4+Liq1aq1lcfpk0by/sAfAoe+6+uubzz+mPwUDoWbYgEh4GJgyNswWN5BeaEfg8DE4cwBCeTEiRhB//49RJvhcLgP1eEgg8GgCoXCM3MufAc0H8aHheNpnE6nY3QQEYnXLXin5cVQ9LAeHx/X7u6upUYAAeFwWFNTU0omk5aXvLq6sp76UNFsFqkXCVN3TdTK4iYSQ7Donw3HzryEw2HF43FjcIi4/AZLJpOKRCIql8t2Tvz09LQpVnH8/vnRNnAIi1dTl8tl1Wo1i5bZYD5qJ6KEoQCUjI2N9aVI2MikeRAFUft9cnKiVqulhYUFM5isQ07rhEEAuJKuInJnrgEHgCGf2mEsSddMTU31pV58FY43boFAwOax1WoZi0WUwDoAPPvGSC/ShSPyqRIfXfnoEkqcNYDIC8PuI1gEcKQCKPvDYRCY+Nw88+AjcgAYDsSXRnY6XeHdkydPbJ0yz0tLS5qZmemjpoeHh40dIs1YrVYViUTU6XQsR82Z9tgZ1j37W+r1gdnb21MikdDV1ZXu3bun/f19A94c1DQ9Pa23337bbN3JyYk5CvYHdg1gu7S0ZBEwAQfzwPj5/gQ+gvfspSS9+eabOjw8tB4r2BHGtN1ua2FhQbVazQ4Bg9KG1vbso2d5cGB8N/vSs7s+oPRaIs9ujo6OWlmyD14JQrCx8XjcAqJGo2HsTCqVMh9Yr9eVSCTMbksyG+XZDJ6BtDuADRvGs5yenlplEusc/QJsOroxdGDMSTwe19DQkNkuArRUKqWZmRlLzzeb3VN3/681BH5iBnOcsAYMOIvIN24BlULTDA8PG3KenJzs+wwieihunAWbZnx8XLVazZwDEcHIyIji8bhRzhhTv8k8/ezrmokEeQYMBf8mxw1ylKTZ2VlbGH4iWAjk+M/OzpTP51WpVFQsFpXJZGzz+VwbpUjNZlPxeNxoxlKpZHljQAcbbGZmRs1m91S9iYkJRaNRW4BeuU6eEI3H0NCQNjY2LDIHTLFAoMEBFkQlwWC3Mcr169eNqcGpDw0NGSCTevlYKEyMCc8C2vZ5c4w1m5qabdYV9+tPEWQsMKKgcABVMBg0g0ivCk/X87n0p+dgmGazaQfJ8PyAQCJGDwDJX2JseUYMrBcM0jsB0ApAYa8BHAARfAbfyxy/aBeUuCSbK1gSxoM9CFhgvgDxOHuc5cTEhGKxmKmusUnsLdrHchw7AjnK96Se2Jagw5+8yhoZGRlROp22UmNSUQjx2L+e/q9Wqzo/P7emVdgG1g3AgHw9zuji4sK6GKKzKJVK+vLLL/Xw4UOVSiUdHBxYipDU3/z8vFUaMd6tVkuZTEYXFxdKpVKmdYBx4Nk2Njb6SiNx4PSf+fzzz425hM0g9YpYMhAI6O7du9ra2tLZ2ZlWVlYsBQYjdnp6qmq1qmQyqWvXrpn2iHw34M13fp2YmLCxhL2AccFOz87OWlUbewaqnDWD3eBeYII8W8R8sEYymYwSiYT9DKBKwEiqEEDnQT73wxwxRoyx12Kcn59beon0OwCK9I+3s2NjYyqVSqrVaqZt82JKgips3dnZmSqVii4uLnRycmKs8NddzwUEfAFoC+NLRDk2NmYHi5CfAgzgyKihBkj4KIdoAaoHIY6PbHH8bDoMSTDYE+b5HDGOwjtIogbKJ6V+5apPMxBhe/GL1G11K3XVvzgcomOQKJEIizWZTOr4+Nii07GxMatN98gOVgW24uLiwignJo9F4YV3gAsWs9Q7EMZT8wARjBzPD+jxufmLiwvVajWb12q1qlwuZw43kUjo7OysTxwzPz/flxNnLkhF+P4HRPKMle+UiLFiHnxtvhdm+fkiQvSv4f/MH5sKxwHgwyEACrivk5MTAxuDaS7WZbvdVrVa7ROhTU5O2j3xvYBZH7VCS/P5gG70Os1m0xpDsQba7bY1l3rRLqJZImmEgd7xT0xMGID3qRPWFCwDa5qoi/0MeMPu4Mi9CDYWi2l6etqiRRxutVpVIpGweYUBCIfD5iBJrWH3uDeiNmwh9w1LGY/HbQ3zHMPDw9bwi3WA+NX3TvEC2Y8//liHh4dqtVqKxWKWyoWBQ6fAGvOHz7VaLUWjUeuFwv1LMord5/FxNKFQ94hqD+D4d7VataBO6q71d9991+aOvQST22g09NFHHykej6vZ7J4P0Wq1VCgUFI/HVSwWFYvFbC+xB9kH/MH2YCfQfSAsJbIGQJycnCidTiuRSHyFlQkE+g9ewnnz+fV6XbFYzPwLe7xWq/UJvz0t79cgGhT8A0CFMcc+AuR4dg9OPWOCNglBOb4WJpH9QyWBF/NSteJ947Ou5wKCcDhsX8giY5KJEKFgGGDEG+RziWwp3wGVgVC9qGJkZMQWJ8YSuogHA52en5+rXC4rFosZVcImId+M6I3FyaL2egM2gtQrM2SBsFGJ3tjMGAaMv18cGCyM3PT0tI0BzoP3Az7IPbI4QLWXl5cWPQymBaCbAUk4Yhyu1MsZMeaAIyJen56BSfHCSnKCZ2dndvgL18TEhCKRiC4vL/sMCgCAeYU2l7pgiggRRM1nsoaIsPkcHD20oB93Tw/6TQtgIsr3Bo25hFrzOgAYBpgCPh9A0Gq1bO68MJX8MKVknu70+TuiINYU80oFBAaZdYwxIvXBOL5oF+po1j8pK0m29mH5WJO+kgWHwvwVi0WL9Ov1eh9Q9rlvL1hm3Uiyeby8vNTnn3+uL774Qj/60Y9048YNW5O+jS8RO2kc1hLRJelP7Ae0rhcmY+R5Pv9zr5bHYZ2cnFgaJB6P686dO7px44ZpG/we571Sr+x7ZGREs7OzBiimp6fNfmPDPBMq9Sh5NA/YhEAgYJU42BHGXOo1csPmARwYE+YhlUrZd8zOzlo1FnYOtsjT7PF4vE94S5M37AK5czqDsl6kbl4ftph27ABRxmFmZqavtBibPDs7q06nW959eXlpqSeAKeM8PDysWq2m4+NjTU1NWSDFOpB6vgsGlnQ4zBXBsAeUMIVeNwGoTqfTZnsYc2zX4eGh2SJ82cLCggm/vajzWdc3MgSDZVzcLA8M7etpTSLyZrNpxs8jId8YgsVNuYUXceCUyb/wfsCFFytiqIPB3uE3GAnfCAaxC4uYwWHRs9GZTNgLegPgLIloYQYAF5L6DiPyOWIicU8DeXEaC9x/HogOJwglxv0x0UQUjBMOyJfZ4NT4nR9HvoeFB5ijnIbLG1uMJIgVQwO9xvdCY+HUPbDBQPOZGGre59cAeUOMKc/CmHgWCQUxrUFx4H4d+SgTMEQDD9YWiB7DyDx5Y8qzcQ+sMWhsnIAX53pH4NkQvgfn6Z0XucoX7YIFknoAgG5qY2Njmp6etjy3V4Jj2IeGhjQ3N6fT01MVi0UznjgB0ovomaSek+Iz2HflcrmP1sVWXF1dmd3x6neuk5MTo57J9zJnfq16oI1R9/8f1CeQloShAvz6nDcRu++9EAgEjMnD7mELTk9P+3o/+EDJgxw+h3uGteMPdhdaG6oem+A1WbyGAAk6nMZgnjGYnJy0zp8ENdiuXC6naDRqNoP0sqS+HiTsB95HEIL9Yp/DIPiusDAkXk9C+kaSgQbGBTDlgxjmCj/Aa3xZrAeJCMIBX9wXNo215eeCNcr6Yh0x9gRip6enJpyem5vrSwvwWegKLi4uTNv2rOu5gMCrXdmsnsINhUJ9al0uLyB63uVz6Xze9PS0IU+ifhYmF1EG+WIvXGQgWYBe7eqdo9/sPu3AomLjQRkDjFhwPi80+Ew4DO98vHDOo3v/3SwW8kncG0wFn+/TLixQNqsXT3mxDXlMFj/P6f/mIsJl/qgm8E4ZI+PnGkfsNw33iwNljH1aiXtgnDCibFyfJvBgwFcBMFY4VMaMSAbg6sV5fkMz7pKMkpV6wA8Uz2cCnnxkyqbzIiIocIyDdx7MvRdGsebpgujnhTXwol2PHj3S/Py8zSfGtdFoGGt0fHxs+wanwuXFa1NTU9YOnFQlRp45poRUkq1R1iI9CgCv8/Pz6nQ6lsrDOLMOoeJhK6TeSXTsJ58DBzByzgbP49c4jpO1UCgUdHV1pWQy+ZWUGuve721JfQwqthAnB0hgnVEBwV7hM6kG4h75HjQDjDvicZgIHwjh+CVZ+aIvA2ffcGYEtob9SzCJJsFXjmE30Gmdnp72NfOBWQMQoIXgXAzvFInsAUN+DBgrRMWwpB4ssNY8u4ONR2/BZ3gwymmUoVDIns07Z4AeYJagwb+G9UtA65l2QA9pfd+8i4oFDrxCuxWPx792r35jp8L/X3t31tx2klwPO7GQFCUu4E6puz3TnsU34wt/J39ch68c4bBjot3TntHGBQS4iiCB/wX9FA4warXD8V6M4mVFKCSRwG+pyuXkyayszBF5SRHU52hVjmLZYVJQBtV1Rbaz2awJLQdjwn0vn0ujBo6K8BNUn/P/NPBJM/scwXGtfP6MUhkM18mIMRmKpJQyImWQMlLIOUp6WrSTNCgjxCkrELLgHJU1IhwZXUtfyOGbX9swrStlTODi2pTFXPg59Hpzc7MACDlv6QkAk2yZ/0ynyDdTiFzHZFOSUVgu6mH80yBn9OlQE3RiFocyNFnExCC4znK+N0FAAr/7+/tWIOjaUH7Sx/kdMuq6X+sug1/96lft9MiqalRsyh65JZ9VczAu5yrCfnx8bDtiEshrBOXnmSt3HTJg/Y+Pj2t/f7+2t7cXmChBCYch/0rWOH0smeJRdkvBHwo4a1fYQLL8zTffLLBl/s4UUUasnt+zAvDmMBlVThvIsiNDW2bPmIGJd7RbRz2BvfWo/36/3w5mSxaQHKPwpQ5TtjFxWnRXzfUJSABI0qGy/bYCo+A5fbVsNzc3bV34GukYoHQ6fSo4VqyerFDWdbGzKU8552mbPL8TV8krOWJL1Hjc3d01H9btLvaS2NzcXGCgk7ldW3vqlPru3bt2forADSt+cnLSnhf7UPXl4uRf3GXAiFfN93Ebord0nMv5CULM+WVlddYkJE2fOWPXgC7zhQg7BWCMlz+TfzMyniGvmZ/J9+L4Ra5QdxqZpJMoYzpAxi+ZCYLCgGR0//j42KqZPVc66UT/CWT8PpkOBVAJOKrmHdXcM7sw5s4Kwk7hsReUSH7O9zjPnZ2dZgzTIcsJc3oPD/MmVJ4ZyMroOingXLvMhzK2KLvV1dW2XxcKV3i0urra2uImiCIby0xKzl3VvChWOsL8+5sh9i653cncZsfMTqfTKrnNTd4ro+avaejdkGk+zst6em9G1dylY0hdEO2Z07W1tVasxnGTx9lsvgefzqG4u915bt/1yaSdPv1+vx3zLc/d7/fr9PS0Dg4OFoqWGfyVlZU6Pz9vjjGZJettDjhRepHyzBbJZWdNTtowcjqZTOr9+/et/ocNc73hcNgc5MuXL2s4HDaZHo1Gtb+/X91ut9UZKbY059izZE6cnCpFkekJurCcJqSX29vbLVU3HA4b28COLRfZdTqdxuBMp9N6//5960TqvdgMNhXooF9+rzuu+SZ/GZRcXV219tG9Xq/Oz88bIHl4eKiDg4OWqkm7m8+R1wVYvEvWyeRBU1tbW22nxP39fQPQ/JD6p8PDwwbYrL9049HRUbPrni8D5s+NLwICggxdEGYG3P8xAhxaGvSqeddAgpttdd2Dwkyn8wNJ0mEsO2fXgTQfHuYHHbmfCfcMKtDR2hSSYnmOzOMkoFhZWWkpCM4mo0lRL0EUqWpCYb4IANpLXpIBkN9Lysz8Ezj3ypxnpnTaAv/P3AAejOPa2tpCVFRVrZFRRkfZB4Ec2B+N6js9PW0ywVCgu9D15pdSZFom59KzJLXOgSYV7DPkQY4zHSkAlyxUnl6WvQm8Y6YQquagI4uVOBrbZBM0e6fcsoppS2MINJKTTMO4Jh1KvfkaBzCZe8CrasEYb2xsNOOYKcQsejUHudtDhJ7MzWQyadQqnUlgJ7LNvPXW1lYNBoNmcOnYcve+h4eHGgwGNZvN6ttvv23Mpp0qoj9ytbIy70uAfcqtpCnzIvbhcNiYt2RNs5121TxgI4t0lW7Sd3LrPA56LorFrtze3ta7d++abbTdjyMFfOlS7tpRBC1y1e+ETUBhKzq0zsPhsEajUdvOOZ1O2/fV5GSggtk4PT1tAOIf/uEf2hqnn1FjQsfcW8fPtMnkSupvZ2enPQebNRwOW2ACdD0+PrbUhGfNepL0k37uPRV8q2+wbnRBjQA5t9soZSbtFZ9l3RN8q1XKFsyfG7+YMqC0jBnh4oBFiEmBEZIEAh4a5UFQk3axIBxudraDoJNJMAmU3P8JW7fbXWh2ITpM5J1sgQmkJBndLR9Q4b2XozmAZpnaB5aAG/Pl33JNaGq5QQbTd72Xd6ya10bkXFbNe4wzGnKNHKgiKu9O+BlhDs0aAkOZNvJc8lWEV+4qo2M0q7WA+oGJrB8AVDiGpORy7TudTstFmmfbxKzL8fFxQ8jWDOO0jNrVBdi3zXAkXavQZ3V1taVG0IEUNv+dzsS1EmiSdymcVHjy3O1229bXr20kI5K0svm7v79faO9NjsiE7yo4zloBRt1WMJEfm0SHFNqJ8ji29fX1GgwGC8/EGfnD2VpzOexut9uOv87Uj33rojMyJoJ1HXZSoMEJ2F3AAdMzEe3l5WVVzYMUuuE7v/vd72pt7emAHnUomItXr161Ob+4uGignm67f9VTgLC3t7fASJBV6RL2HJvZ6Tw1rUtbk7UzgFqyv1nI6FnZGTYDk7a6uloXFxf1pz/9qa6vr+sPf/jDwnkhaVdzv/1k8nTibAZAnPT19XWzh2wOeyb6TvaPjJKvlF1/kycp3el02lgmx1pPJpO2O4Fty+JnADkDVLbFfLCX5tmzk0/F8OmDshZleXwREEATjLIJ8VBuypBX1QINmBEg5TbRHJGfm/REeQwoRfPihsiY4iZNZHKyfznK2PswzBypd6yaAx8Ccnd313JUVdUoSgKcFCAnSlEuLy/b9pfMTVPih4eHVgwCFIiic59+Fvsl/cMgUIhlNsXcKvZZLo5JAZYGgFYZzWRvsgrXdTl3tHbuvxV1URgjc8UMTYK+rOBPBsln/S7lguBnDj4P9wBOyITWn7PZrIGIFy9eNBbE9VJmzCn5z1QKB0Wm3CuvBUQkiKVPhnekD5zF1zjIG0fgfYF1ToLsAlLkhbFH/XJoVdXmMGUfwFtfX6+dnZ16+/Zts1HJlG1tbS2kawDrq6urBgTs8Rb5D4fDFrFaW9soMRd2t9DLXLd8p2Q05cLpyjIDRd7owmg0ahX3QIeCS8BnY2OjRqNRC4IA/kxxypP3+/3m5Dc3N1t0bf8++aODWBANn7AmVdUAi7kA1tmGdPj0zhywhWwb+c95m0wmrfg8ewD89NNPtbe317ak3tzc/BU9zp4CLvTOnK+uPp0sSiadiOqcipubm7q5uanhcNh2gUwmk7b1MINoLNT+/n4rikw9lyYQgJDzXu+pENN66TcwHo8beFhZWanxeNz8mu/lrpXJZFJnZ2ctzcQuAZifG18EBCqoMw/C0GWLUIMyUjBCR5AtEgee0Y+oNwvgssCL88gCJPey1QNVmLknzzSdzs+OTsokc75JceUZ4Qx5UvhV8wY1SQcx4t5d1S5qE/Kj5Mm+ZKGivvi2FqmczRw7Y5JzmNG09wMm0tFyZJTVfa1LpiBE/RRsObWC+sKIcOS5awJaRxmTpaxJcL1c6zSk5t1aJJBzb7IhykNBitj8bjQatd9xNKKFXq/X3hUoyjymfGWelEYpvccy65RpNDm+qmr5vVxPzibzyUmJf22Dw6Rb1lUEmBFRVS28d7JdyeYo0qqqJmv+n6mji4uLBcp5uXhMdJ87WqS5sE9ZXyIqwzYBHo+Pj+1k1YzYvKMgBVOFEa2aH3Ft66Q58azqB6qq7TlP8OPaj49PDYi0SBfAXFxcLETw9BIlb97Is73+7GJVtevRI/Iv3be2ttb0+ODgYGFt6IxhXswnMJVbc4GVTEPTP/l1c+S5375929ZqOV1E5tg1bJz21e6DsSQ/yZ50Op06Pj6u1dXVOj09revr69YJ8E9/+lNNJpNWhAgAdDpPxY4fP35s78u+KOiczWaNNXh4eKjhcLjAEAsy1ISwycnS8iWrq6sL200z6EtQ8HPjF88yqJo3u8icJsPloRhjxi9/lg9AMDLFYOEyMk3GgMOzsEnzc3hJQxFGgMV3c8tdfj8p3ZxAwuXz0HGmFpYHJE+Aut1uqwA1f5RQRIB2Ug+gS1Y+u8gGjcSpmitzzOl5d44XKmVQMy2QzEoCssyfWzNOGUjymcxVVs3B0vLvra/P5meSRjeX+RnGCf2ZdBojYi2T7VGE4z0Bmm63u+DUsybEWnnvZGNETByMeci8oecQaeR6WGMsR94vmavc3SCa/lpHMj9ZFyLqVAcA2Nk6V1XN4ZL1fr/fou5k5LAQ2cwLE0e2q6q1FAa6MTbLdR6cE3vW7XZbysteeJT7yspTgxoNjfyx7ljGZTY1+2awq97Jv33m4uKisXxaFWM9BA1Z06PG6vr6ut69e1e/+c1v2hwlMyFoY8uTMcHgCG6sCQCAjlaDkNF+1eLujqTA05GJdFN/gRZBC9vMEXpXbBN/hJpnpxJ0AS/sbr/fb6DGfSeTSXsXz67OhEPOrX8Yv2RwNjY2WrdAtRR2ZriHdyfftgJ2u93Wwt48A4NsR8qI7beZ3pWOzVqw0Wi0kNL5ufFFQMCRLVfHcpqTyaQ1zkgUkgVionSTbn8nlO7Fc2945sLdHyhJx8A45H5WAm3CfIeDz+8nCPEMadiTuhTlEHSGeplC5jgAFLkiwiH3M5vNGv3T7/fr8vKy9ZxGUWbujYEAjswVRQI0krVJBkYxS85j1j5IX3BwBC//mHNMj2dEb6EvXZtTdn9rDJhV1YIyMvqQrPdNx8yppoO2Tj6D7QFuGIdkEfQzTyBJ+TBN5jLXlXwkEPZ97FM+F7mrmjsviuud6Zb/5zWtETr1axzO3MCMLLMC/X6/RZWpu5nyyTSia5pjzi8DCFGa+by9vW3go+rJ0Ti0hg3IGgZzDjSSE3rsvre3ty2lRhdR7uyYw8zoPLvJTnjvtIGAYtUciKPlySYg8fj4VJz3+9//vk5PT+u//uu/qtN56mh3fn5eFxcXbQva8fFxm/vJZNLALXkUObPTQFoya3Qnt1ADSZxt1dxWsE0JeNOXuEbVnF3zf3aWTUrgkvKQzYZubm7q6OioReuua/R6T0fdn52dNUbGuvd6vbYrJoOMX/3qV7WystLOkTD/ud3P7oOqOdMAWLx8+bKdJmuO2f+9vb2W+pCaSr9CHpbPo+A/Hx4e2n2X7SrAt7Oz086a+NJupV8EBAQ5I1FKxwlWLeY80X2Z6zYy3w4pMfQoOIg4FZzApuMzATlxrpXPkICFwGaED/AwQgxSTqz7Q7acAuOW9KJ58T1OKIFBp9NpRT3oYMohwmEoAKN0EuZEiiTZmYziKYA9rJy391fbwLlLa3DEy2wLhIl6ZOhT2bBAUHnWY/hMMjPmx78BytwBYG7IUM4v5TP3GY1UzfcMJ/XOIJIF1+CggAVyk+tA1lGNfgeIMDAMR3bAZOxcI+sjGHqUtOeazWYL9OnXNl69etUK98iQucpuf4q7slYj2aks7mMkzaWUFtDnb2tn7QFdtTHWm5HONBTnQ6aAXlS7tSNHIjOH0HBiP/zwQ93e3tZvfvOb9txV1Tqzem/yxbgDgfRWxXxVtRy/+45Go/rpp58agDJPR0dHtbGxUUdHR60rZFUt2GSOz8/J/Pb2dmNYnKp4fn7eKt7TN1gL+ir96p2q5vVY7CtfoH4q2VsMhbUiE+k/Mv3z8PBQr1+/braMPc6Ar9+fb/9GrVtvg18Blh4eHtrZBtIUGA5rj3lg40Xm9DeP0l5ZWWknV6obyPRgptPZqLW1tWbfjo+Pa2Njo05OThZkMAN3csNWZettfSV+bnwREOQiZ8GPkdRyGmyClUaNoGVex6SlA2NIM8LKiH4ZJBAchtj1TaKBvUgqPH8nCvf/rFswF5CZ3BxHyHkw+hSBEdI+N9MoVU+OTQFSOuXMJcqFM5CZrsm5MT+EOnNm6cyTGkth8v4KglLICKaK6sfHx3Z6GCXLKMe6KATLLURZ22Hucp4ZQL9DzScoS2o/I+ukotN5A4y7u7vNwEDj5oQDMF/YnJQDRsYzZyonGzpxDMARh5Gph0xnQfmZJ87aA9sjv9aUQeoD54B1yb3jVXNalA5z9tYWYM26E3KF4s8oHr3b6XTa2RuCj7dv31anMz/vRNpIi3KNYTgcOk8u1QYNh8Pqdp9yvJwdRgy9//bt2/rjH/9Yf/jDHxacolwyedXqnNyYM0dqZySekfnR0dGCY8co7u/v19HR0UJa1OFNy4ELm2kLIKeUNlqhnO93u92FnTa5fuPxuBXj+T4GVH1UVtwnY5ugnl4AbeoYgB86l31ixuNxXV5etug5C5Cr5s3t2Gy2K9uc033pGTsGAFmgTK1AFuvNZrOWvkmAZu7Oz89bTVsGidq+p+/a3Nys8Xjcjkauqtrd3W33UJfHr0jl9Hq9hTbHu7u7VVX/d4agak5pZhTk5xlxmUB/G8sggrJwcEn7UYD8f1J4SftUVaM/kgGAJDMi9D0G+XPUusVIhJzGW7TrMwAQpUlBIHAUOZ+PYshFE2I/M7cMGoO3DAKshR4HnJ5nyD+5XoBN1ZzCNsd5DKv3yvUTpXgPUa391xm1JQ3omQCvROQMcdabeNblupSfk4Oqea4xmSFGxu8onet5H4qetQAMBhkVrSoodK1kpFxDrphhTzBmzXwHUDA3AFhuJWXkP/feX8sAMJfBfTIAg8GgGUfybt7V1FTNHUPOzePjY9sLTxYxWd1ut4bDYWvTK4eqAJCzILeZnvA3MJhsF1bCM3BimRLr9/v161//ut68eVOTyaT1nFfL4xRCepbA2TXYCBQ1+0UflqNzc3B7e9tOeEz6WzpAMSI5znoG6a/19fVWeDmdzpuXdbvz4mQ6k7ZJdI7+Nj+cFCCgFkHgwA57p4eHhxapZ6FgplsANusmOLB9E5DLvD+2B8OpyZI003Q6bTsIrEvaByAF+4eFJa9qw/b399tc9vtPpzi+f/++hsNhrays1Lt372p7e3sBlAKDtil2u90GLDqdTp2dndXGxkaz/XyMbbiAgkAFs7GxsVGfPn1qfRg+N36xqDCpzqSPLRDBNllJ1RK0hRsGa5B0cn6eMfCZTBkwLlXzwhP/T6fieolO/TxztJ7JxPtdUle+A5EScsCAYU9QxAFks5J0hAQ46WzPmxXlSaWng+Yw3He5iDP/TopeEQ1jZt/75uZmW8fcbfE5IAGkZP+J3GGQ+UINN7KhTK4ZuWJgGV7GhwK6JyBJbryLd/TOWZvgebJZDcUxh0lNUnBr4hlTllOustI7D5vJ/ezWkiElN2SFkTEPnpFRzUjpaxt0idEl71XzQ3psebNWy8xB1XzXkyiejKnLqXo6przT6TRnkwGL9c2jlq23+SWn1oluyQ+rMcHuGT9Xb+UeVXOdTzuRlLafZ5pCgbHdEtvb2ws5f/ogneLZquaN5dK2oKAVwmURJbu+urrajkpOYDybzdpuJzQ0Jz8ej1uVfYIX18+UDYebKeUMDDlZ81k1B5Sicf1grGva5SxYzMCSLfYu7ptzhmrnTM2v4A61PxqN6uXLlzUajdq/+cJMe+dBb3Z/dDqdBgLVzpANz+xv7ILUD91JNgRjxD7aNYW9keLJI+t/bnwREGRVaR4SVDWnyS1KRlKEfNlQW3DGOh101TxiFf1yRMlMZPoh75GRYzIAmaP0x/8zx7jMFuRzcUDQJcolHZB7cqpZxcvxcrTeNe+VDY84tLw+QRf5Yiz8PyMwUae/CXyvN+8DwRDmnuA0VpSVM7dWWQQFAEh1mE/vn46cYTYvSXEt5y9TNvIz5CbpuUwBJWNVNT8/IQETOfQ5Ozy8WxoMxhCIqpoDAXPOoDBc5CBZJfNaNU/DmWNzX1WNLiZDCYyt09c4bm9v6/z8vL0zxzQej6vTmTdS2djYaG1wq+YptTycitNjczJqe3x8KuJNZoEumUdgoOrzx51ni1wGNg/mqarWdMf1OBxpowQayTamflRVe0/2hZHHcvV6T+2HRYLm0r7/09PTxnSxK6JfjB/Zo5NkTbV96rLTNJ3bwH55twQM6PW0+VXzoKpqse6Hw1fnwfZxbvbKi6yr5nbBz/r9fu3u7ja/pP8JcAOgLddaraysNNofIJEK4kDNC73HBAOfyTIAH2SCPSObwK17JMDZ399vz297YNU8SPW5yWRSe3t7jSUYDAbt55iPFy9e1O7ubo3H44U1yO6wAFSv12stnr9Ui/RFQGBbjpdLp5k0NaPnbxRtFmzli7sWxc5oLmk6n6e0afy9FIOclGxSRZAfJCsq9x6cR5uQ/rxNsIjcIFByhu6d+TS5OFSU76PJPKvny9RD1kXknFPcnA9zsayQybgQrmRqCMrKysrCSVrmn9CbnwQaqPLs3Z/7y1dWVhrFKApIFimNTxoOa57RvfsvM0kJFDy335FVn4Ps0bRyvmpAgBUyk2DKekPg5Obu7q5FSblmainITDIYZCRlxXvkiWyZNkP/caD2O3+NQ44TONOC2jkSZCj7D2R1uQpuxtznsi7DvIqikgHk6IDb0WjU5nU5neSeVdV6UmCAfE5qjQ5V1QJoS6BRNWcgq+Zy+fj42KL68Xhcf/zjH2tra6u+++67lh8md+j3qnmxXq83P8I4GdJk2chpbrXLgtUEmFhCNspWSs/gHTPVmlT6ctDm/xn5A2gcvoCCvePYq+Y7kayP/0un0S8AJbeX0vtkN7vdbksHsKuj0WihQBSY4rDZB/ZVbYl7Y5Q8E1tsJHO8sbHRGAX2Uq8TrELKGtut/ix7UWQ3yTy90iYAwdzl5WWNRqO6uLiow8PDWl19Oj/iP/7jP+qf//mfP6urv1hD4MUIRubNlw171bwTFKFLxz6bzU/nwwYQCsqWdLcFr5p38DOBBA8tm44kkWDSkwoLCSpahtBBegBKokbXylxdshMEL3PC4/G4FdBwCKp0s3ZgMBg0Ourh4an6VLSSI1mWrA3IVAfn5B2r5iBADUQWVhG85Zwuo5rXoqDWjnEA1tIIprNdptzTuVPilDVrm5QkUENhrEdVLQAn9/buDDxZub+/b3nfZfpaAU6mRqbTadt7bo2TKTLvnFvSheaZ8X54eGjO0Ry4p8giq+T9PB3h1ziyIAvV3+122ylvVfO227mG9GdlZd5WG5tD5m2R4+iqng7pwS74PEf3l7/8pT58+FC9Xq9+9atftZQWJqDqiWoXNdI1W+zIeMppvz9vVpQOCD2cDMFsNj8NlsxgAg4PD2swGLSI1Hqfnp62Wp2dnZ1aX1+vt2/f1s3NTTuDgW32nvQT8Mg0mPn2x0g99bzsCb1Iu86Zm5MM7NgOdt09Z7NZq9vJGiYO2mFH5EHNEsA2mcy3bHKgmSphzzOFCVxXVfu/uVLAzW9VzRufJQvLXmIUJpOnLoCKHNfW1lqDNqwNG3B//3TyYO4KoRPLgDaDuwxcAEP/xlgAAK9evWr6IqU8Ho/r3bt3tbq62oDIbDar09PTn9XVLwKCzJNnbnM5T54OV96LQGXkRygyjcBREg6IjdCJHvMenikbfRAWBtoEZ3RquF7+zPcZX+9CYbynvCRAlCAgI33Vw5yRz00mk9bxy89vbm6akcn755ZCwuL5q+Z0eZ6QxyBlcY0ueiISOwkIczpkc/a5OhDK4fkeHh4a6vb/TFEs5/DdZxnUkAmgznvlGokCGEpGJuUxo5Rkgi4vLxs9L02QNLJnEHFZbzKpziLlNp9N10PPn4yANRY9JstWtZgjZwwcw0z2vWdWMX9Nw9onSwBcZ30F50EnNOv68OFDA3T6gQD3uU+ewTRXmJXLy8uFcyBE4Aq4ZrOnxjobGxu1vb3drvPp06c6PT1tZwh8//33TddU6pPXTE8JSBjo2eypdmd7e7sB/uy6t7u7W69fv27OVwe86XTauuDt7Oy0lKTnrqo6Pz+v29vbOjw8rKpq6bt0ouQY+FdwxuaYy5SxTIlV1cJBOwCr4lgg2Tpba9Ezm8wvAEMcfgaJnts8uq/77e/v1/n5ebMx5kmEnvvx2cwEFwkM0p6YeywTRhSbxaGqK1DQrhbg5cuXbUsnGWQD+/2nLbO6MWJQPIM1lQ4iR+6LzZICenx8bMccJ6MGbLHFu7u7rQbhj3/8Y21vb9fx8XF9//33P6urvwgIPBglTDCQuZiM0JcNH2dFeDgZTp2QcLSMdRbkVM2ptxTm3Hu8zCrkdzwf5fAOaeQtjoGWSWQtUsk8clKcvodVIUCEUttN24gYLfQRhwWRJm2OyvKe5in3XPu5fDhn5PnG43G7L6Hy/qID780YJEBhlOSpdEPzvpQMmCPMeb1MwyQ1R+bIgGIxRoi8LW8X8nzkkEFcWVlpNQK9Xq9tmbJu5MT/gQL3Wk550QfXT9BlzZKtcg/vknLK4Nn+yFBlqkmOEavwpf3Df8sDmEKtMoAcG+fNsVvnbBzk84+Pj+28eBQuG2POq+b1Pclkrq+vN1BSVQvzf3Jy0g5OEmm+f/9+wcElEODox+PxQi950R8bQRYeHx/bqYcOtBHhJQtqG9nt7W3L+e7u7jaHT08PDg4W+vL3er1mR/b395u9zp0+AhF6DCTTV/rsmuaKY85A7fr6urGl9ANTwoZlt8LLy8sm01kHkoWkdJrD976Y0vX19VbEhwEiWzs7O81WuK9UQ6ZuRdP0EGvq/TNQIW+Pj4/t3AvBGRlmY5b9H/81m81ayku6lR3wXlLP7v34+FgHBwd1d3dXm5ubbf6dUtvpPPWwAXZ2dnbq+vq6fvjhh5rNZnVwcFBVT7toHGedvW3+6Z/+6Wd19ReLCnNiMzeWkZjJgD45yaTTGfqMsLKAxyLY/5qT7xncL5kJFaYmNZ0YJ+8ZsQV5noFrLacqvFNGubnovsvhUU4K4/kIu6NHvRNA4fq5tzcNRFaci4I8TxZUZZ7Te9hawwFRPhG53yn2kRbKPuFV1dAttN7vPx0fi9pbLiqkMIZ3TuX2vGnAgbzsEaB4JxU4B7TOgcupcTaPj48tOnz9+nV7H9XQmXpI+fJeSRu7hwIr8kCGgTBFiHRFtHhxcbHQzZF8KShVEJepGvMiKvgax9nZWW1ubi50KUyaGZtDZ4DulA0OXfEhOZV3TgYzt8aRUbTxcDism5ubxgaQp7W1tdrc3KzpdFofP35sW8bUxCTo6Pf7rfmQCLFqsaV2Fi5aa3/29/fbPCwzrOnEbfUDHtKRJ+Df3t5esCtOcwRORZGcVEb6QBMgdH5+vrAVD6jv9/vNSbmP+9N79gbjmayBeTb/itsODg4a6NOOGqjHdHKsQNLh4WHTv2WGjf0QlQM41kNwS66AUCxB9k3xHe/Jjuzs7PwVw833SWHRX/aO/c/aMEGeVsnY3q2trWajEzCrf7HzZH9/v+7u7uqHH36o4+Pj+uGHH+rk5KS+//77+t3vfrdgv8hIBl+fG/8rhsCkmHyojGMHHEwOh+ClKAY6gyHMSJJTTkYhjUOCDgYYMvS9LAhcpnU5uAQHGSmgmJL5yCgUeCFwlBhKc43Hx8eWC2acFNtlugC9A72hwc0hCoyAZS1G5ikdjoMGpFCdTqcJFiOV0ahKWffUXCQZCVGOHHgWL+X2OtQXJRUxoUeduAXEeC/bY3KtrCtZWQYXnj9ZDXOTbUIzAmWMpA6wJgwhB575SuvoOiJ8xkUOEg0MXGUFdRoqxmJZv8g0BmB7e3vhUC90al7vaxucUB7LKsKSw62aMzU+w+kxYplOROXKA19fXy8UJXKGnz59qvPz86ZP9Nec2s+tYt32PlvvRJfeIXPWWQRHTmwxrpoHVFXzsz/oCgfOJtFN7zAcDlszGikM18kCYWC/1+u13QHmYDabtV1FGbjQ6QToW1tbdXZ21poreWfOfGtra2GPPtlE0Vtn7E2v12uFiexIBpE7OzstQMEaVdXCUb2Z6nz//n11Op36/vvvW5SctQFOG7QWe3t7jcZnx1PfgMS7u7u6uLhoUbstenyStfJ8nHjKbdUTuHDUMHDr3f7t3/5tgS0FUvRiePHiRe3s7DQflZ0Gu92nMywE1JeXl3V+fl5v3rypTqdT5+fndXJyUp8+farj4+N68+ZNe/dksa1ppoE+q6tfUmT7G7PCM5WTAcyo2sifJTXPYRByDte1CG9VNYERQVmwdPIUIqNzDjq3b2UUCEl6Tig+F4HwpCAlO6JQJxmGVJQUiPF43M7VBjgYRwLIaXuvzMcn4+IzqNBUxqx5yPxZAgbrodNWbkvJmo+kPw0OLXNZwAXl9Tl7buU6CWKyQQy/NAQaLSMXn8n0lO9TRIYmC7tevnzZQIu8IMeR4I+DETUAECKFqr9u6uT7n8tR2jUA1KWMUNLccpn1BbndivyYFzryNY5cFyBSgaC1RPWKFjOqfvHixUKk9PDwdHqmArxu96lL4Gg0aqDPNTAvmvHQRcacrLEdKysrdXh42Ay/+2J1XFtkl4V1mDoRogK4lOHJZNJOV9StjyyQveFwWJ3OvCujXDlQCUh5J3US6dToTlUtAHYyCazbztbv9xtD4nyGZCvVRLmPLaJsoSga2ACcPScZ53yrqvb29pq9ZJPIi/y9sxgAhIuLixoMBq0OoeqJdUjwpa2yswIAE8M9gcS9vb26ublph0Ld39/X5uZm6yKLtpfuMP/8FDlRX2LuklX1jvQ8mWyMJXA1mTxtOdzd3a1//dd/rXfv3tVvf/vbBkJ3d3drMBjU5uZm7e3t1d3dXZs7XS/52H5/fqy1DotfCi6+CAjOz88XaIakXTjadERySMsOOx8i86CpRCbcBPub48vCPfczCXlynEFQGdOkaTJFkI4+izoYKE4jty6JIhPtZ/Ejh/nq1au2GByF/bYcTiI/z0RIGTvGkWGh3O4nXwgAcVYcl3vYJiXNQmCSck3Qx1mZE8qUeVUFRuhsRT7mKVG09wMwfS6LFilP7pfNdAIDBVwk7Z/gxL1yz7h1k5ZCf3L0nC9DlmkuDoHhy33I5Nt9er1eW5OsZSADwN+ynjDGQMsytZf54K9pyItPJpNWPCeix+IAzyIvepDBBPsisgbCOLos4rQGIjZFYVIX9CLTdj5nm2rSwpyHgCHpX/eQK0+Qi+X0zCrTd3d3m67k7oaHh4fa2tpaSGkpMrWlsmq+tW9ra6sxUJgL88Y2YSPdA3OSOeyqp91O2E1O33OQc5G9oId91urZzzLwcP2zs7PmPHu9XjuWXCqp3+83diZTGfv7+1VVTW6kDviny8vLlorzzOj/0WjU0hF+f3Z2Vj/99FNz3Nvb23V7e1sXFxe1ubnZUqSbm5vthMnsPyJFMBwOFyj8g4OD5uw1bup2u3V4eNhqxA4ODpqNZfOts9Mi+dRut1vffvtts213d3e1s7PTbIsAGquCIcHaY4Tev3/fQAPZ+rnxiymDjBQpEaHkgBnTRKKcDMGgpNmiUrSUFA3jqwhHtJeOPClmyihHw2hCq6LWdKyZv5PjTcTmndMxQLyJ6PzM+wFFnIPKUM9ngYALR5mq0mVwPGc680xTmF/RQeb8gDTOkPGyHsCWd/Hs3iUjNMZ5OSWU67W5udnWUz5/NBo1CtY6ZUWsvK60jYjx4eGhPn782HKQ+dxpoK0NQEAeFY1VzZuZmLerq6uFLmec9KtXr1rr1Kurq9rZ2amLi4sFhXPv1dXVBgSkQFxH+kMhUqbCzLdnJ09ra2sN9JDD2WzWqrPNjTX6Uu7vb3mgPLFSmC373judTp2entbW1lZbP85/OZd7eXnZQCigbo1EhklNo9CTgSLfrpHBDFbUc2Sqga05PT1tjvb8/Lzp8atXr+rg4KCdiIdCplO53ZSuJ3idTp+KWnd2dprj8dmqOXOocDeBdbfbbe1vgSOAh664Bvmy00le//DwsKUwq6rJe6ZeRZ8CBTb7+vq6FeWl3RQsra2t1fHx8UIKmY5n8aHfj0ajVkMhuACA2JHj4+Pqdrv1+vXrFsCdnp7WxcVFffr0qU5OThqTKzjJboO6WQJMulRmqiHr6JxGy85J866urtbh4WEDGKenpy2Iwt4AO8PhsAVh7I/iWMEEdsFhVXt7e+25FHFvbm7W1tZWa8l9e3vbgpa7u7s6Pz+v8Xjc6jWwPlXzxk2fG/+rw41SmBg4hopQZoOKvGmmBAiAhU/l4PQgewKd9QWZ989iHFSZ4T7AQwKTzCe5r+8upyuWJ87/bR9R2MQxZYTt3byXDmmaYcj9JwDxnugs75t1Da6ZtRQUxDsvGxDzbc5ErowUhdbmMqMf60ZgXYOiuDYgtLGx0d4Jkq2qlqt3PRHAsmxgJSiN53Cd3AGRdQzeyfqmM2aczBPnnKmS3CoIkPpdFntl1XtGDTkfoliOxnNklOsd/Uy0TB5F1Ayw1tJf4+Co7LuXMxbd9/v9tnXz97//fQNsADS5TPBdVc1gkxVAfDZ72jI4HA4b0MoUn/MoyGBWnq+srLS0gtqR3GomrbG1tVWnp6cNHHY6nbaDqGpeHU9XgFMgB22v8rzb7bZdCEdHR02XyYY/GXhhFFzX7zlSev3ixYuFXQLmBR3OPgHH7969a7JvF0emRlLPzAu7bBfG9vZ2szlsl2vQB9fgyLJAEavqXukskz2TmpMOZNOwQEBiBjpshsgeADg+Pq6qxW646XPcxxko7L81VPvBtg6Hw3r58mUdHR3V5uZm/ed//mfd3d3V69ev6/Xr103u2GuDDTFPWUelJ4pCT7rFtvZ6vQYEMHNkYW9vr/b391vx5ufGFwEBYc5KWQNKN1mMJiOfUXimFqQbsujQv13HRGR+X9TIgcjFcToKVyxGOmkKyEgDGxxB0snpsBJYMPhQPqMlcsvoPfN1FlGlp3f8+PFjVT0Bj6urq1blb+sPgc+qc+9gThijROZZCMiBJ+0pj/fy5cuW6/f+GxsbbQ8u5QP4xuNx9fv9Vq2a4MP1k/7zntYbA4EWJ/SZbpILzjqQ3PpJlpJdMk8ZcXEM8neU+OzsrC4vL5vzdy3RHGdCNlwX/QeEAQGpB9iCLBiTj8yucaKlZMfUlJyenjZlZfAzBZEV1V/TsCaAWdUcpDHKPqf2RESlKHA6nbZtZoxlAuQECgbHSH81KsoaEOt0dXXV2LvHx8f67rvvmuNwfc+Yurm7u9sibSwXm5DpMVsCvb+udQAHXSI/7JcaqoeHh1b4WzW3jbe3ty0CJZcKuM2N4IRjELi4z29/+9v69a9/Xevr6+3cBAwF9jGDCTpyfn5eVU8MUAZ1KGyskKJJlfSum4XKgLJmTsAVOwBAsR+5U8zcAzXmMtltDF7VU6Ck2FmKQXW/HSqAgKDt4WF+rsBkMqmLi4sFtpF8q8lQlDwej+vo6KhevXpV33//fbNR+ZzWomqeHgWW2Ffr1+v12hZU9j8ZtOvr67q8vGwycXBwUKurq63eItOunxtfBAT2LhI+wpARfqYQOFAOixKl4mY0ZeLyFD2OMrckWlwvZKI4dAAjkZ2RxWz5HJ6XQV9+F4KQ72KRCXbmNgl13ksVNEfomv5tHgm9+9jSJ2dmwbEGFDQLmzhpz8GBmR/zBaigpbJoilBmVC6Ckgu9vLxsxTqc6XQ67+b36dOn1pcgldW6yXWiUtP5L281Y5yXUw+cAqfJsOehU/f39w19Z3pEDUCecZ7FjZmXZtTIC6NbNXcM1rHf77dIb5ll8U6uk+ACUEvkD+gkyKyq1tf8axvywhgWBhoLw5B3u906OztrMk6G/Dv1kGzn1jfgmkxK/dhRo2iOnCSryDYB89fX1w1sp1xisBLUZi1Cbgsm6xylAGp1dbU+fvzY7FbVU23Vzs5OA3/AOpnKFsmcvt0wnhGFv7q62k44VEBpTu7u7lrai75fXV3Vn//85ybDmZpQ/EwGq+a7Gz5+/NjWjS0Avjn+qvm2UTZGGiYZZ7ZhPB43uyr1Yl6lAafTaZ2cnDQQUTVP9XqOdLKXl5ctzZts8d7eXn3zzTc1GAxaDYLvJ8PMpuh5MxqN6t27d21t2YDhcNh2Czl6+ejoqFZWVtq5E2oJEgxYV+9hJHvKj2VgwVaYP8+mcBQDlOBafcjPjV/cZSAiFolzmhQjjaWJ5KBMPGVK58zgZV5Wm1GGl2NDm6J8E91DixSTgiVNWzU3qhBSIjICz9j7WRZ+GRSQcbNYru/fruF9kr73fCJPNKT8pUNSLLC5zOK+Zao6o1jgDZpOtOk+GTkDVg7JQIECIIpxJpNJ28KFnlxbW6vxeNyiXIaa/JhzzyICNk+UAgvE2Flv7w4IWMssBk3nyeh6f9/JPdzyahk9UTDKk9EmsJLASzSXAJIRyAiJXmQtAUBT9USxrq2t1fb2dit4Y3Ch+ul0ulBv8DWOXq/XHCwnTi5y7hm2qnmNgULTZG+sne9mPheVq3981VxmMv3E0DOswGUyX+4n0LDVjS0D6ABL6+r99J5QmMa593q9VoTW7/cbM5etzoF1wUrKDbDOHikQpPv5HmQdWKI3ilfv7u7qxx9/bHZHIa46mUwfGHL37IS1Ozs7Wzj9j0NSaF01P/r58fGxgbaqeRG5NZOO5YOAyCzyxMjkkc62KPIHwFTVvKibTQHa3rx5057D3wABe57+6uXLl3VxcdEAbDI3WFc7MTx/pinJSqY/8n4ZkJjvZD0EJOQaKH316lXt7u42+VzuuSOI/LnxRUAgH2SSOMdE6ymkn9vix9kkTSFyAjQg7k+fPjVEmzlzQpwTYTHzwIl8pjTCy/R/1WKdgYn2fmh5k+izngEYIIC5IPl/7855M17yeQ6uUKRngUejUTv/PQEGQUYhdjqddoY8IMAgeEdsAvr95uam5RUVRvr89vb2Qt4fIlUUubKy0ooIrdnW1lYrvjN/QB+HmfexyySNrry5bVaiSfNhqJfgCDICQSlm1AgcuAckX1UtZ+wZOp1OY3OkovL3QOSy48roDeth7uW/5U6BMOAnGbXNzc2FHK28IAA+nU5b9fvXNsgex5pRWIJcemfdAb1l9o78Za1N1ROo293dbbqwsbHRmsgoKMXipU3xXZH88lbCqsWTOAUpUnvWOul+Ba6Ao/uwqXLImWpiw3KrblU1p6zOx++wWZmTN99of041gQjZZpu8E+Aikk72wXotH+YkNScF4D13dnYak+MeWS+lZsr36RM9BpKxqb1er9UlVFXzE1hXjr3b7TZdqqoFcC8gShuJZrelMbdhTyaTtiOJLQbEsJfHx8cLbGG/329zUTX3dd5fUJu+KdPsbExG8ebRWi4Hn9Z9Y2OjyeZyqiEZsWTGlscXAYEbQdIm2WImlWaxM7dnZFSc+TWOwHdzixoqJB2GKLdqTvHJiVn0BC4mIq+R29Ayf0PZ8z0Nkab7ec50gIySe6Il5bHTuXgmxoHx8ns0IWRuEXNO3NuxnoSK8SW05s29GAYgArihtNqCZgtfVGRS6ITN9jFgIo2uZ00aLBkE/ydrKW+JatMZ+H2i5ywkY1h2dnbavCm+Wd6a5ppAiFRI1hK4n7WxlRWAMz/OqafQGZ0ky4FatoZA0LLT89wZMad+fE2DjiZFLjLKXg9Za1I1P446o6TpdNoAdKa66Euyi+jR3Pq2nMYEIO/u7lqvkAQBwGwyhtIOrsHJbWxstELB2Wy2kNPObZYG8JGgMrekmjc5+BzJmpA7+f7cvUPWk2UzVwAwO6AGiN2aTCYtPfr4+HRYG/nv9Xqt1gO45rRns1lrka5XQdV8xwaQjFUEwDlSNRCZrl5ew5ubmxoOh3V1ddUq9b1LMolkjc0BqASUUkoXFxctHczOZxGnYCgBYIJWa5WBUe4g8txkcjabNdYVePC8AFmm562zugVyZyT74hn9PBm1TBV9bnwRECS9lDQ/AaF4FNHPRAJ+nrmQzK8TfrRYfn+ZsvP/VFaGI7foWABOJWlCkwocuK4JSsDBGS5M1v84LDl4w0L5PaQoIgQmKCWqiLHxPY6W8we8PLd3gJgBkUzNZIrGdc1XVbVn4rwBq0SV9rDms8uB5rN6b9EQ9gMgckwnBUtFyfnPd09mJyM577Msf+Y/IyFghlzIjaL7yBRqudPptF0fqOOsFs8aDM9qfjjylD8GPalHz5lrmkAgI+VlQCvt86VioL/lkTUcAB79yC3Fq6urrfBWZIbC1vQJe7C3t9dqEVJusQdkTDCQQUyeEWItsimUY6YzNQRwk3X6JOrmPPXsX1lZqf39/WbMq+Y2i/7nelrz3IpcNT+yGf3rveTTRfV2obhungcAoGc/mEydAMdABttcVQspGLsrOHVAyDwkgAHI6Ir5VhtkfgVp9E5w4nrWR/X+p0/zzq0AimY92JJlyh1Iw5isra3VYDBYSP1ICbIr5nd9fb11Qex0Oq3OI1MpmZ4ky8k+Vc0DWIFvrgmwTE4wm9bK80sNZb3Xsk81r9aYX01G8v8MCETPDKKbU9JEIn7vRRKxMwb+TXAzwq6qtigUUP4jFzgndDweLxTdQV7JXmQ6gKFII89JK15LgODZksVgULKYKCn2qmqGIR04xbP31X0wFlAzp06ARPLJGCxX7WeOy9xPJpNWte0+DKRnHo/H7TmSepxOnzq6XV5etr3UudfeoPxab47H47ajwnUylcNwMxDLOzcUJKLdptNpcwQMs4gu92BXVVMWrA8ELgrlfJcRcwKybrfbAILmHZl+yVxy1VORX4IB8gso+V7ShbZlMsBAMfmzDt7R77Ne5Gsb3lfkCSylrs5m85oaNRPodPYiAwLf44TyWgC7iHkwGNT19XXLyfvbPV68eNFOJq16Sv18+PCh5cbfvHnT5CFZoezEyYk+PDzU69ev2/Oi3DMFlmkO8yPq5WzJBtq6qlqNwWAwqO3t7cbKfa5nQhZamxcOL0EB/U9au9frtSZI7A6gwIEpehbl03kMqgLPjx8/1vr6er1586btl1ebYGcV+4RRsdMk9RTwqpqfLWCHgLWdzZ6KDz9+/Fg//vhjHRwctG6IbJSUiPVLFi5l8ObmptUlqO+RJnb/1GPXSRCT6Uh2IRnTTJlgldjrvb29xi4PBoPGwkiL8AOCNLs5kk1aDozpGXn53PhfAQIvkZEPRMTIUlaOSB1AKrgXYlhTISgUis2kM+YQuBys6zPqWZXM2CxHXGk8PHdVNcXh+EShUFUiP++QdRCESWEkMOA7VdX2++o29erVq7YFLufDwmVTDvfy/wRiQINaDMLHoKBCGabt7e2FEyK19JXvppwKpaBpygdM6MPt/wzeYDBo6P7g4KB1/UoGoGoeeQNzmY7KtrT6NzBayTowdPZKm7NE41p7plFN5cDUkD11EXqLmyvPb94ZXzSxdAvqkwwzEP5tmxL5YjxTjlHIusZxil9C9n/Lg3wkW1Q1jz5TxnVbQ0UDjsBhggkgMAEUp8s+MNLdbrdRxMPhsB4eHurg4KB1E7WtFqg8ODhYcJAiUcZUnjpToOhnO6YyV013/eFEV1dXW9pIHlygI9WQBX5Sipzr3d1dayRkZ0TVPKr0HOYyt2kL7sw/NoMOJe3sc9gUcl71VHskzQiMZO0UHyKYk5rb29trsp3sUVU14EzutQ+umvceyN0K9/dP3VK3t7fr3//932s0GtXBwUEdHx/Xq1evamtrqwaDQdul8Kc//anG43GTqeFw2HwU9gHg9wyKfNnrs7Oz5iPUTKTs6hGQDJZOi1jJBBAY0Nvb2/r48WN7lmQoM+2kELWqWq8LMq8wFSAxR+pCfm58ERCgWKFQBgmdSrizqM8CZYEXyoLhE4klJQ8ZpdOAmiilIyhTCRkVymww3hmxUQr3SVCA4klUlayIZ5Tfyu1IhBNwStStqE+un+KhIBN5U0bXwJIk/Zn5WMjXvEsXZApjfX29Vfg6w7uqGsPDeMxms4WiQgbKZ80xAEBwVa16j2QpINvLy8u6vr5uqL/b7TbFwI5Uzc8lmE6nCxGC9+73+3V5eVmj0ajtyc58KbDAUKRTzVPMsmiHsb+/v29KCCwAGeSJQ2OYsTvZlUz05+dG9qRYfobt7e3WF0LBp/VmIBmar3GIyjIPzw7QbXpE/6TNADhRG9CaqTJrZY6zTqXb7dZ4PF5I2+zu7rYAgNNOBiDb+2KvMApyynREUa16BmA9WTH/lxqiJyreX7x4UaPRqCaTp108GhSJEqsWC8ZyRxJ9TJvq0C06t8wAsGdAhbln/8y5moKqavvr2Z9MK/AR/ANHt7GxUd9++22bM46UjQPo1QL0+/2FXW26Eh4cHDSb4CyFBPUA0qdPn+rDhw+1ublZ//iP/9gCG/Ou8+1kMqm3b9+2eV5dXa3hcFibm5vNX2RB8vn5eT0+PrZdGg8PD21bJ/vkPuwSRkFKjI3BTKhBenh4aLthRPd6CKyurtbJyUkL2B4fH2tvb69Go1E9Pj4uPK8uhpkyrZr7UGCM3vzc+KKFSaqBEatapIJRPuhpSIfRzHwoeh41A/17eMLoXhA99Jk9rwkMSj0LMzLfC5lmAZDf5aEQnGkKm8ljyBTiyGVmcYyIBEDiIAaDQVNSRolRk9Nj9JN24iB0OBNhpXP03FmAk41TON9M0Yh2sximal7MpKsX48oBAg1A3P39fWtJ6zCWpEVRtpQL6wGEOdfcOkgTAKGZM+c80hBRQs+YjFPmDdUFMMx5zDNZwbBY162trYWuiuYs62gYcw1Xrq6uGkOQjAL5Z4hz7zjqGeXneRlr70IPs27laxqYJqkfc5P6ZU3lxatqISLP/dOci39nEMFpmlfy9vDw0E7d9Bx0XlfCqsVDwrBXQH2mhrBDGV3TN7JCDrETV1dXLWWoXiLB/srKSksFiEw5YrUFVXM7mfUGniFZ0OWUaX53OQ2X9pU9Spo7U6cJmDPtm2nMqr/uJUOW6SFbY+eT9QXEdnZ2mi6tra01Cp0tqXoC2CcnJ7W9vV3/8i//UtPptL777rvG+mGNAAesqN95VgcmpXxKVwDx5EOQYe11KXzx4kVtb2/XYDBorGr6QQXcQA9bsrLy1Bfl4uKiPnz40Fq/a4QksFEn4ppqXfjBm5ub2t/fr+Fw2HxtVbXAbmdnp/mKnxu/WFRIEfKoyXyZjNBQ5xzNcpFbNo4R4QMRBIUTYeAtDIfguxTQtpLc+pg0NEcoGiGcGa0nE2Cy0mGkQ11fX2/FgJknzkjF/SFnaNn9ocas+gQS3JtSUjACmSmMZaVNB5//Rh2l8c13NceQab4fMOQ7y+sKMGQuEyLXujMLSOV3pU8ILANFef1JOcgiKcbW/TKCFzWRqWS4sCQizpxzEX9VNSowWS7zyFCIWOVRs8I301SuTxZyHq1lbp+6ublZOFEyqeevcZCHBJPT6bTlk7NRDtng0HPOssOj6yZdPxqNGgDIDm7YmMFgsBBQAH2csWtlfj/ZtwyIBD2cG2PvudQaoZkd/rO1tdUcJx0nO5ubm+08ATYT2GVvq+YNa7wb25MBBkpaQx92Og9R29zcXGgyloDTz5JyNlfJ5JkL+sjRpm2umjflwgqOx+MWRKC6BVkAjvdxzoW8Pbbz9evX9ec//7nOzs7q/Py8/vu//7u1H2aH2WA25tWrVy09JAUqerb7SkqJHFbNO4fyQVkoTRbIkLMEgDZyk3KRh8xVVWNJgB5gSb+DZNGka0ejUdv9wPfyp2wTtvHx8anpnzn4ufGLhxsRWuiKEDBYHAbnKr8jogQq/M42ljQEHKYIgQFUj8BBZrRFwC0cI6M4i6AmMvYMWZimmpkQZZ6KkkH8aJ2kPiE/TAFF5ewpGUGXGhCZVs1pa/OFCrcn1jBXeYBLvkNW76eAUsKVlZVWgPPixYs6ODhoaQu5ctGctb+/n3e/AijSUE+n07+Kpi8uLur09LSGw2GjwyknxJ65U0Aw24bOZk+ngQGROTeJkgEFBjDzcLu7uwvzqigITcu4uMbZ2VmTKZXQy7SsSJ6xSHCbDWISuKb8YVE4Beum7sKpa6I2Rt81v8ahxa3GSzmf6GQGnGPIHKi+7OmwOE1ytcwgZnpF3vvNmzdVNd/+xTGl/UogntFdFojlOtze3tZf/vKXevXqVStg04BLvp9scjacYFUtOE5MBBu0bFu9S0Z4mVZKFkwPexFhtq4lf1Jd7BAAnelE9R/sVwZ8DqoCcuhEpiiqqlHZaSeyvwH9A+SkIc/Pz9tBQYeHh3V8fFyDwaCxsI4Afnx8rLdv31av12ufwz6y95wjyn57e7uOjo7aWgKB9F7QpgYr6yCwt5i+7A/DHrMhCRxze/fd3V2Nx+OmG2ybGiy7R8bjca2trdU333yzkIqWIscaCIjIMzlw+qbzGpIh/9z4IiBQ1JXUauYjOEqKIopK+srLitByexVjSJAVtqWhRKOinkWqBIlhVciTwpVOLal1iraseBAgNGvyPS9KCxpbdowASVK8IlEgSpW190l6H/UEuOh8JyJKQORvn2VMk2LGrHD2qeCUJPfwXl5etp0Hql8dfJK5S/cHMBhtn6+qVjWc9RqUQiU9cIUyBwYUjyarwxhmTYH3Jz8+kzSmiI9icshqHuyekM6w/oCrZ1o27J4rDRuE7nuZtuLwIPyqagaEIWJERbfWU+3Kl6i+v+XBaSg6y4K0TqfzV6mBTE9pAAMwZoolGTzrkWtgpNEHGK35yclJzWazdiysfCydzqCGXWBbBCF7e3vtvupI+v1+OxsE7SvS08WPo0ywytmygan7GDZ/my8OUrTKbsq5T6fTFhVLZ7qfWp1+v7+wpU9vANe/v79fmHNBG6ChCNjcsOVnZ2c1HA7r/v6+/v7v/77l1tlrNhpLpphPvr6qand3tx1LbD7Mz87OTqPmPZe1e//+fauhyvnTwjpZz6o521pVzeEmM+7nvmPOk8nIQs6Li4t2PTVyUgs+x2+8fv26yeh0+tSa2X1vb29b90egjD379OlTa+qHWWQbgRpBcm4j/7nxi0WFosWk8ZP2NzguNIo/fodhoFS5V1gUJtL7HP3u3oppkkJO5OSzBCwL5yyKSDhpYIOCLtciWMzZbNYKfDivdMKZy5xMJm07k8+KcBknDkGFe9Ll2So0I59E4Dk/5ts1c404zuzUJQ/PgEDElJxzZ+CSTQAMKFZu29nf32+pFQIoWoJ8PR8nm842I3pRU6ZN8h2BnqQrRaCXl5etyKfT6SywHOhBkSrKlHL7k4VDDB0DyQCZA9vZsGfJdmQkljsuElwlLSx94F2Bia9x7O3t1fb2dpPF1ElOoaqaI+cwUv8fHh7q/fv3NZlM6s2bNy3nvL+/vyCD6PeMvNNRWdfcvbKco6db1i2LW/XZcBCQKBmYxxTageNdHWBmjTFfSTmbm7R/ZNX85M4T+qE3AuANiAMxtuStr6/X7u5uVc0b2eiGSe5WVlZaEWbmol0/gUeC1EyRANypt5PJpF13fX29zaOdEp1Op05OTprje/PmTVu7wWBQq6urC82bpH+wq999913t7e3VyclJVT0V6irUpIvsDJaPD/EOw+GwvYuWyoDf5eVls3nqhwR7ipGTWSW3/E3VYl+RDGyzSJwcYUqA3+WaKLbbNegSICfgEYRLV6Tf/Nz4IiDI7SMenJASZpFeCqnvZX7UBCTFYoJQ/lmgk1Q/h590B9qfUGQ+mcPLrSkmLSlgg2Hg1Nrk/A8CSwfc7XbbPlb0kPuKUij33d1dE3xGzRGjOZ+iJUWUWcgpr41uVpCSyDobp2SElbS1+fT+ctYi8V6vt9BtsOqpCIVT47ygUWuHtnI2uTqLh4eHVsVNCEejUQMKWcdBkeTIOGLzCXikoc5CNGtNAbAcSbX6jPqI/AN1o22dL0CR5TTdyxwp9iF7IoMsMDNPCTwcT5r509Q580Ies+Duax0CgmXKUnTr3+lkyBtHrCsd4Fw1d95ZJGaNsraoau5ssUByvJ4PYMu8cq5jVrU7d0P6LQvo8pkYf9dkAxPESKMw1Bg7uWY7cvToAHTk3Kvm9odzza6cjgAW4C3XJZydnbVgIdtwf65+RuCQ+XOpl6q5LdVgyny/fPmyzYd0wHQ6bVuvj46O6uDgoL777rvW/Ifefa62yH23trZacfObN28W6jzYLV1LM9hIZ6lN/HA4bN/DGKo1yBopoBUgfPHiRWuURc/Jg/tx3Jx5bpe1O4Ls0IFMT6ddllrMjoXk2f/5JvMxGo1asaqA73Pji4BAZFg135qWztfvOKGktzJizc5K9ukmBUdZvDRaTe6b0iYlD0BkBImqJTCicpMK1Wa0LYe8urp4slcWGXGumfd3PyAjDQFnaC6ynkDFrArSbLzDCamyRatlVXzSiQlislDLM6CR5NlevHjRehIANGo5HDdq3hg8BqzT6bSqVnMu3cDJM3KisSyc4mwxBpxeGmTGjLxlpb4oxVqL0BlZc5yGWWEOJdQDIPPTmV5gSNfX1xciHO/MAGc05zq9Xm+h5sP9FUAltZ2GcmdnZyGKW2bj0gh/Cdn/LY+rq6tmdO2Zp6fWrmoOqADCZHAUUtGFqvlee3Kwvr7e2g8nmwlYkMsMFrLgVACzDAJOTk6afHKym5ubtbu72z5PB6XqkqXL7Xscs0K/qvmW1kyB5v1cx7PmkcSAtWgWQ0GnOVZymg6Rvc2CPc5+NBrVyclJA8ccsyOCnYXCsbm2+7PRGAEgDLOTfVa2t7drd3e3pW0U7NIDAaR54It8ZjAYNKBkVxYZcOT5/v5+CzZ2dnZatH9xcdH0yxrZjlk1356dB5aRX2DTtdLHZCEhm8dmJzjY2NioT58+td41Ao+Utar5MezWMVMb7Kx3TjabLXt4eKi3b99+sQdB1S8Agox0/N9DUFbOh2CahIy0OXm/wzoQkuXfoUezo5dJTKpfRJFABT2VOwM8J6fE+AAUy3lNTiCRaQKBrIpP55xGhVDs7e21hUUtopXtnwUkvCeKiOImXZ/5cIrFMS0zAwwIoX758mUzyJB6ApusSQA0MnWjYhYD4L6dTqd12/KO5pysADTSDeaUIxRFZbGeqIkzJofmQ24QlW8tbPUkY/aKU/KMxrJLnagQmPPe2TOeYTDH5NcaJxPgO1gZ8wMYYX+wIOYLMMn1zH3eX9vodrsLBzMtyxzZpxsJiLrd+eFAZC4jJz8zUKruw/HaupssU9aupL2omm+5tosECGDrFDECldPpdGFnSD4/OyrSY9D9u2q+d9/nZ7NZi+jIA0aO3FXNGZIMWPyfXRQJZ60LEJLvLOrUN0TwcnBwUAcHB20O9WFJMJ6NoOhWNpUzJ3L6m5ubVTU/wyTrZa6urhrQq6ra399v8wmUu7b3ERyRrexr8NNPP7WAJWsHtre36+HhodU1YEcODw8bKPFsUkpZn0ZW2YzT09O2toIT0XgGydiXrBPx/OZpOQhmM4BNtqFqDjrMOR+Ccb26umrBCXbj58YXAQGqaZnCMEnQShZspTPNQhlKVjUHFhARp2sy5G1z0r18OvR+v7+gpKLEpLRy14IonfOxGLkojPOyYV/eD+1eCQgYK9fgTKRTMq/knkmFURy594w+0yCI2DneqmqCmUYlizsJqPnneK6vrxtt5zq23KHPx+NxUyjtjBkAxYOUVbT7+PjYGn/MZk+7CJx17jtYlaz/4ACsMYWnxNYl0x3Z7IWCAIcMDKMlt2tNGLTxeFyTyaSBCbloz+EZPKO1BrgARTs+GI90YMl4VFUz9BQ/o0D3S6dFt762IbKnl8kEpvPi2BPMWSPvn8FJMjS+Z63I1fIJmsuMUNXiGRmcqnvTWSOfIZ855TflMK+b+faUhawnSIbJ/RIosrF0x33yXlk8mVE/neN4EqhjJqfTpyJJ9DsQLHL1HfPtWhjF1M+Li4vmZNmw3d3dBVtPfwAkTISar8vLy/r48WPTH6m06+vr+t3vftd8k6Z1a2tr9fbt2/rhhx+q2+22epOLi4s2P6JzfQMSWN7c3LT6gQyQqqqxCdIh/JOtfB8/fqy//OUvNZ1O6+joqF6/ft0YCmnmyWTSvk8WsCMKi+1SSJ+TvTISJEhhJZNNfth7wZLPf2l8ERBQ2ryJf+fv83fLxTu+nw4uo7+sxLYAUNDnjGBS81VzBczircyn+72IotvtLlTzJ8pkvHPSOFyRYKYtCK/nT3TOKRtZOe3/KaDyf5PJpCG4pIISaHiX3BVgy5vPoe4YQdfxt7wkQKdYSCSbAqsToRTMdDptVeNJvScVS5A9q+swjOkggEIO1/wnlW6OyID/M4Aiw6yKJheui3mRj82dDUCEd8ioZlmezXEyEOY1wSj5sC6fY6gAQYZ2mdnhELEMX+NI5w4AVy2egspJZrFm9iDIkawJdigLjKvmaUhRY9Vfnxjq5xltCS583s+qqoH7jPoTQKRc5GA30l6kvfE8y+9pjsggR5kMbOpd0tGj0WghtUX+fE/xH+ZlPB4vbN8mi96f3fn06VOr6s86LrQ05iSLPD0XJs623cPDwzo4OGhb56xXFsFJDWgvrQbt/Py8vv3225a2VEynTmJ1dbXev39fg8Gg1tbW6vLysra3t6vbnZ8VIQWaBe3sDVCabA8GI+0rZjRrLaqqbfmT8hWwXV5eNgetMJKcPz4+1ps3b+rHH3+sk5OTlhra3t5utTPS6RjS8Xi8wMIk21ZVLS2ZqYb/c1FhFi2gOqrqrwSQgD4+PrbikTTeKegptByoaCjzp0mLpWBmFTmahYFncCFkhsL9PAuBQ8MwQPmuWWPAITEC6JicWArjXV3bczJcaHJot2qehqDs5l00oLJYpS6gdHt72/JmyTYQXvfKosOMuNF/2apVb3TCgw5bWVlpqRIKn+uYaYCsDSE30Pt0Om1HnhJYgIFiqYPIXH5GduY16XbrC9SQPTIBiPhOduzq95+2iNnCxBgktS1HnQA3jbHPSMkABOaA4er3+wtNjIAUspBMRCL8dB5f28g8/3IONGtggLks+JpMJo1REjkBlJy7ecmcfFUtgF55aPPOeHJS1ls1Of1V1Mf20A+Ox7sAqMts6urqU0fVqjkjJKJb3nlBn4xkVgU4VYvbjxMQ2TFQVQsOFesIKKgtYps49vX19To8PKzDw8MG5skqMMFpCrKqqrGWGEzPuLOzU4PBoM1bnqkymUzavLAF6pjMtT/k5+XLlwvt6//85z83VoH9Pzg4aKDh7OysOp2nM1UODw8b6ABmslMqGyQ1Kph4fHxstSJ8G5urNohd6fV69e233y70ThkMBgtr+s0337TrZtp5NpvVxcVFSzHs7OzU3/3d3y1s0/euGbTqLcCus6PebTlwyrqtz40vAgKOLHMdVfOCr0Q2GT0to6WkftORokI6nc7CwUWiZWiUgLumdrEW0d5VUWtV/VX9gYiMATdBmYrQLwANlHSw/buz2awZggQsHFRVtcYVvV6vLi4uWltMzyBX5/ALQi9S5NgovrO/OU/P1Ol06ujoaCE/S7lTCDkxUbB+AYprOC7FX2nYyAAmwdyK9m3f2tnZaYItR0Ygcz4BPVtAOWvU5P39fTPSjG6mPdLRctiZG+31ntoiJ0DJ7Tm2aCmcBBjca2Njo87PzxdAbtK3gAH2gpEHMjgHTkGVuX4e1seeYetjn3UeH01HgMWvtYYgi3qTEaIP8u9V81bct7e3dXp62hzJbDZrnQgBB6CM87beVU9rxXBzfAByVTU7cnJyslCr8fDw0FpXJ0Mpwq6qds3z8/PGMjljAzXOcW5sbNT29natra0t9L8XsJBt9pMNqZpX7CcDWjXfGu1aCRj821yTpfX19RqNRvXjjz82W5ufGwwGtb+/3+qMUlZzbjICtqZV8+AlU3CCrqyQ97MEY7e3t41tZKurqs2t+dne3m7vAtzwCWrAdnd3q9/v187OTksH7Ozs1MHBQUtXapcMTHW73To5OVlgTfr9fp2dnbXvsJ100c/pK/nQatrOjVyX2Wx+AqtAB4MiqLOVFkh9+fJlnZ6etp0UGJjHx8c6PT1twOrVq1ftSGdHNWdaRi+aX0o9/uJpKSZBC1qGMnM6mduxF9UEZPTvT9JjOuNloZfriHjluDknyqxiVU4oIxBomvD5w4jk+xmiCL9HxTAEjPJoNGrOwe8zFeD/d3d3rS81pYDis6is6qn5Rp5CSEEYhawbyKN5d3d3F5iGfL/MyZpjVBZjRDivrq7q/fv37dhPcwFtQ/EUUGXydDptnfVWV1cXOh1m+1jgIQ1CUvJZzEe2nHFuZJ4RvYl+M//mj/EnC9gObAODlwWDnEoqTaZ/yC5Fvrq6WgBnDF6mZxhNDmw2my30JE8DmLUQCX7I5i/l//5Wx3IdCOBonc0T/U/q+OHhoT5+/Fg//fRTTSaT1qaVYbbDJSNYBWuAPz3WZIYdAdJtIQMGGGa5cTpB/uR67Sqhw9bUSYiehzzSt+l02pr2nJ2d1erqau3v79fj43xbrwhS8JFpkqpakNkswiS/y/r16dPTwVmHh4ct3ehUz5cvX/5VLwPXB9iBb0BA8AB0SW8Nh8M6PT1tdUd2OmAisgaNYzUvGrHZSrm1tVUbGxt1eHjYwIu5sG0300xYPyyB4sO/+7u/a7YWgBRZ8x+bm5vtpE02HhAD7Kw7+WCb3r17V7u7uwupcafbsk2z2awBTfYIW3h9fd1ATgI8BxthawRTGVw5P2V1dbXOzs5agEzGFYLf3d3V5uZmKw79ufFFQGBvqYlJ4aBsFjYpqozeFJ6kEorWFHFkoUru2c0CwET5mXN0sA7n7FnRhJ6JIXKPzHtXVZvoLCLiFAizqCMj0qxBYBzyZKu7u7s6OztbKLzkbH3e9icLXVWNludQEjWms/a8ieCh0mWaUVTOgLp35tGlS8yNtcl9swwg4Re9Vc0PpHFcsmeQosj6DvdnvDEP1rpqnnZIh5wyUVWt81un01nY0gncLdeFoExdS1QA7QMdrm/+gIyU3+xmxhi7HgDIsSssgvSbEvbnW2X1aMj8paKlLyny3/K4urqqi4uLZnj39/erak6FZypQ1IUhvL+/b53r1tbWWpT4+PjU/Idcon3ZgpWVlYVi0svLy8YqSkVxMBz/bDZrbCOgr5kY55fMWUaAwA2Al+zaw8NDa2ZWNd/C6p2r5owmfXh8fKyTk5NmB9grjtvfniFrFz5nT2ezWWsjDnwBOVnX0OnMuzgeHR216/kOdqvf7zfmkz1iry8vLxeq4vkHB0spXEbpY9LYTv0AEmhJGdFJ/kgwQw9PTk5abv7g4KD+8pe/1IcPH5qukpesG7Imv/71r5uOb29vt9Sl7eC2wrN5PospOj4+rl6vVx8+fFgomvZvrBCbDlRk9C9FXFUtLdHpdNqzYwgy3UvuR6NRY38AMbKUQQnA/LnxvyoqTIFJwUdrMmhQz3JBlqgt6wmyAlvBkWiLsSVIaLgcDw8PNRqNmoFOJVxG7BxdAgAKlvQJhfJZQiQS9r3cepb5He+3XIhia+DKykqjjIbDYetGJY2RiFxkamRRFkdsHjxHMjhJpyeLA7VPp0/HehISxTfQq3VL0EEoHdGqS9vR0dFCDtgeaM5QdMZoWyOOwPoAdZmmAmiyolyKCVvhnc2PvLE13NzcrE+fPrW0S0bn5jr3TwOkCSgYPQDKNiURByDKaWB0ULbAYLfbbTIrIvNOW1tbCz0S6BF5+VJDkb/lYW7ph3RjgryXL182B/7+/fvmsPv9p627BwcHC3SpLadSNyj+lZWVFv3t7Oy0NSYnQJUoFPCwf918A2x7e3vtaN3cdYAh4MTIY8oVWd/a2qq9vb3mjNhVDgDwASykl8iiBjgMeRZjZ12QOfX/qsUdRWwSeTbIX34nU6Tp1OkU55662O126/DwsHVDzL31nB9wJPK19fnly5c1GAxqNBo1Wt/pfL5zf39fw+Gw1URYD/v4dQy0tbHXe+pxoENqr9drAQeWkn28v79vzKvgjD0CvqqenKuCZDbim2++aQclARDWlDxmLxlbTG0H3NnZabaUrfz06VPt7e01BicPSRJgABvY3sPDwxoOhy0NwoZPJk87G3LHxs+NX+xDkEgn0bwoMKtI0bIQqklXZQ1BVlWboM3NzYVoKXNOKDnKmk5yOn3aHqMCFZICADjK/E5Gtn6eQk4pGRZOhQISYpFFRuUcR+a7M2LIKDyLgSBD0XLmRDlB7+seFDtz8UYqNcPDCOmhnflVjmdzc7MZHIYInZpFM71er/b29hqYQdmOx+MWPVTN86zm1jyYC0yLd0mZM9eZvsk868+Bhcw5kiXGI8HrMjj0bhQt9yRzShqxAJGdTqcZJ9/1PObQz8kTec8DprRXxjrd3Ny0VIefUfqvFRAkjUsnRDOz2WzhsK6ca85Xrw46ywbRfTs9bG8UUGQRGX1INo8Bxk6dnJzU+fn5QhrDNWz7WmYHgc+Vlaeji33+4eGhUeDYn6Tvs8bK79hUQQcjLmIEND83UNuAZ8q5ATh7Du+YdUJZ13F5edmcJtas0+m0AkX2TDCytrZWg8GgXVdVvwAmA7eVlZV2YI85q3oqpsuzKLA32hBLfSRbMhgM2pyaJ2keufWM0tmFTB8KfKwD0IOh9LmdnZ0WfWddTxYh+74UKfskIHSvPFWWXTTfxosXL2pjY6O9awZAgiBMhYZMQKTrjMfjBd8l/fu58UVAwIGirCgO2i2N/LLzzZwpB8TRMfgQHsMJ5VJqRpvyJu1PwKvmaN8iEex05p4/wQGnAiEmgk46ETAaDAYtGiBMKM6cL8Kc21n8/+LiorEfVfOzvyFRygP1EfKkfQiu62fhkXkDLOxo4Pzfv39fL168qN3d3UaBEWTX8T6qrXNdzVfWlKDoZ7NZq4VgJPxNFtJALwOCjMih6MzBcq4Up2peMDqdTltXtazcTmChJWrVvJ8Fw+6ZcgcJwJbrScYAV2thfXLOkrXgwKSRMCaj0ahR1PKc1oP8VdVCU6mvbUgjZU7248ePtbq6Wm/evGn53k5nflYG+bXtKtudM+CpC6urT6dnAn9sTY5lQI7uJiMHBwe1srJSFxcXdXZ21rbukSnRFgBQVc1xGFij/HmmNQBxAUDaN9fTUx99T44ZejqTdUCYp9ls1qJpAVnqUbKay6m5qvk5Gzc3N03v2GjbCMmlOTQX7KiAUMDAEWeatNfrLRxKVDWvNeFoAeCVlZUGrhShJ9tCRzjJ3DXV6XTaCYl0UZqEbWJT5NrJKPaDLAKr1qaqGvvIZmSNSsozX4MxFkDs7+/X3t5e0w8F056RH8JG9Xq9tv1SMIG1kBZTaKjWij033//nxkT39/dtryZB4iBF5QwzxEiAoaKkSFW4mywvywFk5M5pcliAB8WR70MRJzqqWqwKTlo/n8t9fCaLdCDKjMhNPgCTUbx99ZA1h8ARWtCPHz+2BdFmVzFh1jwkes00AWfoGTT6yHtQbLlAAGZ1dbXG43FrOJXtON0/FTedrzWwTmlIRMaKERkU72O9XAtSXR7JLGEQkhXBXAAi0iCcRBYXiRLyiGX54GWFSFrUPbEA5r+qGr0phSVawoKpmeh2uwvFYfSCYjIGjJwiOXMPrIioRQeM0dc2AGFyyMgyUOay03k658EukdwRYk2sVV4TnT8cDuvg4GChNS3Hy9F1Op0WZXI8an6S7cz2t4IY+jKdThtbZL0SjCdlnfZKPVWmHpLRysJqhb83NzctEFEslqeI+m62M5aG5OzocjqaBOIAVb6rn0tj3N7e1ocPH1oFu1oAVfWYj06ns3AwlWuxgwkgloMB80GPku1kZzBEgpmLi4vGJAswpASylgLoYw+SBQXcPZO1Yq/4L4czka9kktMGVVX7DraRrcd48IevXr1qzBLAkin6BGqz2VOB/Y8//tgCMqmGqqfDmazx9fV1Y2h2d3drMBg0xmmZlc3RyWKr5/E8nsfzeB7P43n8/3N8nRubn8fzeB7P43k8j+fx/+l4BgTP43k8j+fxPJ7H83gGBM/jeTyP5/E8nsfzeAYEz+N5PI/n8Tyex/OoZ0DwPJ7H83gez+N5PI96BgTP43k8j+fxPJ7H86iq/wcuRlELTGVr4AAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "#\n", "plt.figure(figsize=(9,6))\n", "plt.subplot(1,2,1)\n", "plt.imshow(boatApprox,cmap = cm.Greys_r)\n", "plt.axis('off')\n", "plt.title('Rank 40 Boat')\n", "plt.subplot(1,2,2)\n", "plt.imshow(boat,cmap = cm.Greys_r)\n", "plt.axis('off')\n", "plt.title('Rank 512 Boat');\n", "# plt.subplots_adjust(wspace=0.5)" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Interpretations of Low Effective Rank" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "How can we understand the low-effective-rank phenomenon in general?\n", "\n", "There are two helpful interpretations:\n", "\n", "1. Common Patterns\n", "2. Latent Factors" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Low Rank Implies Common Patterns" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The first interpretation of low-rank behavior is in answering the question:\n", "\n", "\"What is the strongest pattern in the data?\"" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Using the SVD we form the low-rank approximation as\n", "\n", " * $U' = $ the $k$ leftmost columns of $U$, \n", " * $\\Sigma' = $ the $k\\times k$ upper left submatrix of $\\Sigma$, and \n", " * $V'= $ the $k$ leftmost columns of $V$, and constructing \n", " \n", "with $$ A \\approx U'\\Sigma'(V')^T $$\n", "\n", "In this interpretation, we think of each column of $A$ as a combination of the columns of $U'$." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "How can this be helpful? \n", "\n", "Consider the set of traffic traces. There are clearly some common patterns. How can we find them?" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkkAAAIjCAYAAAAX748IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAAEAAElEQVR4nOyddZgT19rAf+8Ku7hD8cWL00KhlFJKaalQd7v1W+9X76VOnba37k57625ocXd3Xdzddlk53x8zk51MZpJJNlmB83uefTYZOXOSHHnPa0eUUmg0Go1Go9Fogkkq7gpoNBqNRqPRlES0kKTRaDQajUbjghaSNBqNRqPRaFzQQpJGo9FoNBqNC1pI0mg0Go1Go3FBC0kajUaj0Wg0LmghSXNEISKniogSkf7FXReNNyKSKSKZxV2PRCAix4jIlyKyXkTyzPZYxTxXSUTeNj9/rnmuo263Gk3JJKW4K6ApfYhItMm1blRKDUxEXUoDPr+vXkqpMYmuy5GOKWQ8HcUta5RSGXGuxkCgD/AdsAJQQJZ57hXgNuBv4H9AHrAZqBLnOiAipwKjo7ytsVIqM9510WhKK1pI0sTCMy7H7gMqA28Bux3n5iS2OqUGt+/NIrOoKnGEM8blWEfgAmAu8Lvj3O54PlxEygBnACOUUte4XHIusEwpdZ7jvr1AK2B7HKuTSWibqwLcC+wB3nS5Z3ccn6/RlHpEZ9zWxAPTdNKIYl6J2lbPzyil+hdXPexYmiSllBR3XUoKlqktAVoct2fdAHwBfKmUuiHBz2oIrPF6lojkA+OUUqcmsh5eiEgGsJrEaNA0miMO7ZOkSRgislFE1rscX2P6XzzpOH6OefxZx/FyIvKoiMwRkQMisl9EJovIVT7rsUREDotIDY/z/czn3uU4Xl9E3hWRVSKSLSI7RORPETnBz3NjQUQai8huEdkpIo0c58qLyGLTz6Wn7XgLERkgIjNEZJtZ1zUi8rGI1Hd5RsD/RUQ6i8hQEdkjIrtE5BcRaWBe10REvjfLPCQio0Wkg0t5A83ymojIA+b3nWX65LwhIpWi/A6uMp+1yyxnsYg8ISJp0ZTj4zn276GLiAwyv3dlChOISC/ze1wkInvN72GBiDwtIumO8jIxBCSA681ylPn9jDGFZQF62s6NcdbFpZ7VROQF87kHzd9qrvmbl4/j96HMeh4jIp+KyAazrd1gno+qndnK7SMif4nIVvOedSLyh4ic7nLtmSIyWES2m9euFJFXxfTpclzbXkS+E8O/K9us0ywReVNEUuP1vWiObrSQpEkko4B6InKsdUBEmgENzbe9HdefZv4fabu+CjABeBHDf+Nz4EugJvCtiDzvox5fAqmAl1B1HXAY+N723OMxzIR3AkuBd4C/gFOACSJyjo/nRo1SajVwC1AV+E5E7Cbx94FjgWeVUmNtxy8GbgfWYfjBvAMsMsuZLiL1PB53AjDefP0JMM0sa6T5m00D6gNfAYOAnsA/IlLBo7w3gCeBsRhm1+0YZthRToHCCxH5DPgWaAb8CrwH7ASeA4Y6vo940Q3je0inoH0dNs/9B8O/aA7wEfCpea4/MEREkm3lvInxucEw7T1j/v2O4adkmb7W2M4NDFcxEWkMzAIew/Br+sCs43rgfox+EE+qAVOAEzG+/3eBLea5qNuZiDwDDANONf+/htG/WwHXOq59ChgKdMVob29j+HQ9BEy0C9si0h6YimFGnQK8DvwIbMPos3EVqDVHMUop/af/Cv2H4f+ggAzbsZvMY3fZjt1mHhsOZAPlbOdmAweBMrZjA83rH3E8Lx1jQM0HOtqOn2pe3992rB6GgDXDpd4nmNf/YjuWgjE4ZwE9HdfXBTYAm4A0n9+Nsurk8dfP5Z73zXteMt9fZ74fDSQ5rq3nVheMyT0P+MBx3PqOFHCN49xn5vGdwOOOc0+a5+51HLd+o+1AI9vxJOAX89yTLu0l03HsBvPaX4GyjnP93Z7t8/u3yh0Y5nu4zePeJphuCY7jz5n3XeE4nuH2LEdbGONyPKTdmscnmscfdbmnBpAe5Xdh1S/To24KQyhOcTkfbTvrY5a3Cqjncl992+te5rWTgCoev98btmOvmccucCm3qrOP6D/9F+tfsVdA/x0Zf7gLSY2sSc927EeMlem55rk+5vHqGALPcNu11YFcYLrHMzuYZbxiO+Y12Qw3j7dxHH/XPH6+7dgF5rFXPZ57r3n+HJ/fjYrwt9vlnnQM7UU+cDewH9gK1I3yd5kHrHIcs76j8S7Xn2KeWw0kO85Zv+cXjuMDcRGEzHNNzAl0tUt7yXQcmw3kOCdJ81wyhhA2LYa2aU2yAz2+h9kxlFndvPdzx/EMt2c52sIYl+Mh7RboZNWPOE36RBaSsoFaMZTr1s7+Msu8yMf9v7n1T0fb2Gp7bwlJfeLxveg//ef1p6PbNAlDKbVGRFYBvUQkCWNQOxUYgWGSycUwuQ3HWEkKhonO4gSMydErf4zld9DKR3UGYkQdXQ88AoFIpCsxVPSDbdd2M/838nhuc9tzB7ucd0VF4bitlMoSkSuAGRhmDQVcqpTa6LxWRAS4BkMY6ICxkrabgQ477zGZ4XLMKn+OUirPcW6D+d/L/2Ss84BSapWIrAMyRKSKUmq3240iUs6s+3bgPuMjhZCNv986WqZ5nTB9fu4FLgJaABUx2qmFlykzHpxo/h+mlMpP4HPsZCqltrqdiKGdnYjRbof6eG43DAH5MhG5zOV8GaCmiFRXSu0AfsD4XX4XkZ8xxpSJSqmVPp6l0fhGC0maRDMS+DdwPMYgWBMYqZTaJyLTKfBL6m273qK6+f8E888LLx8ZO78Be4FrReRRUwA413zGm0qpXJfnug3W0T63MCzDWKGfhOH7MdzjutcxfH82Yfh9bAAOmeduwNAAubHH5Viu1zmlVK4pvHg5xW7xOL7ZrENlvEPMq2IIHzWJLs9RPNjsdtB0/h0FdAEWYEzM2zDaMRj1TKTvSxXz/4ZwF8UZ1+/CJNp2VgXYpZQ6RGSqY8xHkX77CsAOpdQ0EekBPA5cCvwLQESWYkS2fufjmRpNRLSQpEk0ozCEpNMpWGmOsv1/VESqYQhJezCcVC2sifoNpdQDhamEUuqQiPyI4WR6Bsbq9nrz9JeOy63nXqCU+rMwzy0k/TAEpO1AG+BR4AX7BSJSC/g/jEn8JKXUPsd5XxGAcaI2hpO7k2PM/25CGY5zs5VSx8e1VpFRHscvwBCQQsL5RaQOiRfmdpv/E6mtcuL6XcTYznYD1UWkrA9BaQ+GSbGa74oqNRk4V4yox07AWcA9GAEd25RSI/yWpdF4oaPbNIlmFMbA2xsjem2VMiK4wNAaJWGsAptj+GrYTTzTMHxyesSpLgPN/9eLkQ7gbGCeUmqO47op5v94PTdqROQk4FkMoaOt+f8ZETnZcWkTjO9wuMvEVd88X1T0dB4QkSZAAwwzzm6vG5VS+4GFQBtTaC4JNDP//+JyLuSzJgCrHZ5pmquLk1ja2RQM7eBZPsqfAlQVkTbRVkwpla2UmqSUegpDkANDwNVoCk1xdzzNEY7p37AQ6I7hFGw3p03CiCB7zHw/yuXeb4DOIvKkW/i3iDQ1w6T91GUisBxjAL0Dw2w00OXSP4CVwF1eof4i0s30o4k7IlIVI8Q6D7hSKbUFuALDFPadiFS3XZ5p/j/ZHo5uhul/QtFqi+8VW24nc2J/FWOc+cLH/a9j+J587pEXp6qZmqGoyDT/n+qoRxPg5UQ/XCk1E6OPdMRIRRCEiFT3m1ohDmSa/6NpZ++Y/1/zSA9gP/aG+f8TEanrcm15ETnR9r6HiFR2eWZt8/9Brw+i0USDNrdpioKRGNoQ6zVgrABFZCLu/kgWd2NomZ4F/iUiEzB8X+piOPGegJH/aLXLvW58hRG+/SSG0PGt8wKlVI6IXIzhdzFIRCZhRJodxNCKnICxcq5DFIOxhxO4xe82jdbnGLmk/s86ppSaKyIPYkTjfQGcbx7fLCLfYzigzxGR4Ri+P2dgCKBzMCbZomCiWYcfMMwnZ2I4+M7E2LMsLEqpz0WkE0aem5UiMgxYi5G7pzGGkP0FRq6eouAvjFQQD4hIO4wIq4YYvmyDKMj3lUiuxdhq5UURucR8LRh9og9G3qzMRFcilnamlBouIlZfWywiv2PkWKoNnIyhPbrBvHakiPQDXgKWi8hgjD5dAcPXqSdGvjRLK/Ug0EeMZJyrMKI/22Boh3cBH8f5K9AcrRR3eJ3+OzL+cEkBYDt3nnkuH0d4MYafjQI2hym7DIawNAlj8s3GmDxHYjiSVrddeyouKQBs5xtiaGgU8FeEz1QLGIDhh3EQYyBeDvyMMXmF5JLxKCdSCgAF3GBee4/5/g+Psn41z99vO1YOw1fJyu20DiMJY3WMSVU5yvD8joghhJ2CFABNMCavJWY9NmAkWKzk0V4yPZ5xLsYGsFsx/Ng2Y5henweOjaFt3uD2mSK1FfOaBhjaTMtJeSFGdGSKx3cR9ffn4zepjqG5Wmp+r7sxhJIXsOUZ8/ldWPUL+e696hZrO7Pddw6GD+BOjL67DiOQ4jSXa0/GSBOy0fztt5mf9XWgs+26PhgC8yKMMeGA+f28jS1Xl/7Tf4X903u3aTSaQiEiAzGc4PUO8hqN5ohC+yRpNBqNRqPRuKCFJI1Go9FoNBoXtJCk0Wg0Go1G44L2SdJoNBqNRqNxQWuSNBqNRqPRaFzQQpJGo9FoNBqNC1pI0mg0Go1Go3FBC0kajUaj0Wg0LmghSaPRaDQajcYFLSRpNBqNRqPRuKCFJI1Go9FoNBoXtJCk0Wg0Go1G44IWkjQajUaj0Whc0EKSRqPRaDQajQtaSNJoNBqNRqNxQQtJGo1Go9FoNC5oIUmj0Wg0Go3GBS0kaTQajUaj0bighSSNRqPRaDQaF7SQpNFoNBqNRuOCFpI0Go1Go9FoXNBCkkaj0Wg0Go0LWkjSaDQajUajcUELSRqNRqPRaDQuaCFJo9FoNBqNxgUtJGk0Go1Go9G4oIUkjUaj0Wg0Ghe0kOQTERkjIrtEJE1EPhSR/ebfYRHJsb0fIiIZIqJEJCVMeY1FJF9E3vf5/KtFZIb5jE3mc042z/UXka9d7lEi0sztGvPcfBFJsh17XkQGRvG1aI4yirMfiEimiBwSkX0isltEJonI7Y42PNB8ZhfbsWYioszXH4nIVy5ltxeRbBGpZvYV67NYz+kW/belOVooAf3idMexG0Rkgu39yWY73iMiO0VkooicICKP2eqWJSJ5tvcLzXuP6rlCC0k+EJEMoAeggPOVUrcrpSoopSoALwI/WO+VUmf7LPY6YBdwpYikRXj+A8Cb5rNqAw2B94ELYvk8NuoCVxayDM1RQnH3A5PzlFIVgUbAAOA/wGeOa3YCz3vcPxC4WETKu9Tjb6XUTvP9D+bnqgGMBn7yUTfNUUgJ6Rfh6lcJ+Bt4B6gG1AOeAbKVUi/a6no7MNlW1za2Yo7auUILSf64DpiCMcBeH8cynwBygPO8LhKRysCzwF1KqV+VUgeUUjlKqb+UUg8Xsg6vAM+EW9FoNDaKrR84UUrtUUr9CVwBXC8ibW2nvwTai0hPl/smAxuAS6xjIpIMXG3e57w+F/gGqCciNf3WT3NUUWL6hQctAJRS3yml8pRSh5RSw5VS86Io46idK7SQ5I/rMAbKb4AzRaR2YQoTkR5AfeB74EezfC+6AenAb4V5pge/AnuBGxJQtubIozj7gStKqWnAeoyVvMVBjBX8Cx63feV41ulAKjDEpY5lzGt3YKzsNRonJa5fOFgG5InIlyJytohUjaGMo3auSJiQJCKfi8hWEVng49o3RGSO+bdMRHYnql7RIobfTyPgR6XUTGAlxqqzMFwPDFFK7QK+Bc4WkVoe11YHtpsr2nBcbvpPBP581EMBTwJPFValq4lMae4TJaAfhGMjhhnBzkdAQxFxM2/8D+gpIvXN99cB3yqlcmzXXG5+54eAfwOX+uiDmigpzX3CrFNJ6Re/O8b+gC+TUmovcDLGeP8JsE1E/oxSmDtq54pEapIGAmf5uVApdb9SqqNSqiOG3fTXBNYrWq4Hhiultpvvv6UQKlURKQtchrHqsNT/azE7lunYZznOXYOxgq3hQ835o1Kqiv3PT32UUoPN598a2yfSRMFASm+fKO5+EI56GH5IAZRS2cBz5p84zq0FxgHXikgF4EJCTW0/mn2oNrAA6BTlR9T4YyClt09AyekXFzrG/jvt5SqlFiulblBK1QfaYvgYvRlN3Y7WuSJhQpJSahyOgUtEmorIUBGZKSLjReRYl1uvAr5LVL2iwWywl2OsOjeLyGbgfqCDiHSIsdiLgErA+7Yy62GqVJVSZ9sc574BJgNZGAN5ongCeBwol8BnHPWU1j5RQvqBV91OMO+b4HL6C6Cy+SwnX5rPugRYrZSa5Va+OfndBvQXkTq+P53GF6W1T0DJ7hfhUEotwRBO20a41I2jbq4oap+kj4F7lFKdgIewqQQBRKQR0BgYVcT18uJCIA9oDXQ0/1oB4/FnJ04TkXTbXxLGKuNzoJ2tzO5ARxFp5yxAKbUHeAp4T0QuFJFyIpJq2pZfKdzHCzxjDDCf+DkdavxTGvrEhRRzP3AiIpVE5FwMv42vlVLzndeY5rH+GBFwTn4BGmBE+YQ4bDvKWQIMAx6JVC9NXCgNfQJKYL9wQ0SOFZEHLfOyiDTAEDKnRFvW0ThXFJmnuqnWPgn4SSSg/XbaNq8EflZK5RVVvSJwPfCFqZ4PICLvAm+LiNvga2e/4/0NQG/gOKXUZtvxzSIy1HzeQ85ClFKvi8gWDCn+G2AfMBNvx9RYeIIYOo0mdkpRnygR/cDkLxHJBfKBRcDrwIdhnv0d8CgOnyWl1AER+QX4F6ZpIwKvAqNE5CWl1FYf12tioBT1CShZ/SIc+4CuwAMiUgXYjZESINbo6KNqrhClVOIKN/JH/K2UaitGroalSilPlbWIzMYIdZ+UsEppNMWI7hMaTTC6T2hKMkVmbjM97FeLyGUAYhCw24pIS6Aqhg+ORnPEo/uERhOM7hOakkYiUwB8h9GQW4rIehG5GbgGuFlE5gILCc4YfRXwvUqkakujKUZ0n9BogtF9QlPSSai5TaPRaDQajaa0ojNuazQajUaj0bighSSNRqPRaDQaFxKSAqBGjRoqIyMjEUVrNFEzc+bM7UqpYt2cVPcJTUmiuPuE7g+akoZXn0iIkJSRkcGMGTMSUXRM7M3KoUxyEumpycVdFU0xICJrirsO8egTSim27z9MzYpH1dZJmgRQ3H2ipM0Rbhw8nItSUD7tqNv4/qjEq08cFea29v2Hc+ab44q7GhpNofh++jpOeGEEizbuLe6qaDRHPG2fHkabp4cVdzU0xcxRISQBrNlxsLiroNEUikkrdwCwfOu+uJY7ZulWMvoNYt1O3Uc0Got8Hfit4SgSkjSa0o61SUO8s3b8NGM9AHPW7QZg8sodTDYFMo1Gozma0UKSRlNKSDKlpD/nboxruQpD6rK2yrrqkylc9UnRbs2Ul6946o8FjF6qt0XTaDQlBy0kaTSlgO37s7E2/By1ZCvTM3cCcMMX0/grTkKTBHRVRc/0zJ18NXkNN34xvdjqoNFoNE60275GU8LZvCeLE18aGXRsf1YuSzfvY8zSbUxcsZ3zOtSNuXzLfCfFJyORlRPdhu7fTF3DSU1r0LhG+QTVSKPRaLQmSaMp8ezPzgk9KLB1XxYATWtWKFT5ASEpwnWrtx8gUdsYJdkkNMs3yovcvHwe/20BF70/MSF10Wg0GgstJGk0pZDcPEVunuVLVDgVkOWTFI7JK3fQ679jAk7e8SbPJnxd+F544eeQqXXafdBFeIwze7NyyOg3iKELNif8WRqNpuRRaoSkscu2kdFvEDv2Zxd3VTSaIiUnL1SIWbvzIDl5+UCBQzfArgOH+Wjsyqg0PnZzm/0+uwls6WYjN9OCjXuiqbpv8qOItz50ODrTXGHI3H4AgHdHLy+yZ2o0mpJDqRGSPh2/CoCFOpGe5igjz0WA2HMoJ3D8QHYu+7NzAXjyjwW8NGQJk1fFEsIv5Nqe9Z9f5gVeW4JaanJihozcKISkn2clRpvlRkqS8XlzXQRVTQEi0kBERovIYhFZKCL3FnedNJp4UGqEJGtCSCpO71KNphiwNEZ2PhyzkrHLtgGQueMgxz/3D1CgZbn6k6m+y7em/z2HDnM4t+BZc22+QYfNOpRJScyQYdcktapTKey1rwxdmpA6uGHKSK6/gSaIXOBBpVQr4ETgLhFpXcx1ijtKKf6etzGon2iObEqNkJSvLCGpmCui0ZiISLKIzBaRvxP5HDcty+G8fL6fvq7gvTlox6LpsSxs//llPrd/PTNwPNs2EVhCQmocOqBbJJv9M1YuW3KCbnNyjXq5afNKG99NW0tGv0EBrWM8UUptUkrNMl/vAxYD9eL+oGJmyILN3P3tbD4xLRuaI59SISSNWrKFKauMvDCFdVLVaOLIvRiTQUKJxtSTatP0xKL9GL98e+C1fbV8KMoQfTdy8/J55Oe5HPvkUGat3RV0Lt/mC+Xmg1VcHA74fZX+cefjccbEvnVvVkKfIyIZwHGAf3VmKcHa3mrXgcPFXBNNUVEqhKSbBhbsFq01SZqSgIjUB/oCnyb6Wbn5/oSdSSu2B2l6DvjWGLgLJfaIs4/GrgpzpT9eGbaUH83ouIvfnxR0zhIEm9QsX6JMWwHn+CNg4LHaUXICP4uIVAB+Ae5TSu11nLtVRGaIyIxt27YlrA6JxBLmE/kdakoWvoWkojItROJIGKw0RwRvAo8AUc3o1346lcaPDorqQX41SVd/OjUo2VHHZ//h+2lrWbPjQNj7vALhdh/MYfD8Tb6ujcSeQzkBTYYby8xNe9NTkiNqkjo2qAJAo+rlYqtMFFhCUsoRMO5YsnaitGIikoohIH2jlPrVeV4p9bFSqrNSqnPNmjUTUodEU8Y0Z5ckbacmsUSjSSoS04LFwo17WLwpNJLtCBirNKUcETkX2KqUmhnhupCV84QV26MWNKLNRm2n36/z6fnqmLDXhKvOnd/Mclwb2+Tw8E9zw563NFVpqUkRNUmWkFS1XJmY6hIND5n1PhLMbZZfVX4CEoKK4QfxGbBYKfV63B9QQkhJNtpBSdJ2+iU7N4/s3KJLn3Gk4EtIKkrTgkXftydw9lvjQ47/NGN9wm3qRxMbdh+KKkeNBoDuwPkikgl8D5wmIl87L7KvnNMrVqHXf8cEnc/1OdBmOQa24xtWianSbuTk5bN5j//+9N7olXw1OTPq52zd5y+/2da92azYuj+QTdwNa7L3a4YsDFv2GvUubeYVpRSrtu1nxKIttHpyKLsOHA6YT6NJtxAF3YF/YfSFOebfOYl4UHFSlG0v3nR+fgQdn/mnuKtR6vCrSXqTCKaForI3fz99HTd/OSPyhZqIrNt5kO4DRjFg6BIu+WASK7buj+r+Kat2kNFvEOt2HkxQDUsmSqlHlVL1lVIZwJXAKKXUteHu2bA7i9XbC8xeP05fR7PHh7Bx96GIz3vqj4VB78unRR/95ZVc8vHf5rPIRWMbjndGrYj6+X7ZYH4fg+Zt8rzGmuStyLOioKiFpPW7DhYqou7rqWs57bWx3PLVDA7l5LFsy75AG0jEokgpNUEpJUqp9kqpjubf4Lg/qBgYuXhL4LVlZjtchG0vXuzLyo1LAMbRRkQhya9poSjtzfM37GH5ln0JfcbRgLW6/3jcKmau2cUrQ5dEdb+1RUVsiQuPbqyEiKu2hfcXAmNws1OuTLLntb/O2uB6fG+WuxP38EVbXI+HI5ocMXn5iox+gyLux+Yk3DyeZ67iDxzOZXsRZeAvSiFp4+5DnPzyaN74Z1nMZcx2RA/uOHDYpgUpfRN8cWJflFtmtnhrktbuOEhGv0FMXqnH0pKGH02SL9NCUfOLx2RQnOTnK94asbzIBm6/TFi+3VXjk+ZIDJgdZYK0I8BNo9AopcYopc6NdJ1TKzBttZXSIvIzmtYM3um+fJnoNUmP/zbf9XgsWoVohKQDh2PLyRNuW5WZawwBYP2uQ3R+fkRUfhbTVu+MaWuj5CJs7JY2rTCLD+fXt3lPVqANHgk5n4oLa5ua7Jz4CklTVhu/9S8e2eTfG72C/n8udD1X1Hw4diV/zCl582+iiCgkxWJaiCd/z9voejwRzoeFZerqnbwxYhmP/uo+IRUX301fC4Turu50Ro3Zqa/k/RQlDq/26mfqrV0pPej9n3ONPnFVlwY8fk4rX88ftWSr63EvDZOdqY7J2q/TqlKKb6as9XWdk3D9e6VD+/be6JW+6gNw+UeTueyjyWGvyctXIcJjUhEmS7GyppdN9dYYRsL5/W3YfUhrkuLAr7MN4SBW4d8LaxzwavevDlvKwEmZcX1mrAwYsoR7v59TZM87eDiXd0Yu9+3DGW9KfJ6kB350j4opiXspHcoxOk5Ji3zINu3Q6Y5B16kyjlqTZP6PNeJJ40++PODY0PWEjGoArN5+gHJp/ibSc9vXcT3uZyLefSgn6H1uvmLp5sjm7imrdvKyDxOu26QdzTyeZ2vHH4xZSUa/Qa4DqiUkRDJxNn1sMJc7BKlYtHexYn3fzv4aDc7vb/v+7IDjdl4pdDouacR7k2VrwVoC1/7Fzhv/LOO1f5bx2+zi0V5FJST5NS0Uli226DUvtXssmqR+v8xLqABjOfMlahPQWMkyVcNO85rzu9i6NzvIuTgSliJKd+zYeXuk9+7yG3Yf4r/DloYkhXz0nGMBw1epjM+25iUMta9fOeK9znYDhORPciOc38axx1QMvHYTzsOZhJrXqhD03r7X25sjDD8etzw20ZgJZ5gmvfKm/1dR5mf7v+9mA1A2jO9ZJJzjo31RuX1/8WeLXr5lP8tKsV+pc+FSWCyft50HDnPv97PjktE7Ny//iAj5t5zNC5MKpTCUrNncxJ6bxWuwjMVx7vvp6+jywgjucuR+8UskAcISOvxOXEWFV5ZY50SyYfehkDD1cIipS9IyUuxMNX2T3Pi/72bz7ugVIVGHlsCTlZPne8PZHI9+FO75Fm5Oy37yBoWLwrP3a0t4eeCMFoFj4TTFeQ4BIC9fMXTBJp7/e1Ggrbstog5HuUC67/vZAW3Osi37+HT8Krq+OIL1u7yjOfcczHHN7+aFUiqwEFy4cQ8Z/QoSjaYmxy6YOReXh/PyA4ul2/4XNganSMjKzeNgnAWNoqBGBSM316F4m9vMn3rssm38MWdjwKReGC79cDItnxjK6KXupvbSgjXWFJeVuGTN5iZ2x0qvLyZW58NdB3MY5GMVbJGVk8fjv83nx+nr6PXfMQxbuNnz2pwE75QeK9Z46TRrFNZkqTVJ/qmUHr25xmsVmB4QkvJ9C+Ru5ie/mpUsFyfVwipW7IKOpSmrUSEtIJAdzvOeQJ3tLSdPcfvXs/h0wuqA4O8UpCA6TRLA73M2Bvr0mh0HeX7QYrbszebloUs977ni48mu+d28uPqTqTR+1IiUn+4QWGtUSIuqvnaca8h/YohiTDTx8CvNy1dxN31BaEDDsIWbGbN0a0AL56ZJGrN0K3d/G9sC3LnoiIc1wvJBvfGL6SzZHF2aDy/CBVQkigIhqXgmmiKbzSet2O57kPKT8r2oIjR+mrmeb6au5ZFf5gGEXSVaQkhJy85r+Qw5J8qcQvomiM/Gu2DDnkA019GKHwdpJ+Li1j33qT4cUzmdBtXK8vR5rX2bgdwEYr97ux10WTX7ea5XHz2/Q92gSajHK6MBIzfQpcfXB8JPEs725uZjk2f7vNbAbjcv+43qc/vdxFbmlr1ZKGWkOfhw7EqW+PDVsmNFsGX0G8TmvcFRdx+PW8WXMTrrlsTAFifxmHDv+W4WrZ4aGofaBOMUsm/730xu+GJ64P1Bl75zwxfT+TtMfq9wOLW1hf39Mh1Wj3hF4xWHNseaTo9oTdKcdbu5+tOpvDosshOnUioQAlsScHbkcG1XBcxaiaxR9Fh1dgqfew7muFxN2GzHdr6bZkQujVy8hXnrd3ted+47E0IcYTUGbepW8jxnT/x2ddeGjH+kF5XLpZKanMT4R06jT5tjwu4p1rhGQeoAN3PbfnOgv/nkxmHr6BbJ4keD5aWpTE6SwCRkXzgdyM6l//ltgOiEpHU7Q8eLPGWk43h12BIaPzqY6Zk7g4QkvxnA3fhz7kYaPzqYFVv30fXFkTz79yLAiPoJ1DGGEX3Oul0hx57+cyE/Tl8X9ZhYGgLY4uEeOni+odnPNTPHx0vTEWkR7vSjsz83lt/e2Y0L+zmmZwYvSv1vdh2e4hC+A5qkYmrURTKdbzcHJGforhtb9pasHEPRYP2G8dYknfjiSPq8MTbomN2XwS9OP64dHs6BXV4YyQuDFtHsscG+nOVGL93G+e9ODDn+f9/NZtSSYDX/ocN5nP3WeGatDZ0QjiaqlEsFYOHGvew+6P47rLXltdqXlUuDaqEburppdEY92JPVL53D+R3qBo7ZtYhZOXlMz9wZGOgtH6fuzar7rn+4qLoNuw/x+YTVnhNNpfQU1u08xAuDFgWZSsqkJAWcxF8dtjQgxDlxKo6+nrom5JpDh/N4Y8SyQHqAMUu3BglkOw4Ufpyxfp8vJmaGnCusltbOI7/Mo/uAUVHdUxxmkWiJ54T7wuDFnPjSyIDp8lqfi3IvIglJufkq6JoXBhVsa+pm6o1EiiPHRGEtJc5FhldfipbiEZKK79lQAn2SijIfSbyxfkSJs5C0eW8Wy7bs54VBxor10OE8Gj86mLdHruDBH+dGzD5uNS3nyj6c+fOT8avJzVfs8pjA/fDn3I3cNDB4C5lFm4yNi583V99HI4+c1ZI5T/UJvPcy0dgFm5OaugswbkkOm9SsgIhQqWxq4Jhdi/jUHwu47MPJgXbTtl5lnujbiveuPj5wzR93defEJtVCyj6jdW2jvDBt55YvZ/Ds34s8/ffOaWekI/hk/Gr2ZhVoMxvXqBAk9HnldnJqVXa7aESdeWwOHc5nn22iiDbdhRvh+k8s/n7xnANKg7ktnnUcYds6RCnFhBXbg/JnKaWYuWYnd307y5emPJygY2lRrd9/xKItfDphdcG9MQg4zm480qPt+8VZB2fW/lgpjmZljQlHtLnN+mzhRIc8M1u124Dnxo8z3DOT+sWZtt+NhRv3RNUoCjRJMVYqAp+MNzriHjOPyhsjlvHLrPXcY4YMexIwtwUP6n6Sc8U707AUc6RCSaBB1WCNkNdka+12D3DlCQ1crwm3XYb9jF2LuGCD4VdnZYYvWyaZW3o0oUq5MoFrOjSowkXH1Qsqr0aFNN64oiNghMif984EV5Pt/mzj2P+mhGp4ABpWL/j8e2w5mK7qEvwZK9uEvIK673Et08nNDuH884mrufj9SYH38QgnDjfxxCIkRRt9F47S0L3y8+GWL6dzexyi7ezjlJsA/MusDVzywWQGzdvEo7/MZ29WDjcPnO65uXM40056qjFt3vfDbJ75a2GQgAaxCX9OoWb88u1Rl2HHaU525jqLlWI1tx2pmqSt+wrS4Yebb4cv3MwbI5bR541xia4SABfZBkw3Zq3dRd+3J/DxuFVBx/PyFSMXbwlSZ+flKw7n5geOJdpx25m80W3lEpRrCstxNfg6r7Dw4GdFz+y1u9i6N3TwUUoVJKAsBSvdRFHVFEbqVDYyaXulsziuYdXAay/tpFNIsgtWWbboOLdJ2yt/loVTZf/bnScFVtF/z9vE/A17OOft0EiuSJE5dn8muybJ+RndPrHXpOYkkg9PPBxZw/l5WOa2PYdyPBcjzj5QxUUojBW3rn3LyY159oI2cXtGYclXihGLtzI0TMRwLLilFrAL7A2qleOP2RsYuWQr7452z1MWLiu55cw/bOEWV1NrLBnN471odCZxjddep8WxuLWGuOKaMxIqJG3ek0WXF0byHzMyLJwuKZaPP2/9boYuiC2aAIwB2msAs6IDnIPtx+NXcfOXM4I2Br3zm5m0eGJIYPXhtrjfeeAwK7ftDz0RA86G6lQNT1yxna4vjgz5bqzJeM2OA2T0G8RfPnJxuHX4t0Ys573R3jvBX/T+JM5wEXa37c8OrGji3dz3ZeWwaU/JcfgPh+WP9OG1nQC4aeAMNrpM6lbbLB8mqWC18obAVa9KWQDeu6bAZGYP3Z+wYjvXfT7N8GUzj1k+NV5CkjPRZIW0lJDcPbEEWaTanrdxt7fQ46YRiNeWGl7pFaIZiMMlFPxyUibvj1lBh2eG85yHafmNEcETtFuqhVhx+xx929ehRe2KLlcXD/HUDGTuKPDfc3MRmGvbkmngpMzAin34QvfUCOE0SeE2mI50r+c9blvzxNjW3fyPvp++LvA6XBvP6DeIp/9Y4HneWc+dBw4zcOLqhAowltKhuDaySKyQZGoT9vhQ9cWSF+L8dydy+9ezyOg3KKYG1b7/cM9tT7wyc1umEbs6c5jZ0awquK36e782ht6vjeXNEcv491czQs5Hg/Oz5ucrfp21PhCqPd80Scxau5vs3DymZxqmRUuTdNXHU4DIyTEhOJTa4o0Ry3h1WGiumGVb9rHN/F7cfvMuL4zkRjOM1qtPHcjO5dVhS6LOaXPBuxPp9lJ0zq3FhWVGsg+2w11W05amb2K/0zzLalG7Il/f3JWRD/Ykc0DfgLAEobmZxi3bxt6s3EBEnLW69tr+olmt4Am1fFqKL3+7SNt+2DVJD/1k9L+Lj68Xcp2bIBOv3de9BJJo/EnCOcO+M2oFr5j5lH6Ysc71mm8dDufxcq4F90k3PTU5bDRkUWOvojNkPRKZ2w8EJd60s9NHturxy7YBxjhu12ZahPNJeqJv67Blx+KT5HZPLH5zew7m0PbpYYH3fV22I4okz3w52d1MDqBsVdq6N4vjn/uH/n8tYuHG+ORhcsMr1Uy8tGORSKiQ5PxQ4cZXrwSMXRuHOo+6EesK0yuzacRIPB+bcubmFZjgdpm+G2+OWF7oxG7O52TuOMgDP84N2SVaKBDgrPpAdCn1Z671n9+ozxvjfGfs9lpFvmlGJH0xcTXvjlruW/hdFeUgW5xUNjVJKTZhwTpmJyc3nzqV04N8hdw4uXkNV0Hn+pMyePGidvRoXiNwbPv+bNrWC9YQeWmSAP5z1rGB136SpI5fvi3ofe1KaRzfsErgfa2Kaa7pA648oWHg9VtXdgTcBRm72fDuXs0i1scLL01SNOPIB2P8bazrlu/KOmMnkpC0eNNebvhiGtm5efT/c2HYccRNliybmhzWh60wiMjnIrJVRLzVEA7sKS7GL9/Ght2HeG/0Cl99fkyYLNKrXDT29q1rIFgbv90lHYSXoHNN14ZUdfRVu5YGYotucxsP92W7CG8Rvps1OwvGwW9u6cp7Vx/PLY4UHz96CO1+sNdzxOKC3yCR2dPdzG3DFm7mjDfG8fe8wmcmj/j8RBbu/N29umduXj6TVoY6qr10cTvut21VEA6vxuNHDWjP8A2wYuu+EF8kJ1v3ZdP/z4WuGqckEQ7n5tPs8SG84qJxiQZnh8/oN4jnbeGmdqz0CfaPvMYmPFgTQDRat/t/cNe0eeF3NexVBWtifGnIEv47fFmIU6ST1dsPMCSKDOrFRd3KZXn+wrac0+4YKqUbg6zddOWcSCet3M5PM9cXyiSRmpzE1V0bkpZSIEAdzs0PWaykhdlItYqL8GbH7gMF8K/PpgW9v71nU85tX5CKYOpjvV3TFljOsAAnNjEi+dw1SQXfx0Nntgy8blWnEree0oTOjaqG3OOGlyYpHlFvTrx+Q+fvsM9Fo2Hn7LfGM2bpNhZu3MvASZlhNdJuzyxbJjkk1DyODATOiuYGe1Tnk38s5Lm/FvHqsKWBvFPhCOc0b9dkXvvpVMCYB1raTI32ccWtrHDCSCSrR7TKzndGLnfNRbZgw56QRK5WFu09B3No338YU8xkpBZ287Xl+1i1fPAiq9+v88noNygkUamfQB57uypbpuB7yM3P55eZ60MW6vEg2SXYx9pge8mmxGuTEtZjNu/J4pIPgp2jvQbjt0et4KOxwULJq5e256ouDX2rh73yktjHiqu7NuTp80JVpS8NCXZyW78rsp/FO6NWMHBSJiNtnc1qQD/PXBcY4L+KMWOuhZumy2sFaX1VVmPPy1e89s+ywPmcvHz2ZeXEza+jMHgJr86JI1LET+/XxnCHbS++kuoQXr1CGa49sRHvX9MpcCzcYHvLl8YEGI+8YXZhLDdPhQjJ4RJDuvlfnNXmmMDrOTZfDzdSkpMC7fL6bo0CqvMTMoKFGbsgl26+dnOu9hrIq5cvw2PntOIpl/7thpsANmfdbrb5TKQaDV5N0jmy+d141s8ix+2Z6QnUJCmlxgFRpdXf6zDJN61lJD8d6GPMPBgmOtEetDJhhbH4zlcqKLmqnWiEJJHIvlQ3DZwe9jwYwltGv0HMW7+bjzwW5DcNnEHrp4YFHbvkg0lk9BvEgz/NYW9WbohvqN0v01p4eC1cn/5zYVD/jbTTxcHDuZz3zoTAe/v4lZunePCnub5+u2gpSAFQUL9AAFARxHFGFJJEpIGIjBaRxSKyUETu9VOwm2aocln3/avc7NGXdjK2J/DbqXPzFGe+MY4TXhgRdNz+FZ7YpHpAurYzasnWIDt2NNFp9oZlvd6blRuIwon0E05dtcP1u7KomO4/4iVJhKycvIBgZA0QFl9MzKRd/+FBau7iIl6yjHMsKwkCoF/sg4xz4G1as4Lz8pixm/Vy8vNDJoBwjqintqgFwHm2xJTH1vHv/JuaJK5pH/qdfWzQdXZNUpr52k2rYxf6Ab7794lc0LEub5omOq+J0Mmhw6FlX/jexEDU6yNntQw5HyteA7mfYcYtV5WfvSfdfZKSEiYkxYJTSJq+uiAtS6RNyMNFJzoXkRn9BrFsi3fQjJsGz1P7h0QMp1+0aW/EKExrbJ6wYnuIEONm/na2FcvUZf2e301by9RVO4L8TC0TvFf6EDDavEWkBemmPVlstH0u+ziyYKN3ao4PxqzkkwiWmXBYn91uxrQEp/dGrwy74XQ88KNJygUeVEq1Ak4E7hKRiMs1t80Zw+0K7sQaWP2qhw/l5LHU5jhsYdcspCaJ6+p954HDQdJ/NBH89oZiH9QvM7fhOHg4L2xOlis+nsLVn0z1PB/NxqhiCkkWzudaztR2m/rJzWoQiaycvLiltbdYu/MgGf0GMTjOpjK/IeIlgYq239Zpto3n3oRlU4NXfPbB5slzWwf1y9/uPIkfbj0x8L5yuVQyB/TlnauOCxyzmwatQXrdzoOuviDJSUJrc+uVzjbtkV1zBFC7UnrgtaXZcus3zv7drWl13rryuMB443dR4YyAsr5/S6tQIYqxKhL2n3L22l3c/e2soN+7R/MaNK8VLBRbUYtuZkG3sPPQZ4a2nzLJxSskicitIjJDRGYA/Dp7Q9D5abatNAbN3xRWKxxuoeflc7lmp/tkus9lbAu32OrZoiY1KqRx2rG1PK95xSPb97hl24KCWmav3R1yjbPt5eWrwKKyomM+SBYhNy+fR3+dzxUfTwnaI9P6rRtV97dw8ApWsnBuJGwXVF/x2PQ5P1/x8tAlvDDY3UUkHFk5eeTm5QeUFl7N4a+5sc8h1nY24YgogSilNimlZpmv9wGLgdBQFPuD893XTl5q4nATgj3Xyw0nZXhe55XB2V50SnKSp/OpfYCPRpNk76y7bNooe1LM14a7NyCv7SjsPPzzvIjXWCRJcOf28q/YZatbJx8+HKe/PpY2Tw9jeuZOJhQyyZmF9b39MSd4oHR+87sOHObDsSt9m9GszVJLA3aB3WlqiWd4tN3xOzcvP6gf1qoYvJg5rmFVujYJvz3JdpsPnyXQ9HhlNKe9Njbk2vJpKZyQUY2pj/Xmgo4Fw4Z9tfzaZR2CHM+TkoTUZOGtkct5yxYm7xaF5Mb8/n1Y8txZvHJpe9fz1cqXCdmSxyk0uWmcV790Dg/18ecjacf+W170/iT+nreJzXuyAk7oqclJ1DGjErs2rsbQ+3ow9uFTufWUJlzYsa5rmZGfWfD6hIyq1K6UhogUa3SbUupjpVRnpVRnP9fvCpNYOJZkoG4bIQN845L09L8OX1Jrj8VDOXnUrpTOjCdOd012arFsyz7u/X52kFbrQHYu130+LUh74xahdUuPJkHv7/i6INmmU+uUnCRB5sIlm/fRtl4lumRUo3r58AEfFpbQFimi2Pmd+7FIvGszB/qJprZz7JND+fdXMwp8kmyNOl6pCO/4ZhYnvjQyrD9WVD5JIpIBHAd4qz4wBA43gWjplv1k9BvEsIWbGTBkScApLZz62JJee7WsyRN9WzHsvlNcrxuyIDSEetHGvQEHLzB8M5x5Xiz2ZuXS+qmhnmGlXky1Oc55ZRi2MmU76fjsP1E9KxIrt+0PWg1s8qFV6d3KezVkYfloXfbhZK79LOxPHzWRBNIn/1jIgCFLmB3B96W0MskM73fmG4pnOLh9MM/JV0GCtF/Bw45937as3LywAmw7M5LOrikCOMZMpNmoejkuMU3rbrw1ssC8tsgWZhzOrFYxPZX01GTPQJE6ldP5a+5GJtrM0V1eGBl0jX0xVb+qIcCICNebC7X7Tm8edP2H1x5PH3PLFiduX092bn5AWy4U5MKqUi6VY4+pRMX0VB47pxXlysSm0bL/Jjd1b8zUx04H/LsvlATC5T1zajX84EyoapmQ5643TEVZOXn85+d5bNx9KChyC4x2CsFaHmeak8fPaRV4vWDDXv6YszHgXL9mx4HANjt2YcEZxJA5oC93nNo06Jg9J5+zLSUnSdAejwC3nNyEH2/vFmRmn/XkGXix1swxFVGTFIOQNNQ2L5/22piI1zsZvXRbQCCyixR2bXZh/JIsITacP5ZvIUlEKgC/APcppUKSIthVqdm5wX4P3/67K1XLpQY88W/730w+HLsyxFnbjW5Nq3NN14a8dHF7UpKTaHlMZH+IhRv3sGTzXs55ezznvVvgaNatafWwYcxWGOM1n/oXBH6fEzkEMZqNQwvDym0HPM1iXgkJnSbQilGaGfymaPDCLiQt2LDHM0dHuL3CippY/fTcqFulLPWqlCUrJ4+/5m5knJm/xeo/t53SJNztvrBHqC3dvDdIs1GYnbVTkgSl4L4f5nheYwkYTiqmp/LJdZ358bZurufdco7Z6/rLHSdFrJ/XwGfVKVw/L5OcxHMXtuWZ89sw5N4eTHusd6DemQP6BqUfePCMFpzZ5hiev6ita1lucsnh3PyAduKZC9oEhBenBsstEtCO1V6c2Ccw+7dQMT2Fyzt7C6WxIiLfAZOBliKyXkRuLmyZ4TQbsSTmzc7NDwoYaFgtuG3+NGMdP8xYx/tjQhPlXta5Aa9e2j7IV81pkjvRQwOrlKLnq2Nct4/yCpoIZzWxk5QkPPrr/KBjzWqF+jNWK18mJFjCwvLpcROSDufm89rwpRw8nBsimI5a7J2GoaB+Ba+jUY67BVYEOW7HWdYP54/lS0gSkVQMAekbpdSvbtc4VamW38M1XRtyUtMaJCclhTR6r4rZB/XU5CReuKhdYOUJ7gmy7PR9ewJnvRm8XcKrl7YnLSU5bCRPomhey7+j6/pdBwPmDPtqsJpP1ekOjwiZci7Cz129mtLEtiKf9lhv5j9zpu+6/nbnSTx3YdsQf4qosDV2Z0iqnfHLt3Pqq6OZuGI7d30zix9nrOP010PNO0VETH56XqSnJnEwO497vpvNdZ9PY+TiLWzak0XvY2uFODjHgl2T9OLgJUELmJh8n8xbLDPeH2EWCuGST57RunaIhslZL7uMYJ+U/PQHt0H/go51qZBW8H14CYllUpL414mNuP6kDCqmp1LLUc+U5CTevfo4ht13Cvf0bo6IUNYjetfNr3LUki2MXbaNro2rUb9quYCQ5MyJFck89uBP7ik69h4qWCzZf/8q5crwyqUdwpYZC0qpq5RSdZRSqUqp+kqpz2Ipx/4dHsj2zoq+fKu7kPTxvzq5HgcjOssulNuFiZy8fNaZGnOndvvxc1pxaouaXNa5QZBm76BjQdqufmW+uqlLyHNXeNQVvDe39tJKOhk0bxOLNgXrLJwmdIv3rj6eJ89tzSNntaSbTaCzooPd3DN+nLGOd0at4L3RK0I0R6t3FGjE7L5S8YgwtpsQrZQ39qjFeOtDw2nR/ES3CfAZsFgp9brfh1qDz7+6NQLcO/uGXYc4o4gmOsvnoWODKrStVynC1fFlnYfDoBsnvzyazs8bEXq/zirw1/nVx8oZDEdwN5z26YfPbMnDZx6LiPDn3d0Z8UDPkIkgHM1rVeC4hlVpUbsi/zzQM8T84Bf7gBROffvu6BVk7jjINZ9OZdD8TTzy87ywg08iicVPLxzpqclB+1fdbIb/L96011eG64jlO5yk7QlGY9iHlRu7N6Zzo6pclgCNhBP75482SZ8zeOTve07mtcs6UMFmLrzlqxlMXrnDeauvHQDObV83SLNdIS2F+05vzvD7T+Hn2wsmY0tGsk8e/x1umBEtTa7lBOtMVBhJk+Q2Ic1bvzuw2wHASU2LRpMdK//Xu2DsuPu0ZgHh5drPpoZ8vqmrdtD40cGeZYUbww7l5CEiAQGkbGpy4Pveti87sIB2prU4q+0xrv3QzUH8lBY1Ob9DsB+Z2xZNTp48tzXf3NI18P6kZjX47U5/Y76T6i5BU2B8Nzef3Jg7T23GYzbTIMDNA6dzxUcFc8eoJcYYYWmPsnPyQzRJ9iAK+zg+ccWOgHYqFrMohEY+QoFA+exfi/hlVuE2uHdSKCEJ6A78CzhNROaYf+dEuska0CynKzdb+J9zN7quCCJNC7FsIFu3itF5UpKT+OaWEyNc7c4ZPqV7JyOXhKolIzmxGbkwClaJjWw7p0dD4xrl+ef+UwKbqVrYP0v7+lWCVlVuqyE7Fx1XL8Q37O5ezfh3j8Yed3hjDYKrtx/g73nxiXR7e6T7ppWJwK+fXji8NBD/vSw+K/4UDz88iG3Vd0zldH6+46S4RoB5Ydc+u23SG45z2h3Dp9d1poFpVilXJpmU5KQgzcqoJVu56pPQhYWf7OJORIT7Tm9Bi9oVg/xBUk0p6Zm/QoNLLAd2K7uy09wWSUtrz3SclZPHzDW7Ajm2AB7q0yIugnaiePq81tSrUjA21a6Uzqs2h3srAEYphVKKsQ7zol3T+t/LOoREf9mxIgUtv7LjG1XltcuNPrZ5b1Yg19689cHh7DU9NDNeofX2lBp+v/qrujSguyPS+LiGVemSEZ07Q88WNX35nbWrX5mxD58aeD9yydYgP8ibBhptyApwSEqSsItYu3ns2s+mBtpgrJm497rkrrK0S59PXB2U0uGVoUtjSmJp16LvOuDtm+knum2CUkqUUu2VUh3NP29R3lEBayUUbqCOFrt/jV/bbbt6VQKvK5dNjSoPykemCvfVS9uTOaBvRGFpUr/TGPR/J/PX3Sd7XuN3+w4o3ED37b+70rx2xZCsq+FWyuEGGoBaldJCVrgpyUk83rc1157Y0OMud6yoor99bLbrl9f/Wcan41cxc82uyBcXgmj89LZtc/cdAYJMyXZO8pGewQ/hfuvCRNHtirBH1sNn+u9jTs5sE9rHoo1oEhFOb12bcqkpgfcAlSNs8wJ4Bnj4pUaFgmdYSXTdEu1ZGu5NZqbk6hWC69aqTiX+ud89WAWCJ+QBQ5ZwyQeTAvtKli+TzJ2nxr51SyJpW7cyy54/mxu7Nw5OJJqaFNReV5i+R4/9ZoS42/tKv7OP5faeTfnljpPof15rLu1U31OgAQKRid2b1SBzQF9qVUwPCMz7s3JdhfAh9/bw3Nvwetvc8/XNBVoga/HQoUEVjnNkpL+ic6hg1a5eZc+Fkl34mN+/D3OfNiI3v/13V168qF3QtcPuO4UvIyxw7URaCBw8nMuHY42tdwR3Tf/xDatwY/eMkFQVltZnf5jM6OFw0yRt358dFOlnZ+CkTPYczOHMN8YFBXiEw/55znl7vOd1CXPQyQ+jSQoXOgnh/RggeFLpf34bX/VxNohoJPQz2xxD5oC+AX+BSEJE3SplaVO3Mu0cu6iHY+aancx3rGAsLIHkp9tDnVzt+3K5UaeysYoe6oj+C5d/KVJETTi/LrfQ6XB0alSNlwYvZv/h+EVzgWHHdmZ8jyfR+unVrFnTs6yG1WLTEvolnF9LYXbWvvbERp7nypdJ5q5C7K1m59upa4GCjZvfvfq4cJeH8PF1nbirV1MyTG2sH3+PcPvZ+aF+1XIMubcHV3VpyGFzonP7GaznbDQjuVrUDvVfbFarAtd0bcjPt3cLmBCt/biqlzfeL9iwJ0QIa1qrQkRzXXEhUjAm2xfQ6SnJQWO1pXH/bto6pq3eGSQoVzHnkU6NqnJDd+P7sAeeOMf8u08LdQmwBLTrPp/mOjFHagdjHjqV8Y/04mTbONzI9POsWSGND//VKeBDO/qhU8kwz1VKT2Hkgz2Z/Ohp/HXPyZ5zniV8fH5DZyqmp1K5rBG5eVLTGnRpXC2gJT2lRU1fQU12IpmU7dm+Pxq3ipmZoYvOauXLuOZEtKhVyftcOLyibt2i2C1mrNnJ0i37eNEjJ1NevuKWL6cHItKdPmVeJExIsvb8soQj+346kZwRIw2ud5zalPtOb868/n1irl/njGqMfLBn2IRgniQgqfMlH0wOisSzk2eucE7IqMbyF84OHH+oTws+ua4z57o4sl/TtWFQ2Gcv2+f872UdPO3WEOoX4SRcgk+/icssfp+9gY/GrfIV6VhSiNVPz4tokqzGQkqYwbBDFIK8k4wa5bnMI3z/xYvbuR73i72NjV++jQd+nBPYT7Fr4+h8bBpVLx/wvwNoUK0cmQP6hr0n0qbCfmhVpxIV0pIDASpuPuKWlsLSYrhpLUSEFy5qR+eMaoGgFsvhfemWfWTl5HHuO6FjRyxuCcXBQZuDdnpqcpD/5HqHP6c9n1haami7tgsb9i2ovNp5WZsm7qeZoX4uXloki4wa5WngWORYwTDb92dTq2I67119PKtePIfGNcpzbvs6VC9fhl/uOImmNSsEFrFeWNqOulVCr2tWqwLjHzmNzAF9I7pIuBGtSdnNbSQlKSmsIHmmbQsjgBm2hKHhGG7zmwSo5/L5nVgCr1PjtXVfFtm5eew8cJgRi7dy29czOXg417cpMOGhXm4rGa9spjUqpJE5oC83O3YtdpKWksx9p7cIbBQaiZlPnO56PNatH5z171C/sqf/iJvZIFrsDqupyUk8c34bBt54Anef1pz01GTevfp4XnCEH//n7GODIoAuMhP53Xxy48CWL17UqpTO+Ed6McPjewtnOnX6PkUi3pm8i4iY/PS8cFPzuwm+seJmOrqqSwNmPXlGoU16D7uYre/t3TwocWQs2Pdgy87NDwpiiKSJjgfV4iAkgTERZeXkB2VCtmNNMNaYku4y8duxNCuLbRFNXslqS6gSKYRsmzqzSrlUqldIY9GzRpTt26NW8P20tYHz9gS8Xhrvn2/vxvD7TwlK6HuHh9kxUrSzV6RYOKwcXnZ/MmsebFCtHDOfPIPmLhpD1/qZ7aNOpchCQrSkxmGz4+zcPM89WZVSIcEWD3lEYzpx7ll6UwSZAGDbfsNkbU8MmZ2bR5cXRvLYrwsCx3YfzKH1U8M4+y1vE5udhAtJlrnNHu3h5knep3VtxtgcyeJJhTCmJbtPhnPH8w+v7cTvd3UPucdKgnnRcfW4onMD/rj75EDEnHNguvWUps7bo8YpU15/UgantgzWgF3TtVHAnABQwTGA9G5Vi+cvbMtDffz5iTSoVo4aFdLo2SLUTBRuNeDcFR6M3/73u7oHbYxq4SbN33BSBhXTUoL8OkoSsfrpeWG1z4uOKxAs3r36+MJX1MRN83dppwa+00qEo0rZ0DLKp4VfffvBnhpglG0F26J2hZicqqPh9Fa14mamssa/y81tipw4P0skzYXl67lh96GAf4tXstrSoklKttXTGoPtAlA/Wx4g+4bPdT20MJ0zqtGidkW6mDncfr3zJM5qGzr2gKGhOb2V+0L2fzd3CauF9aJulbL8eudJPHOBP1eQcHx6XWeeu7AtlSNo92MhLSXJ916Hdp7oWxAZd+BwHuke/bHxo4OZtCI4cjRzx0H2mMLr+OXbQsxqCzbsCSS3tFO7UlpE5clWs23YNUkLTBP9sIWbQ+QO67q7ejXl2TC/VRFokoz/besVqDvdJsZDOXkxR8s8f6F7EjcL5z5RdqyBZvKjpzHnqT5B+SPOanuM66T/wBkt6dyoKk+d25qXzUgMy/HOaVv2csqNhuMbhtbBjVEPnsqLF7Xj4TNbhgzyIsK1JzYKUi/74VgXO3eXMOaO8mkpZA7oG3Cu/+S6znTOqEbHBlX48F+dGHJvDzrbtkJxcwbsf34b5j9zJq9f3jGqurrhlWyvJHFdt0YMuLgd/72sA8PvP8UzwWKsuDln+9mOxg9uAst13TLiUvY9p4Wu/uO5p90n1wXvjnFbTyNxZ7Qm43BE2nDZEmCtRH9+Ug+A0UdevrR92DEznK9IScKu2bYLx26pC+zRbXWqhB9bT8ioxrLnz+b4ht5tPTlJ+PT6gnZwY/cMwPAT7NHc248wEsc3rBpztnQ7GTXK868wvn+FISlJGP3QqVFrZu3bphw8nOupSYICP0I7HZ4dzvIt+/jXZ9No3394YN/ULyau5tx3JnDKq6FbS/VtV4cnzw2fis7a/HrZlv0B37U564znN6lZ3jPM/7Rja4UdsxIuJFkro/TUZP68O1QrYzG+EHuCXXict2q/g4uQY+fsdnXIHNA3YBt+44qOEZ/Xum4lfr7jpKCIMWtV7oy2q1GhDLUqpvHWle7l+pmsnFojL5KShKu7NoybwyzAg31a8rZtc1Pwl3eloTnRtKgdbNJsVadSYIXrNsF+ceMJgdd1IwyCTtx2TL/u82lRlVEcpCYncWWXhiQnSdAKOF40rlGeVnWKLjdYJG2IXx7s0zLEFyGe7oDOKFUr6CCeW3dceUL4aE/LdP3FjV0Y8YB3FJsTK4or3PY1Ay4pnF9YUVEmJYk/7+7Ocxe2DRISP72+s2cU8lVdGvram8yv1nHIvT347PrOnGJqzhtUi795q6Ty5U1dPDPj20lOkpBF84Fsb01SOOxpFkYt2cq89btDUmTYIwYt5UO/s4/lPQ8tuz1diKW53WOaZyump3hmcLdHvruReCHJpsVpX7+K5+rGj2OWF+VSkzm1pdG437nqOP53cxd6NK9B4xrl+daWoMsPx1RO5/LO9bmma3Sh7BXTUxn/SC8edGyAmZaSzLTHTw/y0aiYlsKVJzRg2mO9ubpL+Oe4RbQVJWVSkji/Q13euKLA58pPxMLrl3fgo391cl2VWxODm7Blj+5pVqsiIx7o6aueSQInxylk/kijfFoKQ+7tEbSVRjyZ9nhvxj/SKyFlO013OyOkHYgVEXuW7/gJSQ2rl6O3LWiiRe0KQVv5WAJZhbQUmkWRmT+Sz9S7Vx8XF+fzoqJ9/SohGpNyZVK489Rm3N4z1GXhpYvbxTX/U6s6lejdqjbHN6hKkxrlefTsVpFvOkLo2KAKE/5zWuD96a1q8alNy5okholtxQtnM9TMj2ftyXggOzfiPpNuwqxzv7lJLgldK5UN1cTd3rNpyI4bdvOfxbz1htnOslrl5CrWuJjx7FGWXiQ8G5zTaTSjermgXcQt3Hx//JKUJAy8Mdi7vzCq0ljT9jujHLz4856TA7Zgp/ngwo51g/aDOyHKZGKJ4uy2dZi9djc3nJQRMSIDjEHHS3tx56nNyMrJ49ZTmjBmabA5LNWxim9WqwKD/69H2DwWTWqW56+7Tw7yXdCE8sAZLYJ25Y4XtSoaGr9v/93VV9uIhopmcEb3ZtWZuGIHD5zRIsId0fHFDSdw48DpTH20dyCvllP7WVgsn7N29Srz1z0n8+CPc5lqOnJHa/b85pauzMjcFdFnyq/2uTTwyJkt6duujmf0bzypXC6VUQ+dmvDnlEQWP3sWSzbv5TiHebLlMZWCTGwA3996Im2eHkbLYyoGtG9e7M/OpVr5MkELnLccCX8HDFkScp+fseTWU5pwxQkNAluX2LGb7aZl7mSaiy9t+3qRo3sTLiQ5pX23/AfLXzjbty2+NDOp32nsOng4yFmupk0rU7dyOjd0b+xr09yiJj01mWcvCO/75ZeTm9cI5BWZ/OhpdHtpVOBcRZeIxdZ1K9GidoWgLKsWdSqn89G1nSiflsJdvZryly0q4orODbiqa0OOezku1S71JCUJX9/cNWHRYSc1jb8m743LO/LOqOW8eHG7hIwRvY6tFUgHcGabY/jn/lNcNwiNB5Z/oxXR+ejZx0a9COrerEZQZuYyKaF7YgJFkg29qEhKkqA2G611QOOPsmWSgwSkGhXS2L4/OygDukX5tBR+uaMbzWtXpFJ6Kic3q8GEFQUuM3/e3Z3z350IGNGp0x4/lamrdjB51Q6+mJjpWYeZT5xO9QppKKUQEb68qQuNXawR1vNu7J4R1NZfubQ9XRtXo+erY8J+1mfOb0PPFjV9+QwntCe5Of1e0LEerw4LDlk9GgQkMKIenPkuTm1Rk0rpKezNymXjnixa1q5In9a1Gb5oS2w5nEoZdSqX5fFzWvGCmQDMy7H897u688+iLZyQUY37vp/DtMydXHxcPf57WYfAqvrYYypRrkxyQMX6skvnPto5OULy0ZJGw+rleDVO27NEIilJfIdmR4NlSrCS/VnmiWiT/7nx8+3dApORRftC5L4qqdSoaJhs3rqyY9wy0WvCM/6RXuQp5Slwd2pUIOC/e/VxTF29k+MaVGFvVi7NalVg8bNncd3nU3nxonZULptKnzbH0LB6OU8hqXLZ1ED+Pku54hZdDfDBtcczZum2gLZp4TNnkp6aTHKSRNxq6bc7TwrRloUjoULSTd1DQ/buPLUpxx5TkfW7DvF0DPutHGmICK3qVAqo38uWSebj6zozc82uuKv9Syr/PqUJp7SoyZLN3unky5VJCfh1fXJ9ZwZOzOSuXk1DzA7jHukV2CBYoykJ3HNaM576YyFXmHt97TOFJDetabS0r18l8Lr3sbV45dL2CU9OWhyUK5MSMQGoJr5EEwldpVyZQOLIWpUK7v/p9uBNepvVrECbupVY6LJ1SO8olAIV01M5z7aRsL3NiwhTH+tN1xdHBo6NeOAUlm3ZT/XyZaISkCDBQpKbaU1E6G3mpXj6z4VRb+B3JNK4RvmAkGQRrxDt0kLLYyr6XllXLpvKvaeHbjEABWHPpSRFjOYo4LpuGUEhxo+c2ZKHfppLqzrx1Vq9e/XxUaf40GiKkpTkJH6/qzsfjlnJx+NX8dVNXWhVpxKLNu11NavFSu1K6Qy88QRu+MJIL9CsVsWoAiOC6hy3WtmoW6UsZ7c7Jig5nhtTHu1d6D2SjgSePLc1jWuU56LjC5elWGMw9L4elI9DjhKNJhF0b1aDyY/2jlt595/egu37s7WApCkVpCYncU/v5tzTu2ChGy6XVayc2rIWfdvVKbSLQUJmkurly/D+NZ0iXhePRItHAuXTUrjNJcxVExvHHlN0OYE0muLGS6uq0RztvHdN4Xcu0GocjUaj0Wg0Ghckkid4TIWK7APcd10sPJWB0FznpaP80lp2ostPdN1bKqXiH7YUBaW4T+h2VTzlH9F9IsH9AUr3b6PrXvRlg1efUErF/Q+YkYhyzbI/TlTZiS6/tJZ9BNQ9Ye2xJNShlP82uu7FU/di7ROJfn4p/2103Yun7q5tsjSa2/4qxeWX1rITXX6i636kU5p/G133oi/7aKA0/za67kVftieJMrfNUEp1jnylRpN4SkJ7LAl10Ggsirs9FvfzNRonXm0yUZqkjxNUrkYTCyWhPZaEOmg0FsXdHov7+RqNE9c2mRAhSSkVlw4gImeJyFIRWSEi/cxjr4rIEhGZJyK/iUiVOJf/nFn2HBEZLiJ1I5Xjt2zbuYdERIlIzAkcPOreX0Q2mHWfIyLnxLPuInKPeXyhiLwS57r/YKt3pojMibV8J/FqjyWhDrpPRF133SdcKO4+Ec/n6z4Rdd11n3DBs00m0hGqkE5UycBKoAlQBpgLtAb6ACnmNS8DL8e5/Eq2a/4P+DBeZZvnGgDDgDVAjTjXvT/wUIK+917ACCDNvK5WPMt3XPMa8FRxt8GS9qf7REx1133iCP7TfSKmuus+EcVfoTVJHtLeZaYUmS8isdqduwArlFKrlFKHge+BC5RSw5VSueY1U4D6cS7fvqlMeSAWpy3Xss1zbwCPxFiun/ILi1fZdwADlFLZAEqprXEuHwAREeBy4LtCfIZiRfcJ/2Wb53Sf0H1C9wndJ/yUDxRtnyiUkCQiycB7wNkYUuRVItIaWABcDIwrRPH1gHW29+vNY3ZuAobEu3wReUFE1gHXAE/Fq2wROR/YoJSaG1uVw5dvvr7bVAN/LiKx5Hr3KrsF0ENEporIWBE5IZaKhynfogewRSm1PMbyixXdJ6IrW/eJsOVb6D7hje4TUZZvvtZ9wieF1SR5SdmLlVKFTRTmtkVpQKoWkceBXOCbeJevlHpcKdXALPvuOJWdBjxObJ3JT/kK+ABoCnQENmGoI+NVdgpQFTgReBj40ZTm41W+xVWU4hUzuk9EU7buE+HLt9B9whvdJ6IrX/eJKCmskORHio+V9Rh2WYv6wEYAEbkeOBe4RpnGyXiWb+Nb4JI4lb0WaAzMFZFM89gsETkmTuVvVEptUUrlKaXygU8wBqe4lG0e/1UZTAPygVgcCsP9rikYK8sfYii3pKD7hP+ydZ8IX77uE5HRfSK68nWfiJLCCkmRpL3CMB1oLiKNRaQMcCXwp4icBfwHOF8pdTAB5dt3izwfWBKnsn9VStVSSmUopTIwGsHxSqnNcax7Hds1F2Gos+NSNvA7cBqAiLTAcKbbHsfyAU4Hliil1sdQbklB9wn/Zes+Eb580H0iErpPRF933SeiIKWQ9/uRsmNCKZUrIndjePgnA58rpRaKyB8YKsl/TC3eFKXU7XEs/xcRaYkhAa8B4lZ2tOXEUPf/iUhHjAEoE7gtjmUvBz4XkQXAYeD6WFZnEb6bKyndZgXQfSKqsqMtJ4a66z5R/Og+EUXZ0ZYTQ911n4iCQmXcNtVey4DewAYM6e9q68OIyBiMUMMZha+qRlPy0X1CowlG9wlNaaZQ5jZlhFha0t5i4EdTmrxIRNYD3YBBIjKs8FXVaEo+uk9oNMHoPqEpzSRk7zaNRqPRaDSa0k6i9m7TaDQajUajKdVoIUmj0Wg0Go3GBS0kaTQajUaj0bgQk5AkIo+LseeOtQty13hXTKMpTeg+odEEo/uE5kgg6jxJItINI4vp8UqpbBGpgZEwSqM5KtF9QqMJRvcJzZFCLJqkOsB2VbDL73al1EYR6STGhnYzRWSYldVTRMaIyJsiMklEFohILCnQNZqSjO4TGk0wuk9ojghiEZKGAw1EZJmIvC8iPUUkFXgHuFQp1Qn4HHjBdk95pdRJwJ3mOY3mSEL3CY0mGN0nNEcEUZvblFL7RaQT0APohbHJ3PNAWwpSwCdj7C5s8Z157zgRqSQiVZRSuwtZd42mRKD7hEYTjO4TmiOFmPZuU0rlAWOAMSIyH7gLWKiU6uZ1S4T3Gk2pRvcJjSYY3Sc0RwJRm9tEpKUE74DcESPVfE3TWQ8RSRWRNrZrrjCPnwzsUUrtib3KGk3JQvcJjSYY3Sc0RwqxaJIqAO+ISBUgF1gB3Ap8DLwtIpXNct8ErF17d4nIJKAScFMh66zRlDR0n9BogtF9QnNEkPC92/QOzxpNMLpPaDTB6D6hKanojNsajUaj0Wg0LiRck6TRaDQajUZTGvGlSRKRBiIyWkQWm2nm7zWPVxORf0Rkufm/qu2eR0VkhYgsFZEzbceHishcs5wPRSQ5/h9Lo0ksuk9oNAXo/qA5UvGlSTKzotZRSs0SkYrATOBC4AZgp1JqgIj0A6oqpf4jIq0xcl50AeoCI4AWSqk8EamklNorRqKMn4GflFLfJ+LDaTSJQvcJjaYA3R80Ryq+NElKqU1KqVnm630YoZz1gAuAL83LvsToFJjHv1dKZSulVmNENnQx799rXpOCsZePtvdpSh26T2g0Bej+oDlSiSVPUgZwHDAVqK2U2gRGJwFqmZfVA9bZbltvHrPKGAZsBfZhrBQ0mlKL7hMaTQG6P2iOJKISkkSkAvALcJ9N2ne91OVYYDWglDoTYwPENOC0aOqg0ZQkdJ/QaArQ/UFzpOFbSBJjc8JfgG+UUr+ah7dIwS7OdTAkfzBWBQ1st9cHNtrLU0plAX9iqF01mlKH7hMaTQG6P2iORPxGtwnwGbBYKfW67dSfwPXm6+uBP2zHrxSRNBFpDDQHpolIBVuHSQHOAZYU/mNoNEWL7hMaTQG6P2iOVPxGt50MjAfmA/nm4ccwbM4/Ag2BtcBlSqmd5j2PY6SWz8VQvQ4RkdrA3xgq1GRgFHC/Uio3nh9Ko0k0uk9oNAXo/qA5UtHJJDUajUaj0Whc0NuSaDQajUaj0bighSSNRqPRaDQaF7SQpNFoNBqNRuOCFpI0Go1Go9FoXNBCkkaj0Wg0Go0LWkjSaDQajUajcUELSRqNRqPRaDQuaCFJo9FoNBqNxgUtJEWJiIwRkV1mOv0PRWS/+XdYRHJs74eISIaIKDO9vld5jUUkX0Te9/HsTBE53Xx9g4jkmc/aKyJzRORc89ypIrLeo4z6IvKLiGwXkT0iMl9Ebojx69AcpZSUfmC+v9KsS0/z/c0iskRE9onIFhEZJCIVbdd3EZHBIrJbRHaKyDQRuVFEzjCvr2G7Nk1EFovIbbF/W5qjgZLUJxznThKRUWZ/2CMif4lIa8c1j4nIarN+60XkB5dybjDrfLmf7+NIQQtJUSAiGUAPjN2qz1dK3a6UqqCUqgC8CPxgvVdKne2z2OuAXZj7GEVZpcnms6tg7Jv0o4hUi3DP/4B1QCOguvn8LVE+V3MUU5L6gYhcD7wH9FVKjTUFpReBq5RSFYFWGNtiWNd3w9jqYizQDKMP3AGcrZT6B2NLjLdsj3gC2AR87LdOmqOPktQnHPXqBgzH2DOvLtAYmAtMFJEm5jXXA/8CTjfr2xkY6VLc9cBOCvbiOyrQQlJ0XAdMAQYSv4ZyHcZAnAOcF0sBSql84HOgLNAkwuUnAAOVUgeUUrlKqdlKqSGxPFdz1FIi+oGI3Aq8BpyplJpkHj4BY/EwG0AptVMp9aVSap95/lXgS6XUy0qp7cpgplLKWh0/APQUkb4i0ha4G/i30vs3acJTIvqEC68AXyml3lJK7TP7wxMYde1vXnMCMEwptRJAKbVZKRW0KBCRRkBP4FbgTDH22Dsq0EJSdFwHfGP+FbqhiEgPoD7wPcZq97oYy0kBbgH2A8sjXD4FeM80UTSM5Xmao56S0A/uAJ4DeiulZtiOTzXr9IyIdLevwEWkHNAN+NmrUKXUHrPsDzEWHs9Yk4dGE4aS0CecZZQDTgJ+cjn9I3CG+XoKcJ2IPCwinUUk2eX664AZSqlfgMXANdHWp7SSMCFJRD4Xka0issDHtW+I4VMzR0SWicjuRNUrVsTY5boR8KNSaiawEri6kMVeDwxRSu0CvgXOFpFaUdx/ovldbQauAi4yB/lwXIaxW/eTwGrzOz8h+qprouVI6BMlqB+cgTG4z7cfVEqNBy4GjgcGATtE5HVz4K+KMeZtClewUuovs+wk4O3oP47GL7pPeFLYuQGgGt7tfRNQA0Ap9TVwD3Amhhl6q4j0c1x/nVkPzP9HjcktkZqkgcBZfi5USt2vlOqolOoIvAP8msB6xcr1wHCl1HbzfaEaioiUxRBYvgFQSk0G1mJ2LtO5z3L085LapyilqiilaiilTlRKjYj0XKXULqVUP6VUG6A2MAf4XUQk1s+i8c1ASn+fKCn94HagBfCps+0qpYYopc7DmCQuAG7A0LTuAvKBOj6qthBYYpqyNYljILpPBBGnuQHCt/c6gFVflFLfKKVOx/BvvR14VkTONJ/XHcOX6Xvb52snIh1j/YyliYQJSUqpcRhOXgFEpKmIDBWRmSIyXkSOdbn1KuC7RNUrFsxGezmGr8JmEdkM3A90EJEOMRZ7EVAJeN9WZj1MtapS6mybo983cfgYIZid+r8YDn2RHL41haS094kS1g+2Ar0xnGVdo3+UUvlKqZEYjtptlVIHgcnAJTHWVRNndJ9wJS5zg1LqAEZ7v8zl9OW4OGcrpXKUUj8B84C25uHrAQHmmHWZah6PyT2ktFHUPkkfA/copToBD+EY3EznsMYYg1pJ4kIgD2gNdDT/WmGYrfw0lDQRSbf9JWE0vM+BdrYyuwMdRaRdPCrteGa6GLwsIm1FJEWMsOg7gBVKqR3xeKYmakpTn7iQEtQPlFIbgdOAs0TkDQARuUAMf7uqZnvvguFwOsW87RHgBjH8L6qb93QQke/dnqEpFnSfiK1PpDrKSgH6AdeLyP+JSEWzXzyP4Zv3DARC+/ua55NE5GygDTBVRNIxBKpbbXXpiGGeu0bCpDA4UiiyDygiFTCdyGzacWdY45XAz0qpvKKql0+uB75QSq21HxSRd4G3ReQ/Ee7f73h/A8Yq+Dil1Gbb8c0iMtR83kOFqzL1gEOOY82BcsBvGOrWQxirgvML+SxNDJTCPlHi+oFSap2InAaME5EsYAjwf8C7GN/lJuBVa8WtlJpkXv8M8ISI5GEEO7wXoe6aIkD3iUL1icGO9y8opZ4wzWbPY6QiyMcQ4E5WSllBPnuBx4CvgWRgDXCHUmqCiFyJMU98pZTKsX2+zzD60FkYaTOOWCSRka1i5I74WynVVkQqAUuVUp7+ACIyG7jLFs6r0RxR6D6h0QSj+4SmJFNk5jal1F6MaKrLAExVeMBmKyItMaJPJhdVnTSa4kT3CY0mGN0nNCWNRKYA+A6jIbcUI835zRi5FW4WkbkY0SMX2G65CvheJ23THKnoPqHRBKP7hKakk1Bzm0aj0Wg0Gk1pRWfc1mg0Go1Go3FBC0kajUaj0Wg0LiQkBUCNGjVURkZGIorWaKJm5syZ25VSNYuzDrpPaEoSxd0ndH/QlDS8+kRChKSMjAxmzJgR+UKNpggQkTXFXQfdJzQlieLuE7o/aEoaXn3iqDO33fa/Gdz1zaziroZGUyr4cfo62j49jLx8HeChOTr4fMJqTngh4jaYmqOEIz6luJNhC7cAOr2uRuOHp/9cyKGcPLJy8iifdtQNF5qjkGf/XlTcVdCUII46TZJGo/FPcpKxNUSeThWiKSXk5SveG72CfVk5kS8Og06PowEtJGk0mjBY22fl5ekJQ1M6+GfRZl4dtpQXBy8uVDnxNjHPW7+btTsOxrVMTeLRQpJGo/HE0iTl5OcXc000mmDW7zrIP4u2hBzPzjXa6v7swu1/mxtnIen8dydyyquj41pmcbJ+18GjQtumhSSNRuNJkqlKytWaJE0J47x3JvDvrxIXIaeDFbyZtXYXJ788mu+nryvuqiQcLSRpNJqI7DxwuLiroNEEsetg4XyOIhFvTdKRxMqt+wGYkbmrmGuSeLSQpNFoPLGEo5eGFM6/Q6MpDWTlFJjotCYpMooj/zvSQpJGo4lI2dTk4q6CRuOKl1+MxFRWwevcvNLjh5edm0fzxwfzx5wNRfI8kVi+3dKJFpI0Go0nJzWtDsBZbesUc000GnfiqfGxp7ooTea2rXuzyclTvDJ0adE+uPR8RTFz1AhJSikGDFlS3NXQaEo8h3Pz+WjsSnLy8gMapPyjIIpFUzpxyjKFaar2VBelydxm9U8rGjXRHD16pKMo4/bGPVl8OHZlcVdDoynxfD5xNQOGLCEluWANdTSE+mpKJ14CfCwWodKqSbLqWlRCkkXp+YZi56jRJOWXogavKT5EJFNE5ovIHBEJiS8Wg7dFZIWIzBOR44ujnonEylR8MDs3cKwUuWdojjLiqfHJteUDyytFucHyi1hIOopcko4eIeloQSnFG/8sY+W2/cVdldJML6VUR6VUZ5dzZwPNzb9bgQ+KtGZFgLWYTrINuNrcpimpxLNt2uWiUqlJKmLp5WjQMEcUkkSkgYiMFpHFIrJQRO4tioppYmPXwRzeGrmcqz+ZUtxVOVK5APhKGUwBqojIEeXV7DbsaSFJU1KJp8LHrkkqTQlU87QmKWH40STlAg8qpVoBJwJ3iUjrxFargPx8xey1hU9YdbSM8VbbtVLza6JGAcNFZKaI3Opyvh5gTzO73jxW5Ayev4nHf5sf93LtfSWwd1uCVtWfT1jNKq311BQCrUmCHNMeXtQ+SUcDEYUkpdQmpdQs8/U+YDFFOCl8NmE1F70/iUkrtheqnKNlJWxtI6F9sGKmu1LqeAyz2l0icorjvNso5Ppli8itIjJDRGZs27Yt3vXkzm9m8c3UtXEv10oQZ18tJqI5Zefm8ezfi7jsw8nxL1xz1JAXx7HdXlap8klSoX22KDgaZpmofJJEJAM4DpiakNq4sHzrPgDW7Czc7smlaVVQKMxOcpTIhHFHKbXR/L8V+A3o4rhkPdDA9r4+sNGjrI+VUp2VUp1r1qyZiOomBrPtiE0eTITQbc1B+20O4hpNtDgXwIXJAp1XSs1tVvcsqnFfjqIkAL6FJBGpAPwC3KeU2utyPiGrZisMubBCTmnKeVEoVNC/mHlzxDLOfWd8oatTmhCR8iJS0XoN9AEWOC77E7jOjHI7EdijlNpUxFVNKFbbSQrSJMW//1j+H0eTf4Mm/hzMzqNd/2GMWLQl6HgszcoexVma5gyrexa1xeRoWIz7EpJEJBVDQPpGKfWr2zWJWjWnmiN1XiFjkHNLkeq0MFirqMJ2ljdHLGfBhr0MXbA5HtUqLdQGJojIXGAaMEgpNVREbheR281rBgOrgBXAJ8CdRVnBtTsOsn1/dsjxSSu3s3VfVlyeYWmNRApWqPE0aVhYk9DRtCo9UinOAJ8JK7azLyuXAUODkwX/Pmdj1NFX9nnicCnKe1HUwtHRtLDxE90mwGfAYqXU64mvUjDJSVqTFA3xXlHc/vXMuJRTGlBKrVJKdTD/2iilXjCPf6iU+tB8rZRSdymlmiql2imlQnIpJZJTXh1N5+dHhBy/+pOpXPLBpLg8w2o5ggTaUSLMbTl5xeNHoUkIxRbg88TvhrLXTSCavHJHVGXZ19I3fDG9UPUqSqx+WtSanaNhVvWjSeoO/As4zUywN0dEzklwvQKkJhsjaE4h7cNHi5BUXJ1FU3xYAsy6nYfiUt7YZYa53K5JSkT3sfpkUgmTkh74YQ7vj1lR3NUoVRR3gE9wXQpeRxvl67Q47DmUE48qJZ44uVn4xdrg9mjIkxRxWxKl1ASKcasWK6SxsDsyHy1CkvUpj4K2qzFZW8igBjtjlm5lxdaCkHxrEExE/wn4JBWynBmZO8nLV3RtUr3wlQJ+nW3spH7nqc3iUt7RRnEE+IC7gBCtE7dTA79u50Eq16tciFoVDQWO20Xsk1SkTyseSvzebXbH7fx8FZQFOBrczHX5+Yqc/HzSUpJ58vcFHDicy+uXdyxMdYud4nLg0xQfp/53TKHuX7PjAOmpyaSlJAWZGLJy8gLCUSLyblll7ytkdNulZgqBzAF9C10nTeEIF+Bj5h27FaBhw4bxf7jLkBftMOiMaNu2L9T/ryRSmIi+WChZut/EUuK3JUkxhaLFm/bS5LHBIREMfnFbCT/79yJaPjGU/HzF/6as4ddZG4LOP/DDnFIX4WWtJLSIdOSxwkyH4XxdWHq+OoauL44M8Wn6eeZ6Jpk+HYWdLBZs2BOyyi2sCR3gpxnrIl+kKRIiBfiUhpQYVoDCw2e2BOBQTl5cyk20hqeoUwAEOAommhItJF3+4WR+nrkegFlrdwNGluFYcNMk/W/KGsA7iuHX2RtYsCEk20GJxvqUWpNUctm6L4t2/YexYMOeqO57c8TywGu7SawwTM/cGXi9ctuBoHOZOwrMeHsO5TBo3qZAZt9omLhiO+e+M4Gvzf5mEQ8T3sM/zwu8LqxJXhM7xR3gA7Bq+4HIF0XAapO1K6UDhjY1HiTa2yPgi1pEUksJcyNMKCVaSJqWuTPgb2Fa3WJW+7tlT7U2AyzqLTxWbz/AdZ9P49Dh+HRAO9pxu+QzZuk29mXl8uWkTF/XZ+XkccMX04KEqsNxSnTnN9v12GVbuevbWVzz6dSoBbQNuw2Hcmuhsz87l1lrd8UkcFn3X/7h5JBNnLfvPxxTeZq4UKwBPhaHHWN5tOOgJSRVSEsG4qdJSviitZg0SUVt5isOEi4kLdq4l6ELotf+OFeFKWYqgOzc2Bqt23icFBC84i+shOP5vxcxbtk2JhZyqxU3tHBU8rGEA8vfLhKz1+5mzNJtQZqdnS65kizy81VAMIkXlmls2uqdnP76WIZEodFNSzE+pzWBPffXIi5+f1KIkOOX8cu2MS1zJ68OXRp0fNLK7fwwPX7btBwNkTvxQik1QSklSqn2SqmO5t/goq7HroPBgnK0v6AlzFRKTwVg+z7/gveB7FzPNp1oIanI8yQdRV5JCReSznl7PLd/PYvRS7ZGdd9BhwRfWAdSN01SQPDKKTgXrQkkFhLZnBNR9t/zNpLRbxAZ/QbxH5t5Q+Mf+9YblrDw3TR/E7rbaq3/X4s8r39jxDK6DxjFxjgLSnYWbfJvhracYcukJPHX3I0MMRdNa2xC36KNhTdrP/DjXP7zy/y45XQ6EgJii3oBWNzsy8oJWigqpejzxlg+GLPS1/1WW61UNpXaldLYsNt/5OjtX8+k92tjXdtfOBlmz8EcXv9nWaHMzwGfJNuxvHxFRr9BvDtques98eBoWEcUmbntxoHRJeZauyO4cR48bEwydoEmGtx8kqxAObvgde47E9i6Nz6Zi4uDRCT9+312wdZkP2hH2ZhYbfOXiNbMNH55dBrHQaaWZ19WydgTLcucqNNSkrjnu9nsNet1wCY4nvP2eN+am0hXjVm2NWZTnp3S7te3YMMeWj4xlNFLo1uglmb2Otp8br5i2Zb9vOzIxu3GocN53Po/I3lucpJQJiUpKNpt5bb9YcdXK8jhwOHQfheuLfX/ayFvj1zO2GWx/05W37E/Z+cBQwv22YTVpSffUwmkxPoknfvOhKD3VuOP3dwW2kitHEzOMgsbkhwJq0EfTc5v0bJu58G4aBdKItEKL35XwRbWQiLcVjyrtu0PElKiJRr5Yb/5ecunBWcc2ZsVPHDPWbc7qjp4+YvcNHAG/8QYBWuntOdWs4TriVEK2aUZZ9/afdC/cLBwY4EVITlJSE1KIsdsAyMWbaH3a2N59u9FjFzs3rbKpSa71gHCayWtbYYKk1Q1UL7tOZbpcdfBHDo8MzyuW0wdTb6vJVJIChfenJaSHPR+1JIt/OuzqRFXoW47OhcIScGTiQDjlsVvk14vEiEkJabRFn1P6PHKaM55u3SlX/DLO6Pim835hIyqgdeXfzg54I/kFZmzfX82p702ljZPD/NVfuWyqSHHwjlsrnMkt7SEoTIpwcPNpj3BGts/50a311a4wId4rJw37clihi36r7SRnmp83/HQqpUW9h7KCWqZ0TheJ9ty8FVISyE1OYkcc2645Stj96GBkzK5+csZKKVQSgW5Z6Sa7fugS7sMp0myFjXpqcme10SmIPVL/z8X8sKgRSFz3uSV8ROWjwLZKEBChaRYOmd+vuL018d5nnc2+lu+nMH45dsj7u3mtkGnJbl/PHZV0HER4brPp/mtcghKKdo8NZRPxq1izY7Ch6VGQ2k3ERzJ3Pf9bI5/7p/A++MbVol4z6y1u4LeVykXKrA0q1Uh8HqabVK/5IPJDFsYunrcG4UAkZosnNehTsjxryavcbkahi7YRI9XRjNqScFq+5uphu+V01QxZmnwQuSLiZk0fjSyr6/VxPeH0YRF6gYzMnd6+I4UHDvrzXGBRJWlEWvSzYrRRSGRKAV/zNkQd+d4Z8DC8i2R84nl5OXz7dS1QUL3MZXSSUkWsnLzeNLcG85Obr7ir3mbOPedCQyat4nDufkB85bbGKw8foJ9WTnMWb/buM9jDpu1dhcvDVkc9jNYt+49lMPASZl8Mn512Llgxdb9nP3WePZEoWmzU5CP78ifbxIqJDk9/e//YU7Ee4YvCq8S9Prh3TRFdsKZ24Y6JhI3J+9oyMlTHDicxwuDF9Pz1TGFKitaYm2yIxdvCTgUl2afrJLM73M2BgZSAD9R/Ot3BQ/6buaDB/u09Lz/tv9Fv0Fxr5Y1qZRumMZeuLCda9/xMhnOXW+srBdvMian/HwVqLPfoIvNe8K3P2tgDuc8/thv89m0x91xfeyybVz64WS+cEnBYP+sVn0T4edXFFiJeEuiJmnrvizu/X4Oo6IM6InEGocv6/fTI/tQfjp+NY/9Nj+QN++n27uRlCSkJCcxddXOwHE7WTl5rDRTYSzdsi/IBOc2F3nNW7d/PTMw7jrz9WXl5PH1lDVc/P4kPhq7KqxAaZW/wza+hFMc3Pv9bBZv2svIJbGZpa2+4TdCNxEs27IvriZELxL6CVMdX+BvszdE9CmKtLBwDtjWRnteCSEBNu055GlHdsOZCdircb4ydAn3fDc75Hg4CX7w/E1MXBHdztRgJOSbuWZXxOtiWZlNWrGdm7+cwRsjlgGhqzFNYnDmdHEj0u/Zp3VtalRI49t/d41LnX65oxtf3NiF8f85jfGP9OLyExpEZQZwVtcepbrcZ5bweE3qvf47hmU2TcLh3HyUUgHtgtMsCO4TywuDF7N+10H6/TIvyG+lpGONQ5G07MWBNV7vilGT4cXeQzlRj4GWadaKBi1Xxmjvc9ft9jTXZefmBzZfz83LD7JUuI3/XnPCHDN3GISOBy8PXcITNi1WuAz1bsV7+dR9PG4lC01/T79f1a4Dh4Pyo1n+jOUKZSIsHH3eGMftX0e/CLRYsnmvrzQkCRWS3CaBVxy5TZxE6s9WY8vPV7xhC5sMl233/HcnMmJx8Ipl+ZZ9IT4RFs6VgFdje3/MSv6auzHkuPN6+0r0zm9mBQaIaHJNXPPpVC75YBK3fDkj7HWxjIfbTMfBuet2M231Tl+Td2ng8d/mk9FvkO/rRaSBiIwWkcUislBE7nW55lQR2WNLmPdUrPXzE4Tgpn05pUXBlg592xumsG5RbO4qYZzhMqqXBww/pAbVygFwRuvaxrPaFZjdOjSowg6XXE3WBJUkwuilWzntv2MC5/wuDl4euiTsROc8NfLBnq7XZeXk0+cNw3Sfm5dPiyeGcN67EziQbXzvFdNDt650m8w+m7Cak18ezffT19H37QmlJn+SNSS6uRocaTStabTbWHzRLGHH0oI6/V7dyMrJC2hRdh3M4fXhywLn3OYLr3HZ3hedC/1Vjgz44QIx3NqtMzDCwm7m9uuecdZb4zj99bGB95bfVdkyxSckFZaz3hxP79fGRrwuoUKSNcB3bFAlcOyzCauDnEudHHQJn7RjNcAlm/fx1siC/A/hVktu+06d8YZ/v6doV2LO63MKab6zMyKiRiy6utr3rJu0cgeXfzQ5pLOW1jHW8oWJglzgQaVUK+BE4C4Rae1y3XhbwrxnY63fqm0HyOg3KKyG0M05+ZPrOgVeX9CxHmAMtu08div/bfb6oPfOSb73sbUCr6tXSAu5/6SmNRjxwCncf0bzwLG563bT6fkRQduaQEHrW7/rIE/+voCtMez59ve8TWH3inNOFmUiqPwnrdxOs8eHALBgw96AcOp2n5++np2bT+Z247fz4/NSHLw2fCnTVhtCaV6e4WRcEs2G8RI4Rz54Kqe2rMmeQzlBJm0/WPnyLCyH97t7NfO8Jzs3P2DO/G7a2qAtUZxtKCsnj59mRjb7OYWrZMdm7tFqkpzRqwcO5/HSkMXUq1K24L6ItTLYsje4P1r+gM46HokUiSapZsXggXda5k4e+3W+6z1ukQF2rHZkNWTns+KBc4COVkhyDkaR/KWixc1MYGHvLNbneP7vRXw01j2M/MnfFzDWEckX6TdINPbVYGHC1KNFKbVJKTXLfL0PWAzUS/Rz3ZyrLdx+i7SU5CBtkoXXqvD+H+aGvU4B4x7uxeD/6+FZj2a1Krqa3UKEJLPsb6aupWJ6qJO5FzeclBH0/n9T1nj6GzgnizTbWPDqpe1Drh80Lzg7uHV3kssA70eQyM7JZ7CZEPPnWYYAao0/Bw/nss9jBR8Nh3PzCzWmvTNqBb/PMbTcufmKxo8Opsljg9l9sGRs3WJp0WMdGd2Eq8plU5m/YQ8vDXHPiXTWm+NctbcpycHtwGrnXZtU83x+Vk5eSLSmxdWfTAnyh3tjxDJPC4r9yc5+mRIiJHm3BzcH6h9nBC+OJq7YzkdjV/HTzILjsQqpB81xuSQsoBO9Z2OCNUlGg6xVMXR1uuOA+0ox0gRtSdtOqTuednen30GkH2HNjgM8+9eiwADrrMv309e5N0YxJPLRS7Zy9SdT+NZD8+G8d64ZDeGG/dGWA+ynE1Z7Dhxu/DFnQ9D7ohaaxi8vENraPD2sWBxPRSQDOA6Y6nK6m4jMFZEhItImkfU45NCsfnJdZwA+va4zc5/uE3TOb14fZ/ssk5xEw+rlaF23Utj73CaF/Q4HbnvRqcneq0xnWf3OPpbMAX0D798ZtcLT38DZHmqULxhfLuvcgJcubhd03qlRtPJOuVkd/XyH2bl5gQlsysod/DV3Iy2eGMLXU9bQ+qlhtOs/PKJG3O25dv+ptv2H0e2lkVGVYeEcL+yBKEUdSOJF4DeMctj+bfZ62jw11NUH1S1VhZ0lm/dx73dzyMtXrNlxIGAuLusQ/q1tdJzH7RiaJPfpMzs3Pyi3WditTWxt0L6YnrlmV8BvyO28EzdjhTONjZvW5z+/BCsrtuzN4kcfCYMPmHOCU7ArjqCfwu69esoro/lmqnu0LhSRJqlWxfSQcws2uO/pFm5wKZOS5OmMmJOXz7It+6LeVsRuarBwmgJ/nrk+5Bo7d34zi88nrqbJY4OZuWYXb45YFnT+ub8XhWhrLP7z8zxuHDidSSt38Nhv811Xj+HUrE7sKwrnCskvg+cHr+Anr4re0dyLIfM3hc2DBXD3t8HO8GOXJj5nlR0RqQD8AtynlHKGUM0CGimlOgDvAL+HKedWEZkhIgFHsmOPqcjf95zsuy52AfWLG08I+AeVSUkKmRT8DhZOQaBahTK+7qtePo3TW9UOOubU9NlN1fPWF/TFk5oG+0z1ahmsCYtkMrPYui+Lx38rcGatUSEtRCNUw8Vk6IabT6AfISkrp2CCnLt+TyB4w+5ke+7bE1zvtZObl09uXj75+Yr3Rq+gzxvjWGxG7B3OzQ9EKn06fhXLt+xj3c6DPPPXwoh1dI4X9rclJfOyZa7Jdgg7MzJ38n2Y7Xqe/WsRBw7nscNlM+NIQhIYkcxjlm6l56tj6PT8CA5k51Ld0f4tTZIz8MjO+6NXEK7J2luW3wAw++96yQeTQuahb6eu8dzKyM8M4aWZHLZwc0C4ufnL6Tzy8zxXf0M71jxtF5L+mLOBLi+O9BVgFE8KKySt3XkwaExxUiQ+SU5zm8U/i0LDP91yn7SqU4nMAX05v0PdgLbGOVD8s2gL5787ISRTdyTevuq4kGN/zAl2xn5+0GJPJzgITtp3yQeTXH1hbvhiekhiuhu/mM6MNcHH5m/YHXKvc+UcbmsWu2BfEjMG3/HNrLB5sNwSIDr38UskIpKKISB9o5T61XleKbVXKbXffD0YSBWRGm5lKaU+Vkp1Vkp1to4NubcHbetV9i0oTTA3QT69VW16tQwV6O1kVC/nec6uDXW2i+rl/QlJyUnCp9d3Djq2Pzv4tznoYR5944qO3H96CxqZdbQ+i6WRcTN9ufHJuOCcZt/feiJg5Jzq0dz4GU5vVYvLO9ePWJarJsnWgdI8zCnrdx2MuACx+6h40fPVMTR7fAhNHhvM6/8YC6s1Ow4GTWb7s3N5ftBiznhjHFd8NJkvJmbS9LHBnolCwT2UvKQy15Fl/dIPJ9Pv1/kBbVhevmKVLQLJ0oZc+1mogtfNEd8Ne96jZ/9aFNIfLOEonJA0YvHWEC2MHbtDdrJD47R1XxafTViNUipImLLa3vpd7u4Ub49awaMebip+HLC9hInb/jeTLi8aWsutpu9RuGhxgMO5ZgCV7bFTVhlz2eIo9nWMB4lu30WiSapftcBRrHwEb/h9Wbkhqngr+V2ySKAhOTVJrw5bGkia5tfO2rpOJcqnpbgKSgBntilYNbfvP9yzHL+mPrfEdE6HuEOH3TRJwcce/CnYx+S7aWt5c8Qylm/ZF9RZnJ3C2ZhWxbgLezywMtY6fUDcHHazfJj71u08WGjbtBgj22fAYqXU6x7XHGNeh4h0wehDvlRtbetVCgyeGTXKR7w+P1+xZLOhdXMKJ268ecVxAUHBibWfG4QKSW7+TX5xapIaVnMX1GpXSufe05sH8tjUqVKWzAF9mde/D+Mf6eX7eZ+MXx303srn9Oud3fnfzUYaBBHhzlO9nW4t7HKZNWbYTRrZufn0aV3beRtXfzqVp/5Y6LvOXrgFr9z+9UzaP1OQCb2tLSv6Rls07vIt3n03x9Hvi7OfR+Lnmevp+Gzo2Gotlt8bvYLTXhsbCD+3EgDbI7+OqWRYKvxqI+3f44w1Oz0Xk41rlPelnXIjKUhICj73f9/N5rm/F/HSkCVBe81Z9YjWzyc/X/GIj43H/fi4WYuWA9mR3F5Cc4hZH/mJ3xd4CnqJoLCapEgkREhSCo59ckjATNW0VgWmPtab1S+dw8Jnzwr4Kvw6ez0/2eyfv8/ewM8z13sOtElJUhDWGiZizJ7PIRxWjoR6VULNgQBntT3GVznOQakwuEnFTtu0k0d/nc+bI5Zzxhvj6GtT8zudFJ3C3MbdRWs/tm/yOnf9Hq74aApNHhsctEeba+K2CKHyW/Zm0eOV0bw6PHx6CR90B/4FnGYL8T9HRG4XkdvNay4FFojIXOBt4ErlQypPS0ninauOD7y35xf5eNyqkAHscG4+bfv72zbEonK5VN660hD4a1QoQ4f6BdFu9vLtk8KkfqdxQoa3g6obP5jaGwjdzPOwi2n4/A51Q45t2GXlpEkJpBqIBa9wbT+TmyAs3rSXi96fSONHB/PHnA28PyZ4y5gVCRIwwqV/8JMhO9x2G85F1XabaaqDLdK4pLD7YA4TV2wPmnCtz2ft55dpjh1Ov5pHzmrJ6IdOBQq2BbEI51NksXLbAQZ4+GuWLZMc4vcHcMvJjSOWa9c0JjtUlpbG5WOHVtTql5F8MJ0Lk+02/96Tm7kvkiCydggKNLpebi+TzK1NrLnk++nrAvOo/VM+9/eiiM8qDPYh9885oWl44klChKTc/HyycvIDpoIyyUnUrpQeWEW/Y2pulIKHbRLwfWZG7kbVygXtR2U1muQkW4K0MH46Nw6c7quelsbKa6A9plLZoPdec6GfxucXtx2k3VTLSzbvjagxO5ybHzQhzlqzi3dsaRP+7/vZbrdFJNaoG7tAvPdQTmALjXPeHh8IpbYGjg+vLRAoIqlTLe3T2KXb2HMoJ2abuFJqglJKlFLtbSH+g5VSHyqlPjSveVcp1UYp1UEpdaJSapKfspvXqkhjm/bIaV5yBgts2ZsV8Ee6umtD35+harlUHj6zJT/e1i3IdG0PxV9maiHeurIjdauUDSkjEg1tZj2nedxt8rdraq2Vql1LG44h80P9Fu2kpboPYZX8CEliZFuebSb0+3nmer6bFuy0umrbAbo0NoTI5y5s66PG/tju4lMTDZd/NNlTc+q1sq5SLpW563ZHlTusqLjm06n0+7VgLhi+0NgBwNoUeak5Pjg3ga1TOT2Qq8epSfr0+s6BuSYcO6JMGWDfBsgLe7CSX1NyXr7icG5+RCH5m6lrWLVtf0CotG8tUtnctshNqxbO/cL6WpMjaJKu/mQqew7mBM2/VnSu/afZn53Lht2HaNd/GIs37eV/kzPj6v5hn3M/GhfdBuDRkjBNkh1nuP5ZbeuEtR+XS0vhp9tPCry3pNYkEfKV4uk/FvCvz7z3VvO783PXxoYzqWV7dpoC7WZCgMaPDg44PtoFlHimH3BrnG6y0Flvjg8Z0J1k5+YHRR9d9/k0XvtnWaBz1a7krkGzmPJob1e/jU/Gr2LXgcP0/3NhVHv/2Ff3zg6z62BO0EqyrS3nTzgfLCjYIkNEeOL3BVzywSS2lLCtVSJtZrzLEZpt3/bDTRPj/Rzhrl7NaFKzAnsOFZQxZ93uwG/12G+GX0PzWhV9l2vHHojhXNVGUn3PfOIMxj3cyzUfE8CLFwVHpt3xzaywg6uXicUrf0sl27gjIuw5VPC9e/kgNbcmxSjtIOHMv16+W9GwzcO51ksTURLCtcNhD1l/4vcFtHhiCEtM/5ZXhxlaYqeJskxywZhtd9O4u1czujerwXkefeei4+oRbYqfz2/ozPMXtuXstsF7GV7RuUHItfZ+4NQkefH8oMW0eGJI0Mbez13QJuQzrNx6gNNeG8uzfy9i676soJx/FcoY7fvRc44N6QP29t2+fmWeOb8gMNeaAy1zuL1fz3NEU+/Lzgnqkzm5ivb9h/H1lAJf3PSUZIbM38S+rFzOfms8T/6xkKaPDeZ5nxqmLi+M4Nm/gq/t/+dCpppBRPZM5b1b+VtwWTz663zOfit48/SxD5/qeX1ChCSnE5mb2rNSmBwqhx3J3qzkYEki5OUrvpy8Jqz2xs2PwI3HzjkWKAhVtney7/59YkjUAxDY3uRrm3N2tJqkcH0mmtDh8cu3hYTr29m4+xAdXOz9r/+zjH6/zOP0Vt6OwJkD+nJM5XTX327bvmzGLd/GwEmZ9P9rIbsOHPYV+lnPJnQ6ozSSkyRI22GfiCOpn63vPzcvn81mfpKuL8YWPl2U/HLHSZzVxjDpOvdCs+ezqebTsdrJWW0L+sE/i7bQ9aURQedr+Ixqc5KcJFxjarecq95IAm3lcqlBmignV3dtGKRFBPdgjt/uPInbezb1vUpPT03i4391Yl7/MwPHxi3bFpR4cOrqnSH3vX3Vcdx2SlNa1anEOe3qhJwPx00u2fF/n72BP+ZsCJvM1i/OxeDQBZtYvGmvZzRsSYlsA6NN+/nplttcJ9wil8uluVsBbulRYBJzCt4AVcuV4bFzWgUde/uq44LSUFiMffhUJvynF6cdW5trT2xE5XKpZA7oy+qXzmH1S+fwsktuLvvC2W8bdXJBx7pc07VRiDbMEo4Hz9/EmCXBkb/W95GTlx9iabAEt/9e1oH/3dy1QPg362sfZy2LxuSVOzj/3YlB5cxcsytoI+2DOblBvlVg9PMvJmaGfKZPJ6wOOeYkOzePrfuy+Xzi6qBjAydlcsXHUwAYv3x74FyzmhVYsGEP/x221Jc/8nfT1oY4lzeq7u0j6i8cIEoOOBxt3TbBy6hRLrAquOPrmUyxhZlbDWz8f3oFTXbJSeIr2ZvfRtmkptFILCm6QnoKd57ajGa1K9DNEbJs8cCPczmzzTGMXVoQmRdNiD7ABR3qcm77utzyVegg6qZJSktJcl2hD1mwmSFhNvhb7RFh8+5ow+/Cbls/tWVNTmlek2cdkn6ZlKSQPEkDJ2WyN8vIsfjb7A38PmcDSuE6wNj5Z1FBtvDhttcANw2czg+3Gb4ub17RMUhgzc7NZ9W2/TSoVs414sRqL7n5KqJ2rCTRqVFVGlzQhqELN4cIAjttQlLVcrEJM03N9t2gWlnW7TxEVk4+Bw/n0qtlTRZs3EutQnxXz1/Ylt0Hc0IECz9brUTirLZ1uKxT/UDSuw27DgW0kBXTUriscwOOa1iV4xpWDVcMq148h7U7D5KnVOC7ADghoyrTM3eFpOWwC6r/vawD63cd5Nx2dUhKEobc651o06JLRrWgycOZp2brvqyAS0E8cApJt389CyCqFBPFRb0qZTmuVe2gMSEc9auWpf+foc7y1Wx9w9Ju1KhQhiq241d3bRjQnlqc0qIGPVvUZP6GPYFo5lM8gh68JtBw2/sEaZJiFJKuOKGB61xmbQpcJiWJdQ4H6T6tj+GLiZl0aew+f6UmC5d2MiI/nSbpx23fkTXm2zWtFvd+Pyfo/da9oRrNuet2x7wH6B+zg32MNu4+RF+bdi07N493R6+gWa0KrNlxgKzcPK7+ZAp7s3K5tWeTsAoYZ4Q5wCXHh4+ETYgmaZOPL2eZLTpjyILNQRsdHlPZGLydE15aShJZPkxbfrQxxzWsEnht5cWoU7ks/z6lSVCo9YwnTg/ZF2vXwcNBTtBe5oBz2rk7fucr6G3T4ix+9qyAac9Z9637smL23v9qsneCLICNtqywK7budw0j9TJdWluZQIEa/4Ef5oTdEsCZWsHOnkM5TDMnXOv3sHLprN15kNNeGxtwsMzcfoBrP50aECysFdDq7Qf4e154H5aSRgXT/ONMymjvD1XKxRZhc323DD67vjOPnV2wYm791DAmrdxBs5qR/SrCISI0qFYuaEPRxZv2Bn3//7u5CyMe6BlT+a9e1iHwetX2grEiOzff0w/JSVKSkFGjfJCABPDhtZ087iigWa0K3Hd6i5BJyu4M7+TLm7rw9HnBu9jYtTduuX0Kw58u+0ZC4qN94oWbJrOeh4/c+l2HmOHwNfz65q5BjuiWz99VXUJ9+EY80JMvb+oS0ACd2rIWIhLU7+KxD9lbV3YEjMn4X59NZf76UO2XnSXPneV5rrotSeqvd57Eg2e0CDqfn6/Y7jC5dmtanRUvnE3HBlVCNGUQnNagkUOjazd3HsjOZdmWfQF/vXD8NjvUmrFyW+QUGF6MsyUTzs7N46QBo4LGw0nmHpCVy6ZSNjWZg9m5gVQEbgKbxdhl21wjzF+7vIPL1QUkxifJxzUP9Wnhee6pcwtspcPvP4VxDxshwtXKl/EUSOwJ5JzJEC0sz/8XL2rHb3d2DxyvWTGND6453nXwrFEhje9s0TwAew/lhvWT+OS6zrx4UTvPMOTU5CREJOAfUbZMMkPvOwUIdVJ+c8TykPvjxcqtBQ35vtNbBFbS1kojWn6dvYF3R61wPecn4tAKq7Z82L64sQtAQFv22YTVvDd6BZd/NJkJK7YHVurhzHFeWweUFMqmJpMkoSal3TZhM1y+lnAkJQm9W9WmlyNhanZuvu+cMuGoXSmNw3n5ATOpfbUHRn/z4+QaiX1ZRn/7eeZ6Dufle/oO+cVyBvbisk71OfYYd3+t67plBF4/c34bFj17JmebUbBlyySHbCXx5aTMwGs3s6HFoP87mdcu68ArlwSbbp7o24rHzjmWef37hERVeSUW9OoPjX2knShK+p0dOolXK1/GM42FnSY1ynOy47rjGlblx9u6cfdpoeNus1oV6GmmuvDaVNbPxrZeWO3c2ktxxppdjF++nfPenRCUfRtgfv+CiLn01GRPt4e6tqjr4xtW5Z7ezYPOb9yTFZRpe+CNJwAFlptbejRh1YvnBAmedqtAxfRUhtzbwzUFyIHsPPq8MY6PHBF4fqhUiLFl+ZZ9QQut4QtDNY1WYNaDfVpwTOV0vpy8JtC3rHyGf83dGLL5/PWfh/oxX3ti5KCYYptBLu/cwNXf5dz2dYIk+ha1KwZ8GNxMKT/f3o1h953CN7d0DTr+769mBCbRymVT6dakOl/f0pXxj/RyjRY6u10d374f+7JyPJN3ZQ7oyxmta3N114a0tA20dhW4lb5g0P/14AuzYVdIS6Fa+TJ8OXlNQBszeulWvp26lrSUJP68uzt+uPWUJkGdMBxLt+yjTuV0vr2lK5d2qh/olOFWy5Hw0kDbd5CO1InChe6+OmxpYFK2rgu3co6nU30iEBHKp6WE+CTtPHiYMslJzH7yjEI/Iz01mQs6Bjt/hpuw/dK+fhXA8I34Z9GWkJ3Ow5kj/PDLHd0AWLp5H00fG8xDZn4wtz3kosHp7D3zidOD3r96WQfPZ1zSqT4/3Hoi8/r34fqTMihXJoX3rzme5S+cDYR+Zvtiym17n0s71eeXO7rRpm5lLulUn8tsSTAzqpfjlh5NuPWUplRKT+WJc1sz6P9O5vkIUXaWkHR55/rUNbXyX93UxZfJsCipXDaVZc+fzbe3dOXH24zf+sDhXL68sUvYiM7/O60ZP5jXO+nSuFpUwo6bv1Is/H3PyczzOe5WSEvh3z0aU7uSsbD/9PoTQuYvMNJjRMI+D53qkmw2KUmY2O80z/tb1amEPS/q1V0bkp6aFPW2OnasOc0PW/dl8bUt7YszktvKZu9GxbTUENPa3kM5rNi6j3u+m809381m4cY9DPfYG7NmxTSevzDy759QIWn8I72Y8mhv13Mi4irxh5sgj28U6oPQOaMaLY+pSFWHSeKfRVu4zpQcs3PzaGdO/IXJyWKxNyvXNQXBlzd1CXpv1wC0rVeZh89sSVpKEref2jRQF7tpzxKOBpqrzxu/MCTmvu3rBCYkgKu6NKB7M3ebc+WyqVRMT+Xc9gVOpvP69+Hi49z3ad20J4uTTA3bZZ0a8M5Vx3GlTV0droNZju92Ipnfnzq3ddiNT+tXLUtnW96e23o28bzWWgU6V87XdWsUvhIljIouQtLcdbupUi6VqjE6bTtx7jMVj70OG1QzVqjP/LWIf9v86xpWKxfWjOCX4xtWpV6VsoH+YFFYTVJSkrDCFGqAoEg7PyHjXZtUDxqcRSTQ152Oo1m5ecxbv5vdBw+H7MMHcG/v5nRqVNDeRSQg2DzYp2XI9W3qVg44zQO8OmwJX09ZE/TcW78y9ry7+eQmTOx3GitfPIdTWtQkPTWZzAF9I/oOFiVlUpI4qVkN2tevTMcGVXjxonYkJQlP9m3tev2S587igT4tPXdxiJZ4zAdgCO7hfGHAyAieOaAvIsLjfVsz9bEC4bx7sxoh2l0/vkxWNNrNPnI3eWFfZD5/QVvKl0kJMZe1rRe6r6ObBurc9nVoV69K2OfZI6Lv/W4OT/y+gNXbD7B2x8GofErTU5NCxrH7f5gT5O/a9+0J3Pq/mXw6PlQj9vXNoYKpGwlx3AZDQo/UAN2yKzvzYNipV6Usn13fmc4Z1Xhp8OKgH6lWpXTeueo4BgxZEuQwtmN/Nlk5+YVefdp5f8yKELX6qAd7BhzB7fQ7+9iA6v6uXs24q1fkTMA1HbZ6K6Ns//Na8+zfi3jxonZ8OSmTiSt2cGP3DOpXLcekFdsZuWRroMG/e/XxNK+1nDHLtlIpPZXnLmxLjxY1QnaEt5ujkpIkJNy0npkZufPzI0Ls37ee0pR/92hCm6eHBVbJn4xfzbHHVOISD5Ndk5rlyfVIBFqlXCoT/hMslHW0CYdOLH+CvbZQ92mP9SYtJZnq5dN4w7GHXkll454sfpm1nucubEO5MinsPniYWT58AaLh4TNbolA0rl6e1/6Jz/dSpay7AHd3r2Zx6W8iQp3K6SEOoE6BMhacwSS/3NGNNTsOeoaM+8Upen40dhUfjV1F50ZVg7QjLWpX4LJODULSjABM8lhYWogINSumsW1fNu+NNkw5V5xQEIZuJWJsWrM8IkKMWzgWKempyfx+V4G2vGyZZIbffwp9bFGAL17ULq7juMUbV3QI2TokEYwxk156Mey+U1i2ZR8vDV4SyAvl5K5eTXlv9Eq6N6vOxBU7AoECT57rLlRavHv1cdz97WzKufhd2RUTSUnCjgOHGbE42Mz1510n89XkTEYu2cqJTapz8HAut5zchAkrtge0PVMe7U3V8qkRXRzeHLmMp88zXGosxcDOA9lc8kGov1A40lKSQxYluw7m8NHYUIHo+UGLQ4619DCpO0mYkHRqy1Ap04mbSq+Ti7bIjpUTYYDDdg9wXoe6bN2XHZTts9PzRthzYeykYKhILRPF9v3Z1HTkefHKEn57z6a+n/HcBW148o+FPDdocVDuB0v4uqF7Y27obqwYru7aiIM5edzUvTHpqclULpvKyCVbg7KH33t6c+493bBjl09L4aLj6ocISQMu9qdufvLcVnwwZiU/3NaNrXuzAiZQEaFJzfIs2FAQUvnh2JVBQpLdtFO3StmAFm7Ko735ZuoazmxzDG+PXM6/TwnVGlUI87tZYaobdhurqcs61admxTREhHtPb87xjapwTKV0Wrzs6yMWO62fGsY3t3RNSLbaYyqn8/rlHVmz4wCv/bPMd5qMcHgNhpf52DfNL05nXcBlW9rY+PrmroHEo50aVQvS6MTK2W3ruG5Zsnzr/qCo39/v6u7LnOLFZZ3q877N18WZvRnco4pLE84xtVactEdOLjoufu0V4D9nHcvLQ5eEHPPKDWZRt0pZ6lYpS6dGVUNC6i0e6tOSk5vVZMPuQ0xc4X/j8XPb12XngcO0qRuqEXrpknZ8MGYlF4f5HpKSJGj+sTivQ92AkGQFXNn5v97N6dO6Nh+MWcn5Hety2/9m8sXETC4+rj7H1qkYSH7pFJDGPdyLh36ay7TMnTSqXo5/7u+JCHR7aVRgsV67choZNcoz1+YcX7lsasRUF31a144qGCYhQlJG9fK+Mvk+2KdlkEf91zd39TQj+cVNpQ3h8zL5YeSDPdmw+xAXvz+JdTsPsW5n8Oo2HgPS1V0b8eQfCzmcm89JA0YFjreqEyrxlklJCnIMv/i4elQtl0r3MGnpwbCdH87L56cZ60lPTeLiCOGPFhd0rBdwSnRu+fD5DSfwwqDFgei1CukpZPQbxLUnNmTtzkNBm1g2rlGe/17egTf/WUaNCmUCJoWPr3Pfm6xRNW9n031ZRlZXK4mZPSIKoEfz2PckK0oePKNFQLtzzaeh2dXjSaPq5ZnyaO+YcyT5obC+SHZOO7ZWIOT597u6c+F7E31vFxSJk5vXCHH+LSw1K6Yx4T+9OO+dCUEROdXKlwnaWLUwAhJA89rBWmsr2eKRRHpqMt/+uyszMnfx+j/LaO0ywZdErIX+ue3r8OLF7aKeeyqmp3q6JIgI3ZpWZ/SS0M3hI2EPOrBTq2J6QLMDhp+vWxSYFz/cemLI1lkNqpXluAZVuf/05ogI710TnPvsvHeN7bOa1Awd37s1qU7D6uX44bYT2Z+di4gEFmTTHze0rEoZgtvDZ7YMzDuXd64fJE944TXXeJEQIclv5Izd/tihfuW4DFi9jq3Ff4cv4989GgdthtmjReHKrl0pPeE5eNxs0Lf1bEKbupEdqa1IpkhYmayPj5BjJhpqVUznrSuPY/v+bCau2BEIG7VnYAUjP01qchK9WtaKuKO9RcPq5fjn/lPIysmnXf3KDJq3ibu+NfLBTF65IzA5+ImIKanc2auZqwnMzecrHrit+GLlvtObk5+veNsjqrGwvHv1cYxcvJWt+7Lp2KBKifKn8aJ+1XLMfqpP0PYf9pxllkN6YYh149XSxklNa9CtSXVu7J4R1pexJNGlcTVmPnF6RM1RYehoS31QWBOxk86OvRwjzeddm1SnqyNNzvhHvH1Z7axy+D4lJwn/u9nw7RWRkN/cWoBZ67D6Vcsx4oFT2L7/cFDes3pVytI5o2pI2plYfLd8STMichbwFpAMfKqUGhD1kzyY178PSzfvo0Xt2LZIcNKmbuXAQGoJSbOfPCNuDrBLnjuLY58cGnh/2ylNaFMv9mgwJ59e15kHf5rL6a1q89S5rQPqyNLAR//qHLRruZOXLg41kfqhua1t9G1fhxMyetPlxZGBvQHB8MEqrXg5aN56in9TbXFx3+lGKo9KZVN5ftBiHnfJzVIYypVJifskUFT8ckc37vthTojWOR5mvdZ1wo85L1wUv33mihu3ybKkk0gBCaBq+TJ8cM3x1K9ajqa14p/aYclzZyFiRJa2rhM/Dd6oB3ty2mtjg441rFaOtTsNl4nJj54WtVWmWa2KNKtFkHZtw+5DNNoXbK4tVyY5pvEpopAkIsnAe8AZwHpguoj8qZSKi+NEpfTUqHch98ucp85g0aa9cROQgECEyN6sHA7n5gflZ4oHp7eu7brzdGmggkv+mcfOOZbrumXE1eHSmSn67l7NSv3K2hLsZ2Tu5NIPJ8dd2Eg0t/Rowi09vCMRj0Y6NarGuId70fjRwYFjL18Sn5DzYyqnkzmgL9v3Z3Plx1NC8pBd07XoIzwTuZjWhHJ2lNvkRIM1XrcPEzgTC01qVmDaY715f8zKQNRqSpLQo3kNxi/fXii3mKa2nGz/d1ozqpQrw6SVOxAxzHPntq8T0xYxfjRJXYAVSqlVACLyPXABEH/v0jhTpVwZTmqaGDNMYX2cjlTmPt2HFVv3sX7XIeat35NwbciS585KSMRLcdE5oxpD7+tByzhpVjXFi4jw9c1dufazqQy4uB1XnBA5eV001KiQxogHevKvz6Yyfvl2+p/XOsRcUhQkejGtOXKoVSmdJ/q2Ijs3j++mreO9a46nWa0KrN15sFBj+aXH16dH8xrUqWz4QyulaFuvMidkVGXD7kMxKzQk0oZwInIpcJZS6hbz/b+Arkqpu73u6dy5s5oxI3RfMo2mOBCRmUqp6Lz14ozuE5qSRLz7hIh0A/orpc403z8KoJR6ye163R80JQ2vPuHH+OemnwqRrETkVhGZISIztm3b5nKLRqPRaI5Q6gHrbO/Xm8c0mlKNH3PbeqCB7X19IGRnRaXUx8DHACKyT0QSFZNaGQi/a2DJLb+0lp3o8hNd99DUxUXMzJkz95fSPqHbVfGUX9r6RMTFtIjcCtxqvs0WkQWht8SN0vzb6LoXfdng1SeUUmH/MASpVUBjoAwwF2gT4Z4ZkcqN9Q/4OFFlJ7r80lr2EVD3hLXHklCHUv7b6LoXT93j2h6BbsAw2/tHgUeL6vlH2G+j6148dXdtkxHNbUqpXOBuYBiwGPhRKRWaUrbo+KsUl19ay050+Ymu+5FOaf5tdN2LvuxEMB1oLiKNRaQMcCXwZzHWpzT/NrruRV+2JxEdt2MqVGSGKmZHWY3GoiS0x5JQB43GIhHtUUTOAd7ESAHwuVLqhaJ8vkZTGLzaZKL2bvs4QeVqNLFQEtpjSaiDRmMR9/aolBoMDI54YYKer9EUEtc2mRBNkkaj0Wg0Gk1pp0RvEy0iZ4nIUhFZISL9zGOvisgSEZknIr+JSJU4l/+cWfYcERkuIjHtieBWtu3cQyKiRCTmTJcede8vIhvMus8x1d9xq7uI3GMeXygir8S57j/Y6p0pInNiLf9IRveJqOuu+8QRju4TUddd94loiINH+FnAUmAF0M88dhmwEMgHOsdYbjKwEmhCQVRda6APkGJe8zLwcpzLr2S75v+AD+NVtnmuAYYT/BqgRpzr3h94qJC/p1fZvYARQJp5Xa14lu+45jXgqcK2zeL6031C94l4fTe2a3SfiO630X1C94m4/BVKkyQFqejPNr+gq0SkNbAAuBgYV4jiA9uhKKUOA98DFyilhisj4g5gCkbepniWv9d2TXlcEmfGWrZ57g3gkRjL9VN+YfEq+w5ggFIqG0AptTVMGbGUD4CICHA58F0hPkOxoftEdGWb53Sf0H0iVnSfiK38wnLU9InCmtu8GtBipVRhE+f5yeB6EzAk3uWLyAsisg64BngqXmWLyPnABqXU3NiqHL588/Xdphr4cxGpGseyWwA9RGSqiIwVkRNiqXiY8i16AFuUUstjLL+40X0iirJ1nwhbvoXuE97oPhFl+eZr3Sd8UlghKZGp6MNmcBWRx4Fc4Jt4l6+Uelwp1cAs23OPuijLTgMeJ7bO5Kd8BXwANAU6Apsw1JHxKjsFqAqcCDwM/GhK8/Eq3+IqSumK2UT3Cf9l6z4RvnwL3Se80X0iuvJ1n4iSwgpJvvZ1ixHP7VBE5HrgXOAaZRon41m+jW+BS+JU9lqMrOVzRSTTPDZLRI6JU/kblVJblFJ5Sql84BOMFVxcyjaP/6oMpmH4EcTiUBjud03BUL//EEO5JQXdJ/yXrftE+PJ1n4iM7hPRla/7RLTE6sxktrmwqeiBMcTukOe6HQqGA+AioGYh6+5VfnPbNfcAP8erbMc1mcTukOdV9zq2a+4Hvo9j2bcDz5rXtMBYGUo8vxvztx1bmN+1uP90n9B9Ip7fje4Tuk/oPlG8faKwjT/sj1yYxm/efw6wDMPL/XHz2Arzi59j/kUdVRCh/F8wHArnYaRBrxevsh3nY278Yer+P2C+Wfc/7Z0hDmWXAb42v5tZwGnxrLt5fCBwezwbeFH/6T6h+0Q8vxvdJ3Sf0H2iePtEoZNJiksqehG5CHgHqAnsBuYopc4s1IM0mlKC7hMaTTC6T2hKKzrjtkaj0Wg0Go0LJTrjtkaj0Wg0Gk1xoYUkjUaj0Wg0Ghe0kKTRaDQajUbjQkxCkog8bm5eZ23w1zXeFdNoShO6T2g0weg+oTkSSIn2BhHphpGg63ilVLa5Q3GZuNdMoykl6D6h0QSj+4TmSCEWTVIdYLsq2MBuu1Jqo4h0MvdqmSkiw0SkDoCIjBGRN0VkkogsEJFYsntqNCUZ3Sc0mmB0n9AcEcQiJA0HGojIMhF5X0R6ikgqRr6LS5VSnYDPgRds95RXSp0E3Gme02iOJHSf0GiC0X1Cc0QQtblNKbVfRDph7MLbC2P/lOeBtsA/5l52yRgb51l8Z947TkQqiUgVpdTuQtZdoykR6D6h0QSj+4TmSCFqIQlAKZWHkUp+jIjMB+4CFiqlunndEuG9RlOq0X1CowlG9wnNkUDU5jYRaSkizW2HOgKLgZqmsx4ikioibWzXXGEePxnYo5TaE3uVNZqShe4TGk0wuk9ojhRi0SRVAN4RkSpALsZGgrcCHwNvi0hls9w3gYXmPbtEZBJQCbipkHXWaEoauk9oNMHoPqE5Ikj43m0iMgZ4SCk1I6EP0mhKCbpPaDTB6D6hKanojNsajUaj0Wg0LiRck6TRaDQajUZTGvGlSRKRBiIyWkQWm2nm7zWPVxORf0Rkufm/qu2eR0VkhYgsFZEzbceHishcs5wPRSQ5/h9Lo0ksuk9oNAXo/qA5UvGlSTKzotZRSs0SkYrATOBC4AZgp1JqgIj0A6oqpf4jIq0xcl50AeoCI4AWSqk8EamklNorRqKMn4GflFLfJ+LDaTSJQvcJjaYA3R80Ryq+NElKqU1KqVnm630YoZz1gAuAL83LvsToFJjHv1dKZSulVmNENnQx799rXpOCsZePtvdpSh26T2g0Bej+oDlSiSVPUgZwHDAVqK2U2gRGJwFqmZfVA9bZbltvHrPKGAZsBfZhrBQ0mlKL7hMaTQG6P2iOJKISkkSkAvALcJ9N2ne91OVYYDWglDoTYwPENOC0aOqg0ZQkdJ/QaArQ/UFzpOFbSBJjc8JfgG+UUr+ah7dIwS7OdTAkfzBWBQ1st9cHNtrLU0plAX9iqF01mlKH7hMaTQG6P2iORPxGtwnwGbBYKfW67dSfwPXm6+uBP2zHrxSRNBFpDDQHpolIBVuHSQHOAZYU/mNoNEWL7hMaTQG6P2iOVPxGt50MjAfmA/nm4ccwbM4/Ag2BtcBlSqmd5j2PY6SWz8VQvQ4RkdrA3xgq1GRgFHC/Uio3nh9Ko0k0uk9oNAXo/qA5UtHJJDUajUaj0Whc0NuSaDQajUaj0bighSSNRqPRaDQaF7SQpNFoNBqNRuOCFpI0Go1Go9FoXNBCkkaj0Wg0Go0LWkjSaDQajUajcUELSRqNRqPRaDQuaCFJo9FoNBqNxgUtJEVARMaIyC4zff6HIrLf/DssIjm290NEJENElJlO36u8xiKSLyLv+3h2pohsEZHytmO3mHUSERknIk857rleRFaKSDkRqSQib4rIWrOOK8z3NWzlH7be28qYY36OjKi/MM1RQTH3i5NFZJKI7BGRnSIyUUROMM/dYD7rYcc960XkVBG5ymz34jifIiJbReRc872IyCoRWRTbN6Q5GimJ/UJEHrM9N0tE8mzvV9teHzKfZb3fb5abKSKnx/N7Kk1oISkMppDQA2N36vOVUrcrpSoopSoALwI/WO+VUmf7LPY6YBfmvkU+rk8B7nUeVEaq9JuBB0SkjVnfmsB/gVswUv2PBNoAZwGVgJOAHUAXW1Grgatsn7kdUNbnZ9EchRRnvxCRShjbVrwDVAPqAc8A2bbLdgL/Ma918htQBejpOH6W+XmGmu9PAWoBTSwBTKMJR0ntF0qpF231uB2YbKtHY9u5s4GNtnMVYvoijjC0kBSe64ApwEAKNmmMR5lPADnAeT6ufxV4SESqOE8opZYDLwCfifx/e2cdJrXVxeHfmVlnWYFl0YXF3d29xeqlLaUtdacuUApVCi0Vvip1WkqhlFJFS3F31wUWtwXWffZ+fySZSTLJJGO7M8t9n4eHnUxyc2cmJzn3KFkAfAzgN8bYcvE8tQHcxBjbxxgrYYxdYIy9xRhbIBtmhrivxCgAP3rwuThXD2UpF40AgDE2izFmY4zlMcaWMMZ2yfbZD2A9gGfVB4ud5edAec1L558p6xEmNWNdAN99Rk75JtDlguMBXElyzT0AZor/riWh+aLHEFFPALUAzIb2jVqLLQBWAHhB5/0PARCAuQC6A5DcDAMALGKMZRuMvwFADBE1JSIrgNsB/GRiXpyrl7KUi0MAbET0AxENJqJ4nf3GA3iWiCppvPcDgFuJKFI8fyyEB9CP4usoALfC8RnvIKIw9z8Z5yojGOSC4yZ+U5KI6DvRx7/HxL4fkRAHs4OIDhFRur/mZRYSulrXATCHMbYVwBEAd3o57CgACxljVwD8DGAwESWaOG4CgNGiO00BY8wGoZP2TQBGM8ayxLcqAzhrcl6SNWkggAMATps8juMGwS4TQNnLBWMsE0APCC6NrwFcJKK/1A8kxtgOAEsAvKwxxloA5yHIDADcBuCQeAwA3AzBfbcEggsjBMBQLz4fR4fyIBNA8MgFx338aUmaDsHPbwhj7FnGWBvGWBsIPtV5fpyXWUYBWMIYSxNf/wwvTKjiqnU4hFUGGGPrAZyAKEhiIJ8UMDdSfixjbA+Em/UYrbEZY3vFP/fKNl8CUN3k9GaI87gX3NXmT6YjuGUCCAC5YIztZ4zdyxirBaAFgBoApmoMPwHAY0RUTeO9H+FYmd8Nwbok/4xzGGPFjLECCN89d7n5h+kIfpkAgksuOG7gNyWJMbYKQgClHSKqT0SLiGgrEa0moiYah44AMMtf8zKDeIHeBqA3EZ0jonMQ4htaE1FrD4e9CULw9OeyMWtCvFEzxgbLAuZmahz/GoCHxGPMsBSCybeC0Y6MseMQAriHILBuPOWKYJYJIDDlgjF2AMKDtoXOe/MAvKJx3h8B9CeirgC6QHiogYhqAegH4C7ZfG4FMIRUWaAc7wl2mQCCTy447lHaMUlfQXAJtYcQY6NIaySiOgDqAlhWyvNScyMAG4BmANqI/5oCWA1zcUThRBQh+2eBsKr4DkBL2ZjdAbQRM8pcwhhLAfALgKdMfoYZAE4C+I2ImhCRhYgqk5AOOkRj/wcA9GOM5Zgcn+MbgkUmgACQC/Fafl5UZkBESRAemBt0zvkGgPsgZLTZERcGayA8aP9ljJ0T37obQnxHY9l8GgE4BVkWKMevBJNMAMEpF+4SqpqjbtmC8kapKUlEFA0hBf1XItoB4Es4u4PuADBXjLMpS0YB+J4xdoIxdk76B+BTACNNXCDZAPJk/+4G0B/AVPl4ou96EcybZd8EYGgZAgDRTTAAQozRvwAyAWwCkABgo8b+RxhjW0zOg+MDgkwmgMCQiywAnQFsJKIcCA+BPQCe1zohY+wYhAWDltz8ACGORO5iHgXgc9V8zgGYpjMfjg8JQpkAglAuPGCBao6v+2jcgIcYY/4bXKgb8Q9jrAUJdRwOMsZ042SIaDuAJxhj6/w2KQ6nDOEyweEo4TLBCWRKzZIkRt8fI6LhgL2ird1fS0SNAcRDqG/C4ZR7uExwOEq4THACDX+WAJgF4UJuTEJLgAcAjATwABHthJCJdYPskBEAZjN/mrY4nDKEywSHo4TLBCfQ8au7jcPhcDgcDidY4RW3ORwOh8PhcDQwrSQRkZWIthPRP/6cEIfD4XA4HE4g4E6tg6chNI7U6qytICEhgSUnJ3s6Jw7Hp2zdujWNMebU0qU04TLBCSTKWia4PHACDT2ZMKUkiQWqhkLoOP+c0f7JycnYsoWX3OEEBkR0vKznwGWCE0iUtUxweeAEGnoyYdbdNhXASwBKfDWhQGLJ3nOYt+1UWU+Dwyk1vltzDJtTLxvvyOGYQKzCvImIdhLRXiJ6ozTOm19kw4Q/9yArv6g0Tse5CjFUkohoGIALYrVPV/s9TERbiGjLxYsXfTbB0uDhGVvx3JydZT0NDqfUePOffRg+jZea4fiMAghtjVpDaKExiIi6+PukMzeewI/rj+PTZSn+PhXnKsWMJak7gOuJKBXAbAD9iOgn9U6Msa8YYx0YYx2qVCnT8A8Oh+NHzmXk43xmfllPgxNAMIFs8WWo+M/v9WVKSoRT2Ep4KRuOfzBUkhhjYxljtRhjyRB65ixjjN3l95lxOJyApMuk/9D5nf/KehqcAEPMgN4B4AKEpsFOPSI5nGCD10nicDgcjtcwxmyMsTYAagHoREQt5O8Hc0gG5+rFLSWJMbaCMTbMX5PRI6egGD+uTwWvDs7hcEqbr1cdRfKY+Siylcu8FZ/DGEsHsALAINV2HpLBCTqCwpL0zoL9mPDnXqw4yFcfHA6ndJm4YD8AIK/IVsYzCVyIqAoRxYl/RwIYAOBAmU6Kw/EBQaEkXcktBADkFBaXzvlyCrnVimMIr0J/dWGz8XuCC6oDWE5EuwBshhCTVGpywX8Zjr8ICiWJiAAAyw5cQPKY+bicU+i3c51Oz0Pbt/7FV6uO+u0cnHKDVIWecxVQzDOodGGM7WKMtWWMtWKMtWCMvVnWcwpGbv58Lfp/sKKsp8GRERxKkvj/vG2nAQA7Tl7x27nOZeQBABbvPee3cwBAyoVsJI+Zjw1HL/n1PBz/IKtC/01pnzsrvwi/bjlZ2qe96uFp5hx/s+1EOo5czCnraXBkBIeSRKR4nZnnH7cbYwxWi/CV+PuGKClHf+4449fzcPzGVJRRFfpXft+DF+fuwo6T6aV96qua4hIeuM3hXG0EhZJkE29Okq6k0pm8orDYcePLLbQhxCIMbvNzTJL9PPzGG3SUdRX6s+mCtbOABxKXKtySxOFcfQSFklQkBkwa6S35RTasO5Lm1tjyysHpeUWwiBpYsZ+DNEOswlfP4xyCkjKtQr/luOButlp8uFrgGMJllcO5+ggKJcnsCu7VP/bgzq834liaeZ9ueq6jMWKRzKrk7xuiZEnytzIGAOm5hQqLGcc7AqUKvdoNzfEv3JLE4Vx9BIWSpC7ipnez2n0qAwCQV2jeDSF3qxXZSuxjSz2BNh69hJavLUZGrm+7TFvt7jb/33jbvPkvHp+5ze/n4ehz8FwW1hx2z8ppRAi3JJUqpbGg4XA4gUVQKElqRULvZiUpU+4EWMrHzi20OZQm8fnzxcojyCooxtYTl92YsTF2S1JJCU5ezsXAD1figo+bhmbmF+HVP3YDAJbuP+/TsTkCZqvQF9pKMP7PPT49NxHw5cojOJfBm82WBtySxOFcfQSFkqR2fRXpKEEhVkHxyMo3n/0mv/GNnbfbESQubqsQFgIAyC7wbZCsVeZum7HhOA5fyMbv20/79BytXl+Cnzac8OmYwcSl7AJMW3mkrKdhJyvft9bI1YfTMGnhAXy+IsWn43K04dltgQf3OLvHr1tO4g8fP2fKOwGrJKVcyMY7C/aDMYZilbtNz5KUFB9lP9YsciVp39lMSKeS4j0iQq0AgHw3XHhaMMbw1aojuJRdoNj+34ELmL42FYD/46DU32N557k5OzF5YeB0RkjL9m0R1Mw8Qem64mNXMEeJ5NXkliROsPPi3F145pcdZT2NoCJglaSbP1+Lr1YdRVp2obMlSedhHxkmKjQGqdEFxTb8tOE4SkoYSlQpc8cvCUHfTuEeXq5YdpxMxzsLDuDWaesBQHHeQvHzlPj5JpzjpaIXbPizMnsgoL52zcJb7riHtGAq4jFJHM5VR8AqSdkFgsssM7/I6eakZ3GR0veNMrk+W34Er/6xB3/uPO20Ovx2zTEAAIlakfRA8daqK51HyrzT+gz+rs3kTkC7GXILiw0V0rKkvHdt9/TjcR3JPbglyRgiSiKi5US0n4j2EtHTZTWXbSeuID03+BZIPAM5MAlYJSksRJha/w9WOhVcNHIbFRq8L7m8svOLnRQTdTyT9K7FS+e3+nCtG643lqScgmLDm7ivGwQ3m7AY3Scv8+mYviQQ69oUFpfgfGY+ksfMx/YT3rXXKfFQgdf7VmwlrMyU3sPns/D8nJ0Bqdjaa6fxmCRXFAN4njHWFEAXAE8QUbPSngRjDDd/vg4jvt5Y2qf2mncW8DaQgUjAKkly1JYkPbO3pCQYaeT2o4mcFJNLOYICZbGoLEleBwgqB9BylXj6UGeMoflri/HS3F0u9/O1JQkALgWwSysQrVxZ+UX2gqc/rEt1uW9uYTFOp+fh1y0n8c8uoX2N/HqVrnd3r009d9vzc3agyfhF7g3mI17+bRd+23YKu8QyHoEEcUuSIYyxs4yxbeLfWRAaP9cs7XlIv9H+s5mlfWqv2XUqvaynwNEgYJWkljVj7X+rH3Z6KzppFfrvPtfp7vIs/zmqRqH5RcIYkiXLW0vSntMZ2HEy3elBphV87om77Vhajr2X3W/bTrncNxAtK/7k1JW8sp6CE7YSZr+WjH4OyVL34txdePLn7cLxsmvETEzSzpPp2HdG+cDQO+oPsY+glhJVZCvBtJVH/BbnVSFcyCKVgtEDCYcl6eqSH08homQAbQGUujknmH8jroQHJgGrJElKCuDsApMrGIwxDJq6Cn/ucMQXHTWsuC0WjGQMi/dqK1RhVkJOQbG9Aa2nlqRhn6zBjZ+tdVKytKxhX6486tbYp67kou/7K/DIT1sAABXEwHU91Jl17vLnjtNeu4iudopKmD0Q2N3Aa7VL1Yy77YbP1mLIx6txNsOhMBqdtkDDErvndAYmLzzgUa2nC5n5hu2CpJIYF728Rl0xY8NxJ4XRDJLs8oeYMUQUDeA3AM8wxjJV7/mll6GcQHTXmsXfMakczwhYJUmuVGQXFGNA06r213IFo7iE4cC5LDw9eweKxJtY5Qphps7hqoJuqNWCFq8vtr82e/1e+9EqTTeK+kF28Jz35uCnZgnWhQ1HhUKXOYU25BfZsOZwGiYt2I86laMU+z/wwxbsPeO5O+Pp2Ttw0+frPJ8wB0XFJYpA4Bs/W4tVh8w9MJq/thg7TqbbX7vz0O46yRE7ZqScabllpXN5Urjyti/X486vN7rMqltxUPgOXpq7y+OiqntOZ+DguSzd98f/sQdDPl5tfz3sk9Xo8a52TN2JS7kY9/tuFNtK7LI7a9PVW3PMDEQUCkFBmskYm6d+31+9DOWURQbir1tOIuWC/nVnFl7RPTApVSVp3O+7ccsXrh+y+89mYtamE04XTJd6lXDgrUGIjwpVuNvkDwopoFuqbaSHdK929bAIsVoUipHZVf/B81l47a+9zudUvf5h/XFT47li24l0p23XTl2Fu77diC9XHdUUuq9XuWet4viWIluJPXNy4Z5z2HEyHfd8twmHz5u7ye5UKEnC/+70cCsotmGSQYBonkYsl9Tj0BNrSuqlXABAVoG5xIHn5uw03OfWL9Zh/B9Kq9awT9bg2qmrNPfXUtD2nM7Udck+N2cHZm48oVBKV/u4rUxp8vv2U5jtRyWPhIvwWwD7GWMf+u1EOkg/b2nXgruYVYAX5+4ydc0a4WlJD45/KVUlaebGE9h63LW7ZvD/VmPsvN1OZlOrhRARakWI1YKVhy4iR7zhyveT/NEZeUUuV63SxbjxmH6rkSiVouWtqf2/UmoLclx8IAHa8R0WD/t9qb9P3grDMwptJZoxdVLMkRHymIsNRy8BcC+77dctpwwV9DSVy+vAuUw8+KPg0vXkRi65ztNztOONTsiuWcBR/sMVW45fwYwN5hca7saqyIO1y8Oj69lfdmLMvN3+PEV3AHcD6EdEO8R/QzwZiDHm8f22qJRdohniPfa0D+If1dfopewCLNl7zutxOd5RJu42M6nu+cXK1WyIVZhqWnYBjl/KxQu/7sTeMxl44+999n2kVUR2QbHLKsTSfd5VgLfVqnz0eKvkf7LM+9YRp9Pz3PK5a63crR4GV6njVBbuOevROGZZsvccksfMx1erAqetiC/IKbBpZl+a/VnkD4/T6e7fmPUWD/Iq9RezlErSofOO98y6BMbO243lBy6AMWb/vHopzk/NViqIO06me/TZJNRKF6BcTJkppmmPQ2KsXBXf3Jx62S9xhYyxNYwxYoy1Yoy1Ef8t8GSsKYsPov4rCzyqGyS3JB3wQUiDEVJSUYjVw6BVGWrF8L7pm/HwjK0+b2fEcQ9DJckXRcKSx8zH2/84lBm1AqSFOi4i1J6SL7w+eC4Lj/60FXO3OjK65O6n37aewmIdLdzMLU+tyJlZQXtbMVue0adF98nLcNuX6706h9VDS1KOSuHyZ4Dkj+tT8fCMrQCAdxZ41lZk/i7/KnGesvdMBl7UKNVg9nfRsoisOnzRtFIhLTbUDPhwpe45QmRz22citbqkhGHWphO4b/pmRZX3RXvPaSocWoHiL8313H3xyE9bnbbJH7hG2a+A46G3/sgl5AZgKQl3+HDJQfvfw6etD/i4wh9FS6eZ54Q6CUJ+Xxo0dbXmMb7EriRZvLc3qBcgqWICEi/PVbaY+WW9KhImKQ7fiJWsAeBdE/201Cb3+onRitdG6sjEBfvxyAznm6V8Tq5QK0Vm9B+z2Ql69YpcKR7SnLfLFMF6VSqYOp8cT91tuao5L9rjPzPwhD+dY7rcZfbmwAyylVs+5Zi1JGldu2nZheg+eZmpmBMtZUy9UlXfrP/cod0Q89SVXLR9cwlavr4YZzPy8NycHdh1Kl2RjZqrKmA6a5Oy5Mbygxc0a9qYdbdoKV3ZBY7PczmnEPvOZCoKzJrJoJMsSZ8sSynTCuVn0vOQPGY+1qZ4Hg/1sQ+s2GWBGZGQXLnS75tXqH0PfXfRAUxeeACbU/VDLDxBit8L9YElicckBSaGSpK3RcK0gkDNBC2fz1TeyDomVwLgaBFwLC0HBUWeqdjzTHRBVt+jzShAyw5cULzWS3vW+k4A1w+GbRomck/M0SEeKknHZGUVGGOaQeOBhDvBzKVBTESo07aKYm0gwHwdriIXy8ox83bj6MVsrHSRLae+mX+x4ghavr5EsU0dM6VXJuOz5Sm4kluErPxiDPhgJeZtO43rP12L9DxHLaVD55TNpo+lCa8Lim04ejEb932/WXNsMhlpVXfsApxRWdHk3+V1n6zBkI9XK7KezChgepa9vEKb0yInv8jmN5fcxmNC3Jm6nps7+OIBXppI36WZb1T6ZMW2Eiw/cAHXfbpGc78vVhzBtJVHMHzaeifF3QyPzNiCV/9wjumSatRFhoU4vecuenFzb/yzF3d/G3wVxMsLbtkIPSkS5k0rjJvb1kTvRlXwVP+G9m3y6+hClm9qqtzcTqnzhVqdK3GbuQnKLVd/7zyjWwFbT0lyFVwqNcaVSMsuUGTm1DdpVXKnKOasTSfsfv17vttk377/rPfprlcblTTKUsgVb9NKncFl2O+DlRgl+63UWFVugXcXOVt1i20Mny1PMQzOzylwXMdyt1qGLGHgLtXN/evVxzB23m48+MMW9PtgJfRYLwala6GWxYkL9itSsI9fyrUrQpIbUr6gyMov1rSOnc/Mt8dm6cXu9Xh3GZpOcFQlP5OehybjF+EnN4LI3UEqbvvnjjN+b4BdVlzIzMcHSw5q3HONj5XCAKwWi9MiVQ9PgsIX7z2PnzY4W2ovix0aYiO9V5Lk16i899y8baf9kllZUsLQ6NWF+HljYFrdAwXTv6yrImHi+w8DeBgAateubd+eW6BvNTGKw9h+Mh3LX+hjdoqaFNlKEKoThyHRu1EVzNvmuGmGWi1OCou7N6jRs/SzlfQCWN3pDfWoypUYaVBIUsKVknTyci4m/LkHe85kYvLNLTFWzIZRP+DltWZKA8aYaSXiWFoOnp693etee75GazYKS6DsifDVqiOoXSkKCdFhSMtWVrg2YwUFhOtVy7VqxpK472wmvl1zDMsPXMBLg5ro7vfXzjOa29NdJE0A+vWGEiuGm1r4qF3x83edxbMDGiq2ffjvQVzf2rH4WXnQ8QCdsvggtOj8zn8AgNTJQ3Xd0uo2PJKFdeGec7i7azJ2nExHpagw1FbVKPMExphdBgFgTUoaejWqonjfSC7yi2xlUjvIHZ7/dSdWH05D57qVER5qsa8DzCxMpWth/9lMRbkGV/jq23h/8UF7trZR2RkzqBV5f5JyIQs146JQWFyCt/7Zhzs71zY+6CrFlCXJqEgYoF0obMaG41h9WNv0L8XflJQwbNRZNab5wFKkjqXRQh10FxlqRYEqaNDoPvP7dtctQeToBRWbzRyylTCnNO07O9XR3Hfpc73x6tCm9td6WRgnL+ei53vLsfzgRVzMKsCH/x6yv+evVhRaaGVyGDUslvO/pYew61SG6RtmqaHxtcsVcfmD7J0FB/DoT9s0U+HVmWd6bD95RZGxJjF9barhsVIw6pbjVzxKFMjwsLWI+nmv95DUuh6XH1DeZz5bfkRRM+l1nVgwPYyyQLcev4JvVh+1/4bSgu/Gz9ai15TlAMw95AHhmlfLc05Bsb2+lIQ8ZnHRnrOo/8oCw4D9az7SrhsVCBTbSrDp2GV72MQzv+wQ3WHC9We0Lj15OdeeNeyOvNu8UBr7TFmOZ3/ZAQD4dHmK3eLpC2+r/D637kgaMv2oKA34cJX9fMFW5GLdkTSP7zGeYCa7zaMiYYwxjP9jD8bLgnBHdEqy/733TCYW7TmHb9Ycxe1fbcDiveecburVYiPMns7OuCFNFa/V8QNrNMyWcovWfd2T0axGjN3MLf88ethKGJ79xbNsnDGDHSt1syu+l3/bpWjbAgB3dq6NH+/v5LRvg8RoPNiznv21noXlW1lgPQAcMlncEBAqGd/1jW985rs1Gpy605g3UD0S4SEWdG9QWff9fWcznVLX1degHCMr7C1frFdkrAHCw3iTicBVbyr/NqlWEemeKkkqTfJHndhFrYXPRB93UDf+ftfh7fn77SnnVgspZGbQ1FXoPlm7mreanu8tR4e3lwIAPvr3ENq/9S/6vL8Cfd9fodhPLrszN55ACQMOuagwDgAnLjuXQwgE9pzOwEM/bsFtX663x1uqFcWMvCKXjWoPGHx2QFiEqwtMnsnIw7IDntWtS72Ui9+3n8bDYt0w+3kYw74zmaZqfOkhdwO+/Jtfa1oBCI4WLslj5itiwbLyi3Dn1xvxyIwtLo7yLWYsSR4VCdNKv590cyu7onTLF+vw6E9bsXSfYAZ/ZMZWp5t69wYJJqanpJvqQSSPiTqdnucUIwEILojN4wZg0yv98dp1zRERatVoqivUS/lpw3GFvxgAruR6bmnp09hhPrfpuNtSVb3o5m49pfkg62Hi+9LzPKr99O6Y6GdsOI41XmTfFBTb7N+31llz3FKSAlNLCrVaNIO35czdaj44d+HTPd2eg1llc8txzzOArBbSLGJq1FcQcF7RrjioHWNSGjd3s1mgkiUpxEIKq82Bc1k4Y7Lgqtw9+b//DuNSTqG2xVA2pfAQ4fv0JuazLGFwxDbqxWLe9c1GDP6fvms/JsI4WqS4hGHtEaWn4oZP1+L+6Vu8CrZfoiojcTmnEEM+Xo37vtePBww0JPee2SSJskIeCybNWV67zVNyCooVHQz0MJPd5naRsMz8Ijz60zbFtkd6CdaMVrXiFNvPZ2nfSBY/0wvjhjZ12h4R6nrK9asoSwWskwmI3kPCaiVUqRiOxJgI8RxWp9otV3IKsf9sFl79Yw+eV5Wg9yTLTIsruUWamRdasR/yJr7tascBUN7YH+9TH0uf62V//emdbQEAS/ddwAu/Olu9yrJ7dr/3V6LJeCEYVu3mBIBcN1ZnAaojAYCT9U/NkbQczc+vRZXocLfPb3aVe+SiUYNofQ6cy9KM+Qk1+OyA82+nZfVMuZCFS9n+d/+aTQiTFitL95sLGvYVkqibCScIVIwWNEauRDP3LFsJc0pkkI7zZcNiyQuyOdX3hTrd5alZ2/GymDS0OfUyUi5k4cMlB50MF1qLjVmbTjgZAdxl75kMfPLfYa/GUPPy3F3IK7TZPQUeJmkreH7OTtzw2VpD151fKm4f16h4O1Z0g6mFWmtfAGhcraJmwHV0uOvVuDqAbvwfe+zaot4Xqw5mjQixOClU5zLz7UKlVuw8VZI+GdHW6WH3wPQtOJOeZ79Qj1/KUcQHqbm3WzLmPd7daftLg5qgQWJF++thrWogLMSCg+ezFAU4JfSsWL6GqSoYp1zIst8Mj6Xl4P7pzmbU85kFeGTGFjw1a7uTSV5NaViSPC2wahTnMn/XWTR+dZHLfQAhzizeZBNnOTk6SRS+RO/BY5Q8ATgHRWvFKA34cBXum65dNsAb1BYAtSXpwR51NY/Ty1Q1QnLNuFNNuUh2n5G+Z3dco6P7NTA/wVLA7Mz1kmbMWBTlmYhqzMQ6/rg+VbP8ihr5onrFwQvIMEheAByKla2EGbbrAgRX7CITnQ7+2nkGv4glI4ZPW48BH67Cx8tSnOoG7jntcGUW2UrQffIyjJ2323QfOsaYohn1tJVHkDxmPoZ+vAYf/HvIyRvjLnI36S9bTqLphEX29l6+KPGy+7QQ2nHFIOa21NuSDGia6NXxchPrh7e1xpqX+6JqjFLR2PRKf8VrKU1ULx5HHX8QEWrFOVUn8nMZ+fb91DcmT8z/EaEWDGtVHZWjw7FzwjV4QLwJrz96Cd0mL0PPd4XgT1c34W71K2ta2zqJNaXUuMps8iQDxsgyokXdsQtQd+wCu8VMHnCr5276edNxLN57Hn/tPIMPlmhnJkmoH9J1E9wvuGkCjwqsSg/eYa2q27dNu6u9qROmTh5q/7uBWFg1JiIEkW5k1WQVlF17AzO3NLUiUqi6Jv2ZQLD8oDLwW51VWCs+Eje0qeF03Gt/7nHaZsT5zHwM+Xg1Wry22KlGlSvkJT8ka4heRmz3ycvQdLxSQRjVLdntuZqFiL4jogtEZPoLMZsxrLfwkWcke0JRsfH5J/y5Fze7WaH83u83Y9D/XAfM/7njNAZ8uBKP/bQVny5LsTd+d3W/+t9/h+0emoJim1fxTwDwxM8Ob8/Jy7n2xaqZ5JDzmfmoO3YBOr3zH06KcW/frFY2T5cv7m0lzG1jgpYSK/UftJAQnyRdQycv52LpvvPILSzGh0sOOnWI0ELySgnx0frKZ6krSXUqV8AnI9p6fPzbN7aw/z24RXXUio/CujH9seKFPtj1+jUAgMSYCCx+xuFq+me38AXoCZs6u03LhL3x2GV7bRW1mVdvRVLRhc+8RmykXRuOjQp1+lGlvmthLlbg1WIinFboKRMHY/bDXTT3lytJan+8J/2B1JYRd4RASnGVrzb0ApXlxQyl4m16qC1Ny57vbXpOZvG0wKq0QHi0d337Nq36SXK+v7cjnuyrbQHYNG4Atk8YiF90fm+JH8SAfl9Ykt67pZXi9eh+DUwVK4w2iB/Z9+a1eFlVbiCnoBiFxSX48N9DyCkoLhVLmMQqVUHO4hKmWavGnXg5CU/60kWGWpFyUdZDT1SOtBY3n/x3GKfT85wWWAnR4Zhyayun/X3EdACD3DnArNVXzx2iV4LCLHr37Vu/WIc2b5pXXrU4m5GPU1f0g+a3iZajhXvO4aOlDmWioaqzhB63frEeLV5b7NUcJRgY3lvkWHwa/S75RTaM/8OhC2eKzw71s+iILBHrrm82otGrC9H5naWm5+XqeXI+swAtX1+Cz5an4Id1qej53nI8+OMWdJ+8DB8vS8FHLrwvEpLX6YmftzmFB8kpkwa33tSU6NYgwW45kmoDWS2E5IQKisBYuXVJKpal5wpQW5L0mrd+uUrQlNXZEnpWmJ8e6Iy1Y/ph1Yt9nd5Txzz9olNR11WWjZZPPsRq0Q06lfftUh/ryapEfZNxJwtN2vcDE6UG5L/b2QzXDxh12qy/K2+7U2B1UIvq2PfmtWhRMxad6grWPlsJwxcj2+ke07dJIl64trHmexGhVkSEWp3i/NTUio8E4NwiZMqtrTCgaVUAQlbaR7e3NvoIuK1jEjrUibe/Pnk5V/f679nQkUjgKqlg4yv9ERUWAouF8OmdbVFPXE1n5xfjg38P4uP/DuOBHzaj0FY6SpKWS7d3oyo+s2Rl66R2f7FCv5lz9bgIhQtHsmar70WAUqbUtEmKMzlL92CMrQLgVsS/2Zig9m8v9UvKt561YcvxK0jPLfI6ZulRjR6CEnoegooGyR2AYIWSXEWuSB4z33AfQFicLpLFK+09k6mroCzZew5Nxi/CHtn5JeVIrSTJnzFSqQR1Jw1XrFMF3Gvxwb+H8Npfjgx6qbG92nWvhVkrvF+VpAd0/PhGwddG/D26B/4Z3cPlPnFRYZj7aFfFNr1AP7Ui0rWefqo24KwU6V1Q8VFhqBkXidqVhcKAcmIjlcJQPUa73IErQR3YrKrLeaqR3+TVLkNPQpLUc3Mn00brJvG7iUKJejFsEloPDX9hpsAqEW0hoi0XLwqWiSixfYFcQAe3rK4+FAAwqHk1U/MwkifJGvmH6vutGReJ2zrUAgAkVYrCTW1r6Y7x80OCwg8AX8hchGq3lJwZD3S2//3qUH1vZFXZtT+sVQ3cJ943Dp7PwpcrhYXJhqOXUWjCPfLzg50N91GzRBXQetPna532aVi1otM2M5ht6AtoVz8HhM9UISzELjN5hTZsF+Ms5fe0YluJYf8+Txtc+wPpqzHjEne3xEhfWdawHm/Pd102wmwShR6uSnisOqSdDezK+yDx9Owdnk7JNHrX4grRwirP3CwsLsG1H61yKjdxOacQU5caW3T0eHymvnXHCDOtZ8waa/yqJI0f1gybxw3AtvEDFdv1NLjv7+toatzEihFoUTPWcD/1jU1P4VDH6nx0RxuX455Oz8OvMsuP3oqkRpzj5q+2aKiVpGcHNnI6njGma/rcPG4ArmvtHCNhFnUsgy8KirmTaeNpVs6lnEIni1VmfpF9pakuwOcvPC2wKvHera3wYI+6douSFup4s2XP98bvj3fTmgvWvOxsrZSQYsfUcTehIRb7dWmUDt2tfgJqxgkWqSoVw7H8hT5oVj0Gk29pqbm/2nXmTvzaXTrVf83E/tWuHIVr3Fw8PKwKaD152WGtrBYTgdqVhOrZHZPj4S5a9xx3H75VYyMQGWq13/hf+X23fWEm/06+X5tqj9lQI7mdy1JJki8aAEdIwbE042zK3aczcDmnULNAqprnBjZC42oxTts/u1NpsTW6nlyVHzDD+cx8XblSx7xKuNN1wZ9o1ck7eTlXs4XJfdM346DG/rtPZ2DqUt9muZnFKKFhzeE002Vr/KYkfX1PBwDCDVUdd9GylrOCE2ol9G2ciKf6NcD93bUtUO4ir81y8nKurglOfeMwqmcDAC/K+rJl6sTzyN1b0im+u1f4Xno2UrofhndIQpSqlkxWQTH05LhKRfdTwOWoLyJP2nioLVnuuNs+WHIQN3zmvGKXo45/kVCb3lu9vgSt31iiCET0J54WWJVTNSYCrw5r5vKhlahKSKhXJRpta2s/qKvHRtr/vr1DEu7q4lA09AL2Q60W+3XprmehbkIFLHi6J2rFR2HWQ84xUY/1qa9xlMBPD7i29ui5SM1kI4VZLU5Zcd6w4ZX+WPWSoIB+PtJhQTPbNFarMba7AaxhVgsiwqx2+dp3xmG0lMvxkYv6CkQ9sTRKWSpJ8kWDJ8f3/2CFUy09NfvfHISn+jdEZ43FR+/GVRSK7naDrDW11frZAc4LWVdk5Rfje1mF+/wiG5YfuOAyMDpQ+mJq3TO+WKntDjYK9J6+9pjL97XwpNK/HFf3ijM69RL18IuS1LJmrEtXUHiIFamThyosR5Ip/7lrGmPCdYaJQqaQKyk931uOe3UKfUWHO5s4BzRNRLi4+u3VqAqqabjDpJWImT47t3cQimh2qlsZS57thcd6Oz9E1NaV9UcuaVqS9NKR3UHtevSkTpKkCEvkFhaj1euL8aZGC4hVhy4qYirWHbmkKOQ1tJWzy2lQS4e76ZpmVe1B+9k6WVp67V78gEcFVt0l1GJePOX3tHdvbYVKFRwKll6NolAr2RUK6Tr7ZERbvHF9c7x1Q3P7fh8Mdx2r1LW+0j3dQCf4tH2deDSvEYMeDROw+iV9yxegjGeS+HefdpXkv590uN5DrBa75UfiwFuDsPS5Xi4VNzNUqRiO3a9fg6PvDMGbN7QwPgDA9hPpTtve+sdcixTpvhRqtSA8xGJ308kVHfnDQM/qLM8IjosKw+s+ur/6GmkBqccVRUyW43NvGNsffz7RHR+PaGuPU+3bJBHTZc+X5MpRiA4Pwa+PdrNnirrb9kNdqNgMv8rKrUxeeAD3Td+MjhP1g5fNKt8SHd7+1+05mWH5wYuKwPP1Ry553AjX3ZZAALDpmOcFbQHXlqQn3VxMe9+62Av6Nk5UpDb7g3dvaWkv8a51D1n0TE8kqW6qAPDNKEHA8otsCBODodWBcOm5RahSMdyuJI0f1gxhVlK0YpF4dmAjPNGvAcJDrGhkMr7hkRlbFbFX+968FuEhVp8U0pLMuhl5RdhzOgNbj19Bu9px2KZxU5eICLXY/ex3dExyej+nsBiZ+cX4bu0xhaJ7ITMf93y3yWX5h+HtazkpOeGyh/tX93TAcrHLt7+bPxrBGFsDc1ntXmG26jPgbH2RgoOf6tdAN0MyzGpBfJRg5U2uLMSFSC7cYlsJ9p3NxMO96rtVRuGbezqgv87v/NtjDlehJ+Ujvlp1VHO73DIdHR6CF65tjHa149GiZiyKbCWICLWiQWJFvDyoCe7uUgfdTLYL0UIKrI2Pclibb2hTA3/u0M60uuOrDVjwVE+x1ZENmXlFioe9K6RfNNRKCLUS8ops2HM6A62T4rBPbNchT7jQ85jOkcVmRoeH4N7udXGfqRmYh4hmAegDIIGITgF4jTH2rTtj9GxoHEcEAG//sw/fyNooRYZZ0TopDq1VQelya/sMlfVyRKckzNp0UrcRtJpu9SujY3IlzH64C+74agOWPtcLDRIrosVri10mvchFL/WSsVuxS73K2HDUvILgKibQW978ex++EhfCq3R6sHrC63/txZGL2U6/iS+Jr+CQz8z8Iny/JhVP9msAq4XcDvUoUyWpNNArYjftrnYY0LSqwtqkhavgroy8QsRFhdqD3O7vnoxzmfkY/+deDG+vDIIlInsrAT3eu7UVXpq7C8Pb17KvQOSrwzCrxWfmcimOatDUVTgrBuGpFaSeDRNwc7uaOHEpDx8tPWR3ydWMi8RkDVfYUVml5pOXc+3KpzS+XlViCwk3yPHDmmFYq+r2buzq70tKIy/NVPCy4N5uybimuXtxNYDgXu4ouhkka1uNuEhdGQi1WtC2djy+v7ej0yo5xGrBpJvdTxcfoLIg//xgZ6RpuLmNiktqpdur2fnaNU4xP5LypRcMb1RyQc6Cp/Rbv1zbvBpmPdQFXepVwpbjV3SVJMCRMPHwjK1OpQVcIoq6VKLk+KVcDPtkjT0jERAyd1vUiMWdnWvrRhXGRbpfeNRdGGMjvB3DTMFRAAoFSThO+54oX2SpF8LS6zf/2Ydm1WPQvWECLmUX6GaKJosLhS71KisW9itf7IMruUW6bkArEbLyixAdHuKyTp3E/T3qehXHYya+yyxWC2H14YvoVj/BpyvC6etSfTiaNvIkpUkLDmDWphOon1gBLWvGKp6hUWFW5BbaXCa/lHslSY/qsZGGCpKaj0e0xZrDFzFni6DADPhwFV6UpWcTEarHRuLYpCEepZ7f1iEJ1zarhpjIEPy69RSaVKuoeAi4O181TapVtDeFlPpFnXXRX2pgs6q4qW0tpFzIxkdLD6FiRAjyi2x4aZB2SvoFmW9a7gYwCpCcfl8nWC2kyIZsUdM58LKCmBmm524rD2wfP9CjatoAsPdNR5madrXjMWfLKTRIjHZSrKUbg7S9bxPvCry6optO6r+7bgUtYiJC7HL295M9kHLROJ5Dsqq5sv4AwPvDW6NZDedrUIKI7G5Go4WL9LZbChKEsgP/7DqLsBALFux2ZOAt3a90O77y+27c0TFJt0SBt9nEgY66zp1EmFV/USpdB+oHtp5nI1TnN64cHY7KLloE7TyVgZavL8GEYc1Mta4J17Cw3tq+FjrXraSIg5Ujt4bNMshuBAT3+fzdZ7HsgHI+rWvFYqeswfjCPeewcM85vDSosUtZ8ZQdJ9NRZCtBR53ixxLLX+iDP3ecdkt53HD0MtampKF7gwR7Lb73Fx90SuzZ+upAWC2EsBAL6G3tscq39OiwaVx/J9OsGa5vXQNv3tDCXncGAD5dluK0nze1eWKjQkFE6N6gMg6cy/LYD6yFfN7pGiZ/uVtm/5uDcHeXOorjBjWvhqOThuKGNtp1E3fLBAwQXJVPzdqOkzpF1X64vxNSJw9Fr0ZKM/vS53rZg4FHdKqNCcME152UHmvW3bbk2V7GOwUYZlKAzXBbhyRsGNsfHcQb0LUyy9SYwULmWWyUcYKCWWrEapew0MOs1UCPKhXDFXLWslasyxIGEhYLYfv4gYZxVuoq/q6QF1WVYjF/FAt4AsKCQd0P6+Z2+rVHxw1pitUv9cX7w1tj+Qt97HE2rpj632Gnh56kvBlZsAOJh3oKC6Uj75gP8dNTuF25dPXcVGt1Mp6iNOJW5RgZid7UiENTl6gBtOMQo8NDMKxVDdzRMUnzPMM+WQMA2HD0ksIl3bdxFc3Yvy71Kzt5OgDgprba1+R7iw7qFkCVnhGecONnazF8mnGAduXoMDwzoBFe04mlqxUfqblwH/nNRiSPmW+fu1bmc2SY1dD1f1VakhIrundDlxMRasXcR7uhyyTBJeRp7yYjqopz/FWjz5qnPNW/If47cAGMaVexfbxvfRw4m4X4CmGKG3NEqBXbxg807LotFQwDhPiIf/cJrUTU3dxfu64ZejasgvpVtGNd5D3nJt3sSDGvEC6528wpSQ2qaAcQBzLeWgslLBZCNZni0qFOJSzeex4P9qiLe7om4+4udXxaaPOv0T0Ma1jJMVKSiBwxNvd2S7av+Kfc2govzt2FGzVahJhFstSlTh6Kdm/9q2mB0UrU0ENuSfryrvYoKilRZKDd+71zr7n2deLRtnY8Tl/Jw7SVRzC0ZXW0FRtVP9iznn0/s/Fgahm7rnUNnLycix0n0z2K/yorxg1thnEuamppoXcde2KtHCnWYxrSsho+vK0N3l10AN+vTVXEoGmx/61BmLTggFuuJK0yNlrxUbXiIxEZZsXkW1rh8T4N0GvKcsX7+85m4suVRzBpoaO20dZXB6BiRCjCQizYMWEg5m07jcs5hfh0eQoqhFnRt0kikitH2RWHW9rVwqhuyaifGI27v9VOcNKiR8MEzNhwXLEtNjIUTatXdIqtqh4boem5eG/RAQxtVR3Nazh/H3KvzL3dkjGgaVWczcjHuiNpeKhnPaTnFaFmXCRsJcqq4XK8DQIv90qSP/qdaqXf//aY86rAG6LCfb/6a1UrDjsmXIPWbyzB2iNpqKwqcPl0/4a6Nxy9WI7VL/VFeKgFnSb+p9heXFJij6dS/watasXpZkC5ooL4ncgDJV2VHXAn8Lm880CPuujeIMHuQvJ1JfKE6HAkuHA7qDFyUSVEh+NiVgEOTxyMUKvF/vBpnRSHXx/t6rPK0dvGD8RXq44gJiJUUWPIneszRHwYVwwXqoaHW4xXp6EWC27rmISSEoZrmldFO53SDq6QFEbAOTN26u1tkJ1fjMMXsgKqgKSEuuRIRReWmoaJ0Thsoj6SGimGUcvK8GS/Bpimk9IOAJ3rVkZEqKPsgqv2UIBgrXugR11czinEWze2wPIDF/DMLztcHqOOdz34tuAu/+j21miYWBGFthJ8tiwF98p67tWu7JxkBEChIAFQuADjosJwf4+6KClheKhnPbsFecWLfXEhMx/frU3Fi9c2BhGhZ8MqWPRMTwyaalwjqnKFMM3+eztfuwapaTno8/4Kxfa1L/dDvVcWOO3/+Yoj+HzFEUy9vQ3iokLtveD6Nq6iuE8REZIqRSGpUpS9vpy0cLZaCAOaVkXX+pVNZ4+aJXiWGB4ij3IHnAuKeYLVQopMHQBoX8e1X9VdPKlbZAbpZjRv22mnFa4nD86kSlFIrBjh9FAoKnYUwsxSWX6SdQTdCMltIPftT/3PuaLrq0ObYulzvu/Z5k/u6lIbiV7WvnKFxUIuY2wCjV8f6YqJN7WwW5z+Gd0DQ1tWR72ECuiYXMlrd52ch3vVx40qV4M7siC52+SlFrRiS+RIipXFQh4pSFVjwjG8gyPDVF5kcUSnJFgthNioULu7NdBoVl15Lc7RcD1JfDOqA4a01K4+L+/RqSY8xIpjk4bg8T7OvQ+1yr7IkRT+Ud2SUTE8BP2bGidSJFWKwscj2iI2MhQ3tq2JpEqRhsf88UR3AECfxlXs97eb2tZCi5qxaFc7Ht/e29HJuuzpAsEiXhNyEmMiMGZwE4Ui3TDROPt64k0tsOTZXnY5fHVoUzw7oJG9vEQFje/XaNH6zC87cO/3m+3Z4S0N2i2p+WZUBzzQo65py+l0k8Wry70lqW9jR1DqTw90Rg+N+iueIF9p3uuH7to9GiTgx/XHjXd0E39ZV/58oruiQm2hrUS3VoU7GUZa7DiZjmJbCRqMW6j5/r3dkn3mtiot3r6xJd6+Ubt6dXlGz4KQnFDBnlEECK6Jz1z0uPMWI6XGFdIDRt5JwEiJc9e688/oHvbYE0BZ2FKNJ1mJpQ0R0KluJbsrpL6Ga3z7+IEoKC5BtdgIPNW/oSJ4HQCaVo9B42quH+ieWkwlb0HT6jHY/ca1Ho1Ru1KUonq7HKlCfpukOBx4a5BbSv8Ht7XGnM0n0bV+ZU1XrreYuTZHdhZikfo3TcSMBzqhR4MExXctxVYOaFoVzWrEoJ3oSnaHrcc9c5NVi4lwapGipln1GPRpbC5hpdwrSUSEiTe1wLdrjvlMQQIc/u4QC+H165sb7O0+1zSvhhvb1MAfYlaBUa86d+jZMEGRYt2/SaIi9scTmqpWhrd8sc6p8vGQltXwlAuXnhmkuet1bR4/rFnQKUhXK5te6R8w8TJEhEXP9ERqWq4iyN0MteKj0CAxGk/3b2jfZlSctcBFXy8t1PErevGB7eu4b5UqK+Y80hW5hcVIyyrUvA7kWZ6NNWrLTbnVO2Xw0zvb4smft2u+5wurbrUYfUtSxXCHRcfdhu/1q0Rj7JCmhq2EvEH+7JEY1bUOftp4QtHgWnLRqYkItWLtmH6oXCHM44b27laml6gcHWaoJKlDTVwRGHcoPzOycx0se76PT8eUTKOP9K5nsKfnyIOnzfSqM8vDvRxzbl8nHp+NbIdENwJVjZBSjtUy/NK1TdBEo6eSO7QSCweq06C/vqcD9rxxLe7vnuzV+JzSIzEmAnFR/q/hY5Ym1WIwqEU1t5X4sBALlj7XW9FLsU6lKNRx4VbWa2XkCrmbRSpqqc5S0kuGCFSiwkJ042zkaP0m7jzotBjWqgb+e17bLV8jzthVZsQTffUrvPsii1XvOvVWeQSAt25sgTmPOFygj/WpjwnXNceRd4bgl0fMxd/WjIt0UpA6uKHEP+BhZ4lP72yHEZ20+z9KuGMUuCqUJH9gtRBSJw/Fi9c2Md7ZQyRf+jeq9h/e0jG5El64phGWv9AHvz3WzWNNX83MBztj2fO97Y1QJX57rBv+fKK7wn3iKecynPsEfXdvBwxsVhXR4SE+D0jmcDwhxGrBh7e1sb/ermry7UnV+J8fclQoThAVhNeub47qsixGX8ZqBTryfoWeUr9KNHa+JrSakagaE+4TC2e9KtF4T0NhqVQhzGdhDx/epixlMWFYM0WsmqdUjAi1Z1s2qSZUq/dFAsDMhzqbbsw+qIV2QVgjasZFYtLNLXHo7cGa7792XTPUijcfF1vu3W3BTFKlKL+0bYkIteLJfg2Nd3ST7mLhQCkoMiYiBIuf7eWTm5nEfd2T8ds2R1mEJc/2Mt3mhcMpTSSrzj1d6zgVCPXELRYVFoLfHuuGXafS7S7l6PAQrB/b394yqaoPLcKBRr2ECjgqVpRe9Ix+NXR3iY0UrHL/jO6B9xYfxCcj2vps7Ns6JOG2Dkl4YPpmdKpbCUNbVXfrAW3Eze1qochWgu/XpuLhXvV0ax15QqjVgp0TrvFZ7TZA8MB8MqItxg1pak820Go228kHCQdhIRbc370uejSsjKbVY9B10jJMvKmFPZ7KLOQPv2aHDh3Yli1bfD4uJzg4eTkXi/eewwM96vrFsvPf/vN44IctiAi1YN8bgwxXZUS01dPO476CywRHUmT2vHGtYXaVu8zZfBLfrjmGv0f3MGUFKWuZ8FQeGGPIyCsKKDctxzuOXsxGvw9W4pZ2tdC/aSJ6NExATITvCt2aRU8muJLECUrScwuRW2gzFTtQ1g8EgMsEB8jILUJRSYlb9aT8RVnLBJcHjpxD57NQv4pzC6XSRE8muLuNE5TERYUhzndWaw7H7/iyDQyHU54I5JAJv1iSiCgLgHaNcO+JBZBhuFdgjh+sY/t7fH/PvTFjrEylMIhlgl9XZTN+uZYJP8sDENy/DZ976Y8N6MkEY8zn/wBs8ce44thf+Wtsf48frGOXg7n77XoMhDkE+W/D5142cy9TmfD3+YP8t+FzL5u5a16TwZgv+ncQjx+sY/t7fH/PvbwTzL8Nn3vpj301EMy/DZ976Y+ti7/cbVtYGQfKcjgSgXA9BsIcOByJsr4ey/r8HI4avWvSX5akr/w0LofjCYFwPQbCHDgcibK+Hsv6/ByOGs1r0i+WJA6Hw+FwOJxgJ6BjkohoEBEdJKIUIhojbptCRAeIaBcR/U5EcT4e/y1x7B1EtISIzNVQNzG27L0XiIgRkccdd3Xm/joRnRbnvoOIhhiN487ciWi0uH0vEb3n47n/Ipt3KhHt8HT88gyXCbfnzmWinMNlwu25c5lwBx9EhA+CkMqZAmCMuG04gL0ASgB08HBcK4AjAOoBCAOwE0AzANcACBH3eRfAuz4eP0a2z1MApvlqbPG9JACLARwHkODjub8O4AUvf0+9sfsCWAogXNwv0Zfjq/b5AMAEb6/NsvrHZYLLhK++G9k+XCbc+224THCZ8Mk/ryxJRGQF8BmAweIXNIKImgHYA+BmAKu8GL4TgBTG2FHGWCGA2QBuYIwtYYxJ3SE3AKilO4Jn42fK9qkAwBN/pObY4nsfAXjJw3HNjO8temM/BmAyY6wAABhjF3w8PgCAiAjAbQBmefEZygwuE+6NLb7HZYLLhKdwmfBsfG+5amTCW3eb3gW0nzHmbaGwmgBOyl6fErfJuR/AQl+PT0QTiegkgJEAJvhqbCK6HsBpxthOz6bsenzx7ydFM/B3ROR+F039sRsB6ElEG4loJRF19GTiLsaX6AngPGPssIfjlzVcJtwYm8uEy/EluEzow2XCzfHFv7lMmMRbJcnMBeopWk1c7Fo1EY0DUAxgpq/HZ4yNY4wliWM/6aOxwwGMg2fCZGZ8BuALAPUBtAFwFoI50ldjhwCIB9AFwIsA5ojavK/GlxiBIF0xi3CZMD82lwnX40twmdCHy4R743OZcBNvlSSjD+INpyD4ZSVqATgDAEQ0CsAwACOZ6Jz05fgyfgZwi4/GPgGgLoCdRJQqbttGRNV8NP4Zxth5xpiNMVYC4GsIKzifjC1un8cENkGII/AkoNDV7xoCwfz+iwfjBgpcJsyPzWXC9fhcJozhMuHe+Fwm3MXTYCbxmusKYLHs9VgAY2WvV8DzgLwQAEchXDBS4FZzCAGA+wBU8XLueuM3lO0zGsBcX42t2icVngfk6c29umyfZwHM9uHYjwJ4U9ynEYSVIfnyuxF/25Xe/K5l/Y/LBJcJX343XCa4THCZKFuZ8Pbid/kje3Pxi8cPAXAIQpT7OHFbivjF7xD/uZ1VYDD+bxACCndBKINe01djq973+OJ3MfcZAHaLc/9LLgw+GDsMwE/id7MNQD9fzl3cPh3Ao768wEv7H5cJLhO+/G64THCZ4DJRtjLhdTFJscbCVAgpe98xxiYS0U0APgFQBUA6gB2MsWu9OhGHEyRwmeBwlHCZ4AQrvOI2h8PhcDgcjgYBXXGbw+FwOBwOp6zgShKHw+FwOByOBlxJ4nA4HA6Hw9HAIyWJiMaJzeukBn+dfT0xDieY4DLB4SjhMsEpD4S4ewARdYVQoKsdY6xA7FAc5vOZcThBApcJDkcJlwlOecETS1J1AGnM0cAujTF2hojai71athLRYiKqDgBEtIKIphLROiLaQ0SeVPfkcAIZLhMcjhIuE5xygSdK0hIASUR0iIg+J6LeRBQKod7FrYyx9gC+AzBRdkwFxlg3AI+L73E45QkuExyOEi4TnHKB2+42xlg2EbWH0IW3L4T+KW8DaAHgX7GXnRVC4zyJWeKxq4gohojiGGPpXs6dwwkIuExwOEq4THDKC24rSQDAGLNBKCW/goh2A3gCwF7GWFe9QwxeczhBDZcJDkcJlwlOecBtdxsRNSaihrJNbQDsB1BFDNYDEYUSUXPZPreL23sAyGCMZXg+ZQ4nsOAyweEo4TLBKS94YkmKBvAJEcUBKIbQSPBhAF8B+JiIYsVxpwLYKx5zhYjWAYgBcL+Xc+ZwAg0uExyOEi4TnHKB33u3EdEKAC8wxrb49UQcTpDAZYLDUcJlghOo8IrbHA6Hw+FwOBr43ZLE4XA4HA6HE4xwSxKHw+FwOByOBqaUJCJKIqLlRLRf7MXztLi9EhH9S0SHxf/jZceMJaIUIjpIRNfKti8iop3iONOIyOr7j8Xh+BcuExyOAy4PnPKKKXebWDq+OmNsGxFVBLAVwI0A7gVwmTE2mYjGAIhnjL1MRM0gFAbrBKAGgKUAGjHGbEQUwxjLJKGa2FwAvzLGZvvjw3E4/oLLBIfjgMsDp7xiypLEGDvLGNsm/p0Fod5FTQA3APhB3O0HCEIBcftsxlgBY+wYhPTPTuLxmeI+IRAaHvKgKE7QwWWCw3HA5YFTXvGkmGQygLYANgKoyhg7CwhCAiBR3K0mgJOyw06J26QxFgO4ACALwkqBwwlauExwOA64PHDKE24pSUQUDeA3AM/ItH3NXTW22VcDjLFrIXSJDgfQz505cDiBBJcJDscBlwdOecO0kkRCB+ffAMxkjM0TN58XfdGST/qCuP0UgCTZ4bUAnJGPxxjLB/AXBLMrhxN0cJngcBxweeCUR8xmtxGAbwHsZ4x9KHvrLwCjxL9HAfhTtv0OIgonoroAGgLYRETRMoEJATAEwAHvPwaHU7pwmeBwHHB54JRXzGa39QCwGsBuACXi5lcg+JznAKgN4ASA4Yyxy+Ix4yD03ymGYHpdSERVAfwDwYRqBbAMwLOMsWJffigOx99wmeBwHHB54JRXeMVtDofD4XA4HA14xW0Oh8PhcDgcDbiSxOFwOBwOh6MBV5I4HA6Hw+FwNOBKEofD4XA4HI4GXEnicDgcDofD0YArSRwOh8PhcDgacCWJw+FwOBwORwOuJHE4HA6Hw+FowJUkFxDRCiK6IpbOn0ZE2eK/QiIqkr1eSETJRMTEUvp649UlohIi+tzFPiHimJ1k20aKY6u3HZC9riAet0BjzB5EtI6IMojoMhGtJaKO4nv3EtEajWNSiWiAuW+Kc7VBRHcS0RbxmjsrykAPInqdiH7S2J8RUQPxb8U+4nu7icgi2/Y2EU03mAMR0VEi2ifbtlAml0WirEqvpxFRHyI6ZTBuH3FOL7nxlXCucgJEJq4lolVElEVEF4loJRFdL75neK9X7yO+d56IKsi2PUhEK9z5boIZriTpQETJAHpC6Ex9PWPsUcZYNGMsGsA7AH6RXjPGBpsc9h4AVyD2LNLaQSy/vx5Ab9nmXhD6F6m3rZK9vhVAAYBrpN5H4ueIgVDm/xMAlQDUBPCGuC+H4zZE9ByAqRDkoCqElhOfw7tGpDUA3OHmMb0AJAKoJyn9jLHBMjmdCeA9mZw+anLcUQAuw9FzjMNxSSDIBBHdCuBXAD9CaBhcFcAEANd5MQcACAHwtJdjBC1cSdLnHgAbAEyH726W9wB4FUARXF+4qyA8ACR6AnhXY5tcSRoFYBqAXQBGyrY3AgDG2CzGmI0xlscYW8IY2+Xxp+BctRBRLIA3ATzBGJvHGMthjBUxxv5mjL3oxdDvAXjDlSVWA6lh6gL4SEaJKArCguMJAA2JqIMvxuWUXwJBJoiIAHwI4C3G2DeMsQzGWAljbCVj7CEv5gAAUwC8QERxXo4TlHAlSZ97IKxEZwK4loTGix5DRD0haPezITR8vMfF7qsAdCciCxElAKggHtNJtq2JuB+IqDaAPrL5ysc+BMBGRD8Q0WAiivfmc3CueroCiADwu4/HnQcgE8C9ZnaWKTPSNX8HEYX5YB63AMiGsCJfDNdyyuEAgSETjQEkAZjr4zkAwBYAKwC84IexAx6/KUlE9B0RXSCiPSb2/YiIdoj/DhFRur/mZQYSOlrXATCHMbYVwBEAd3o57CgACxljVwD8DGAwESXq7LsRQBSAlhAsRmsYY7kAjsm2HWeMnRD3vwfALsbYPgCzADQnorYAwBjLBNADgtvwawAXiegvldLXhYjS5f8gmIs5PsRNmahNRMuJaDsR7SKiIaUxRxNUBpBm0JX9No3ryQgGYDyACXquaBU3Q3AZL4HgTg4BMNTEcUaMguBKt0GQ0xFEFOqDcTkaBPNzQkYgyERl8f+zBvt5eq+fAGA0EVUxsW+5wp+WpOkABpnZkTH2LGOsDWOsDYTYmXl+nJcZRgFYwhhLE1//DC/M+UQUCWA4hBUvGGPrAZyAqHiRMth0JGMsH8AmCO61XgBWi0OtkW2Tu9rukY19BsBK+XwZY/sZY/cyxmoBaAHB1z1VdvwGxlic/J84P45vmQ6TMgHBLTuHMdYWQlyCbrB/KXMJQIKBC2COxvVkCGNsAYTr7mH5dlImTbwibh4lnqeYMVYA4Z7hlcuNiJIA9IUoSxBceRHwjfLF0WY6gvc5IREIMnFJfKu6egwVHt3rGWN7ICxGxpiZd3nCb0oSY2wVhOBHO0RUn4gWEdFWIlpNRE00Dh0BwRpSJogKzW0AehPROSI6B+BZAK2JqLWHw94EIAbA57Ixa0I05cuDTRlj0g1aikvqCYeStFq2TXK1dQPQEMBY2didIayAnYSWMXYAwo2phYefheMhbsoEg3DNAEAsgDOlOFVXrAeQD+BGP43/KoBxECypAAB50gRj7B0iqgWgH4C7ZNf8rQCGiK5oT7kbwj3xb3HMoxCUJO5y8xPB+pxQUeYyAeAggJMQ3MX+4jUAD0F4dl01lHZM0lcARjPG2kPwbypWx0RUB0BdAMtKeV5ybgRgA9AMQBvxX1MICoqZm2U4EUXI/lkgrHC/g+Aqk8bsDqANEbXUGWcVhFVtEgApxXkNhNijNnBYkkYB+Fc13xYQBGowETUhoufFB4u0Wh4BISidU/boycTrEJSAUxACk0eXzfSUMMYyIJjePyOiG4koiohCxXi393ww/goAu+HaKnQ3hFi7xnBc840AnIJwbRuiktEIIiII8v2GbMw2EB46Q4most5YHJ8TDM8JO4EgE4wxBuA5AOOJ6D4iiiEhfrUHEX3l7RzEc6QA+AXAU74YL1hwJ5PEK4goGkA3AL8K9yMAgNrPegeAuWI8QFkxCsD3sngfAAARfQrgYyJ62eD4bNXrewH0B9CWMXZOtv0cES0Sz6cVELcOggVhoSgAYIxdIqKLAIoYY4eJKAKC1ese1dggohni2E9DsCw9R0J2QjoEs6k3WRccH2AgEyMATGeMfUBEXQHMIKIWjLGSMpiqAsbYh0R0HsIKdyaALABbAUwEcI0PTvEqXCvxowB8pnHNTxPf+8Rg/JoA8lTbegJIFse9KNv+FxGlQPg9PjWeOscbgug5oSAAZAKMsblElA3B6vQJhGt8L4TsNF/xJoRFylUDic9f/wwu1Br6hzHWgoR6PQcZY7o+UyLaDiGNcp3fJsXhlCFmZYKI9gIYxBg7Kb4+CqALY+xCqU6Yw/Ez/DnBCWRKzd0mZlkdI6LhgL1arj3Gh4gaA4iH4N/lcMo9BjJxAoIFEkTUFEJszEXNgTiccgJ/TnACDX+WAJgF4UJuTESniOgBCEUOHyCinRDMgPJqpCMAzGb+NG1xOGWImzLxPICHxO2zANzLZYNT3uDPCU6g41d3G4fD4XA4HE6wwituczgcDscnEJGVhAKo/5T1XDgcX+CX7LaEhASWnJzsj6E5HLfZunVrGmOsTCvFcpngBBJ+lImnAeyHo8aXJlweOIGGnkz4RUlKTk7Gli1b/DE0h+M2RHS8rOfAZYITSPhDJsRabEMhpL0/52pfLg+cQENPJri7LQjJK7Th333ny3oanDLgWFoO9pzOKOtpcDhaTAXwEoAyr+VV2qw/cgkXswrKehocP8CVpCDkzX/24qEft2D3Kf6wvNro+/4KDPtkTVlPg8NRQETDAFwQG4Lr7fMwEW0hoi0XL5avahYjvt6Amz5fW9bT4PgBriQFIafT8wEAaTl85eJryKAruVi35WMiSiGiXUTUrrTnGEwU20qQXeCqOTqnnNAdwPVElApgNoB+RPSTfAfG2FeMsQ6MsQ5VqpS/ZvKnrqiLuHPKA1xJCkLCrMLPVlh81Vm1S4PpcN2VfDCEhsINIXTm/qIU5hS0jPh6A1q8trisp8HxM4yxsYyxWoyxZAhtQ5Yxxu4q42mVCryMTvmGK0lBSHio8LMVcCXJ52h1JVdxA4AfmcAGAHFEpNtC4Wpnc+oVAMDXq44ivyhgWm1xOD6D60jlG64kBSHh3JJUltQEcFL2+pS4rVQ5nR5cpv2JC/bj02UpZT0NTinAGFvBGBtWmuecsT4VO06mI6egGMU25X3x5OVcnLyc67dzl3AtqVzjlxIAHP8SKipJRTauJJUBpLFN8y5JRA9DcMmhdu3aPp1E98nLsPyFPqibUMGn4/oTHpvE8Rfj/9xr/3tIy2r4fGR7++ue7y0HAKROHuqXc9u4klSu4ZakIMQi/mpcNsuEUwCSZK9rATijtaOvA1VPXFKuhh/7STeRyGOyC4rxwq87kZFb5POxSUu95HC8RG05WrD7XKmen9+HyzdcSQpKhKfN7tMZvGZO6fMXgHvELLcuADIYY2dL48S9pixXvD5wLsvn55i54Tjmbj2Fz1d47xpLzy1UvA6xcC2J43uy8svWQhmo7jbGGDpOXIqfN54o66kENVxJCkKkFfmsTSd4zRwfo9WVnIgeJaJHxV0WADgKIAXA1wAeL6Op+gWLeHHZSry78Z/PzMdH/x5Sjs2VJI4fKOsEFm9lxV8U2RguZhXgld93l/VUghoekxSE8GeN/2CMjTB4nwF4opSmY0ftUvCGA+cyse9MJm5uV8vpPUmR8TbO4u5vN+LQ+WzFtnUpl7wak8PRoqxjMwNUR0JxCY9Z9QVcSQpCSDN2mFOekVLpfcGgqasBADe3q4UBH64EAPz+eDdUjAiFVby0Sry885+87Jx9t5u7hjl+wNeWpLTsAkSEWhEdbu7xGKh1kopsgTmvYIO724IQHgB79RFi1f7RC4o9rz30+YoUpFzIRsqFbIyZJ5jkL+UIcUTero75KpZTWriyJPX/YIX979ZvLMGpK8alADq8vRQtXluMdUfSTJ0/UN1tvrQ+X81wJSkIsXAt6apj+LT1mtsHi1YhT3hv0UH73/N3ncWC3WfxiVjLyFt3W3GAPjg45Q+9enHZBcU4cjHH/jojrwh/bD9tetw7v95oaj/5pe7NosXXcEuSbzBUkogoiYiWE9F+ItpLRE+XxsQ4HI4xR9NyjHcyyeMzt9n/9tbdFqAeCE45RMuS9NnyFGTlO5exOJOR7/Pzy91tU2QLDzOcupLrl+yzjLwi5Pmxwv0f20/juqskaciM07UYwPOMsW1EVBHAViL6lzG2z89z4+jALUkcf+OvtGZbCYOVZx5wfEihhpI0ZfFBVAizOm3/eeMJvHNTS5+eX2513Xkq3dQxjDEQEe74agNOXcnDjW1rICrMdyHCrd9YgqbVYxTbFu05B8YYBrf0vovSM7/sACAspsp71qqhJYkxdpYxtk38OwvAfpRBGwaOA64jXV2URcyDN6dcsvecbk2kXSYfIpyri582HEfymPm4nFNovLMKPXfb63/7fx1/+HwW3v5nv/21WetNj3eXo/8HK5CWXQDAtxly0vex/2ymYvujP23FYzJrsU/OdRXEPbmluhJRMoC2AMw5azl+getIVxdlkeLsqbvtdHoeHp7h+0rgnPLL2Yw8fLXqKADB/VSpQpjpY09ezsWh874vqmqGcb/vxkyVq6xShXBTx6p7L/pyIaTlZvQXhbYSRIQ6W+zKE6aVJCKKBvAbgGcYY5ka7/utT5U/ue/7TehcrzIe7V2/rKdimvJu3uQoKYsgaE8Dt88aNN6du/UU6lSu4NaDkFO+6Tppmf1vd5UFqS9bWaBWkACgVc1Yj8bypZKUW+h+LFJ+kQ3hIRaQm26Kq6HJuqnsNiIKhaAgzWSMzdPax9d9qrTYevwyPl122GfjlZQwLD94EZMXHvDZmKUBV5GuDgqLS5CZX1Qmqbz7zjitg0yh1cQ2JsKxFpu58QRe/HWnx/PilG8CLSPr9+2nNLcfuZitud2M+2n5gQtO23wp41p1o1wpYVn5RWgyfhGmLjX/bJXW6WVdyLM0MJPdRgC+BbCfMfah/6ekzy1frMf7Sw4Z72gSrRX68oMXsDbFXH2MMoNrSVcFD/ywGa1eX2JoScr3YRbLuCFNAQCHL2g/BIzQukFvGjdA8To9z3fugMLikoBKu+a4h9qte+KycR0jPZIrR3k7HSee/UVboe//wUrN7WYsK/dN3+y0zZfWYi3FJadQv7/dlRxBHn/bpq0QaiElD13JKcLYebuQqXLxlZSwgFegflyfaqr3qRlLUncAdwPoR0Q7xH9DvJ2gN/hK69bK4Lnv+80Y+U1gh1zx7Larg9WHBWVduvHe07UOOibHo1Z8pGK/JuMXIc+kid1IoerWoLIHMxVgjGGvxk0n1GpBm6Q4++sojawjT+k9ZTmajF/ks/H0uJRdgLHzdvtUIeUA2aqH9wteWBl/eaSrKUXJnxWyPVUMfOlu05rDhcwCn40PABXEauRP/LwNszadxBcrjijeHzNvFxqOW+iz8524lItzsvINm1Mve/07Tvhzr6nep2ay29Ywxogx1oox1kb8t8Cr2XlJvo/8oIHavdkIriJdXczYcBwA0LhaRfz6aDe7tUfOioMX8OcO40J57yzYr3i99LneitcVw0NxZ+faqOxBzNDu0xn4WCxGCQA3tqmBI+8MgdVCeOuGFvbtRzy0UkmcuJSLx2duRW5hMc5m5Pu8JhNjDG/+vU/hcnx30QHM2nQC/+w669uTXeWk5zhbFT2Nc4kIteLTO9sZ7ufPjCxPlSR/W5Kk9kNaMLh/7oRo4f5wTKzTpn6Wztli3iplhl5TlqPLpP8AAIv3nsPwaes1Y8LM4o6CFZQVt82umo0o63LyRbYSj7Rhbki6upBWaR3qVAIADGpRDa1rKQNEH5u5DU/P3mF4kz56UVl8skK40qqTVCkSp6/k4VJOIQ67mTWkTt++o1Nte02ksBDHrcbbgn69pizHgt3nsHD3Oaf3tp244rWZPz23CN+tPYY7v9lg3ybdKrwtsskROJuRj7UpaZi/21np/HF9qkdjRoZaUa9KBcP93FXClu47b//7Sk4hBk1d5bOxJYZ+vNpnFi4zvezWpaTh1y0nAXgWB1alojKLj0BYczgNW1Ivuz2Wu5y+IiSHHDqf5fF35o6iHJRKUn6RDecy8k35E11Rlu2l8gptaDhuIT781/0YK+5uC15OXMpFrov4AAktBV5SaIgIA5pWNXXclZxCZOQ6VuvhIUqRVxewIyKsPHQRALBk33lsP3EF/8oeEq7IL3II1LzHu6FLPYfrTn1eTxco8oeQ+kZ38FwWbv58nVeJGLmFxRg9a7vTuSSJ82TVzXEmLbsAI7/ZiNjIUKf3tIL/zRBqJYRYjB9p7jbEffDHLfhvvyADS/adw4Fz+osHPYWj/isL8M3qo7oP9dxCG/6WWSlT03LQaeJSHDjnfgLFIRfzk7jzm414ce4uAO73WWSMYcNRpTK0OfUy7vp2I25VtU/yx6JC6mP54/rj+Gb1MY/GcOcaCEolqchWgp7vLTPlT3SFt/2pvEGqZTFr00m3j+UqUvDSa8py3PvdZlzz0Uos0FhFS0xSucUApUKjVwaiuIRh6/ErOHFJCIBt+9a/aP3mEvv74aFqJcmKpc/1Umz78LbWAISqxTd9vg4P/bjF4FNB3N+hnLSpFad4T31eT4oGAkorslyJScsusI+5+5Tni6e/d57BGjFxI6/IhmGfrMauU+n2wFduSPItWpexWUugWpkiIoRqNIJ+4/rmite5Be57Ih74YQuOX8rBy7/t1ny/UdVoNK0eo2mhsJUw2EoY3p6/Hws0rJ8ST4nKOQBsOnYZF7IK8PhP27DpmHvWGXeLaBYVu3dRay1wth6/or2vH56xH//ncOnP2uyZy80db1RQKknFJcwnqaLqH/tCpu/7+ughndrqwS/gbi0Lb7CVMLy/+CCuePhQ4ziQrrdNqZdx6Hy2y1T4ZRppwvKAZ71LoNhWglu+WIdeU7Trx9SvEq14HWq1oEFiRfwzugdWvdgXANBK5coDgGYTjIOj5c1E1UpcmOpCv5TjXiDppmOXsfHoJUWWzu+yZqU9311uX2G6uzKWI7eGMQbsOZ2J6z9da3+4lbWLvrwhxeKsH9vPvu3EZde1tiS0LLJEhNH9Gthfbx8/EL0aKUvS9JqyXLfgoivLx2iZEiPx/nBhQVGlYjjCrKTpbpMrfZdzXd9HZ24U4g+la/loWg5u+1K7ubVZWrqo3TRt5RG7Ymf2seJO/JQ/5EWqUg54ZqnadOwyOr/zn/118pj5LhXzoFSSfFXA6kKWUina5cUK1F0kDdsT11lputtWHrqAT5enYPyfe0rtnOUV9XUb4kJDvqJxM5W7rCRXljqb57xOFsvfO88AgG513BY1Y1FbHCs8xHmf3EKbYWbX9a1rAACGavSGiotSBoL/sE54GBw8l4VR320ydEHe9uV63P7VBuTIrAc7Tqbb/84rsmHqUsF1bXb9dDmnEHvPKGXeKAW9NBdSVwPvLxEawsqVaJtJJfeaj7Rjg56/prH97/gKYZrjpaZp/86uLB9az4dEMTanpESIu9N62MqtS+EGq+Jxv+9BSQlDjsrSwRhDXqFNcf1roRVHeE/XOk5jSUxeeMA+Z7NGH3cUn03HLuOmz9f6rEyHWinyRAeTXKfKbc6LUomgVJJ8lQkw9GOlu86qYar1F9KP7YnCU5ohSdL9xZMqrhwlaiVJyzUACMHHV3KdV7pyC2K72vE4PHEwlr/QB/+M7mHffq1OUOnoWdthK2Eu4ykkYiKc40QAIdjW/QGnrgAAMytJREFUFQxAvYQK+Gykc4aRuqntrE0nkJ5biFd+342Vhy7qmuvVqB8ectamXAJg/iF7/adrnO4BRg8AV+e/miGiJCJaTkT7iWgvET1t5rh08TqXxxJVDNe+/uR0nLjUfqwRdROiMbJzbUy5tZV927g/tN1m7lo+JIsPA0Oo1YKs/GKcUVWdL5LJ/TsLnd3oaqYsOYhclTK07cQVdHpnKZq/tlj3uI1HL2GghuIYorrPtH3rX8Vrd+JzDp3PwnNzdpje/4mft2H7iXScNGkdNOI/lYX9xOVcJI+Zj6M6xT210Oqv990a/dimoFSS0l2YLK/kFHpcy6Q0M1ckYTQRZ+hEacYkWe0uDO5m8Bb1aiotuxAXs5wtPzd/vk7xWiu4FRBcZUSEFiZbIXy35pjdovTq0KaY/XAXzf1io7TPd+pKLlq9vhhj5+3SfD89t1CRxaZmx4SBWP1SX/vrDUcv2ZWjLanmlCT1w0OLYpkpafuJK7jty/VO3/2+M5k4dcX5xm0UD2O2gelVSDGA5xljTQF0AfAEETUze7DVSvZWNVkFRfh61VGXCouW3OiObSFMvKklhndIsrvH9LwGUip7UqVIzffVkHg3LmGCPO4+nYFuk5cp9pHfO7UUu2oxEYrXX6w4ggxVwdUQi6CAueKQTmkNq+oho56DO/E513y0Cov3mkvkAGCfs1aMpSfoxUduNplVl1dow4/rjzttr+2ivlZQKkn3fu9csRQQzIht3/oXj/7kWYPN0ow3+G6toLl6omGXprpiFa0XPPXZe7RWbEZp9oNbVMN/z/d2Cq72hN2ybNAHe9ZTZJ+publtTadtL/y6E5n5xfZkgxFfbbDHS4z4agNWH05zeSOPiwpDUiXHzejRnxwdyb9YeUTrECd2nErX3C7VbQGEauEpF4Tvdcxvu7Hp2GUcuaAsfbDp2CX733K5N1KCJCXN0wys8gpj7CxjbJv4dxaA/QCcLyIdrERYN6YfqsdGYMHuc5i4YD/+2XXG9PkbJkYb7wSgU3Ill+9Ll8LdXeqgu1hYtVFV7bE7JscjQkxIiI0MVSwQ5NeUUXjIswMbOm37XFWc8RuZpUPvXhymshh1TI7H9/d2RKhBr89TVwTXoz89FGoLkDusO2LcAeOfXWfxgei6dcXJK9pu1rlb9es6BaWSpMf+s8KNccXBix4dLy+IZdYapbeiychz3XNrzhb3s9ok1L7j7SfMrcLd4dSVXHy58ojdTcIDVr1H68FqFIR/W8ckJESHo0FiRbfPp043/mun+YeOlgKljndaf/QSNh27jLxCG9YfFZQOd9OrJQqLS5w6o2vx3iLtG6HcHWwrYRjw4SqUlDB7ELfatSn/3iUrE2MM87a5Lsh5Jl2o79PitcWK+jkcB0SUDKAtANOtC6wWQkSoVRFzo2dd1LqvPj3AWdHQIjrCdU93mywMQoqTig7XPqZfk6pokxSH8cOa4b1bWinc1PLnh5F1MiosBMPb13K5z98y2a33inYt50JVMN7X93RA3yaJTq5uNW/P942VBwCqx0YY7+QmD/5gnF27+nAaPpEVstWipIQp4hjNUmpKkjv1VtScSc/DfBOVbiU3XO1KnvXwkesBb5hIo7zrm43oOHGpU6XjIlsJWr+xBG/9oz+GPIvGLEcvZmP4tHVOmRnbT6S7PZYRT8zchkkLD9gfXGVZLqE8UGRjWHfkktP2V37fjed+2WF//aFsNTRmcBP0bZzo8Tm9iZ8Z3qGWfZVsxOrDjkXJi9c2Mtz/h/s7aW7vPnkZth53vxhdvyaJmjFzKw9dtLs61LqoPGmjQJRFM6nWm1Iv29sWrQn0Ho9lABFFQ2iG/gxjLFP13sNEtIWInJ56IeKDPFNmiZQqzauRPwzjo0Kx6sW+GNaqhqn5VZQpSVoWHslKY7WQXZGO1onRs1oEZfuBHnURXyEMVWMcBRbzFEqS63tnRKgVk29phT6NPW8MX2Qrwfg/lMk1UrKEOibJn5zNyPf4Oa+Hr+JhP12egpfmaocKuKJUlKR/9513q96KmuHT1uOJn7cZ7lcgauwhBpqzHnJrye7T6a7PVWyz3yTVhbXOixkw813UxJDQSrfW4r/959Hvg5XYnHoFKw4pLWX+aK8iWQQyRd/41WJJIqJBRHSQiFKIaIzG+32IKEPWx3CCmXEPnMvUVJqPpeVgniyVXe526tfEvIKkrgUDALM2nkCM+FBwVyaICDViHXEZzWvE6O67aI9wnf/3fG/c1iHJcOyacfrxHs/PcS6LoGXV3TSuv/3vOzvV1hxr8sID9vgk9YPqs+WO7zm7oBglJQy5bsYb/ebCRH81QkShEBSkmYyxeer3GWNfMcY6MMY6qN/Tq/ulRYos9iYhOlwznuSH+zspEhokQq0WNK4qWGXVmWKnruTaS0xYLWSP/aweo20diVQVYpW72+RxPkaWpMhQK6wWsvdD84RzqqQKeUV+T0vGFBaXuKxn1qy69j1B6zlfwcN+jfJ0fzO48t542ri+VJQkT5UjCTNmeMCxMnBH4ADHDyhXNvaczkS3Sf9hnk5nZKXSoLwBS0F3Wo08T17OVVQKb5hYEZtTLyN5zHxFryg1E12YROXm0r93nvG4rL8cKd1cijG5GpQkIrIC+AzAYADNAIzQCT5dLetj+KYvzj1l8QGczchTPMwbVDEXZwEA3RskOG2buGC/fWUuDx59+8YWTvtq0b5OvP3vW9op3QHHLzlifCQlLy4y1NQN2VWD29RLuRj8v9WKB4tWsGtixQjMeaQrlj7XGz0aOj67vExCQbHNPo6rB1XP95Zj9KztiiwkrQesmiwXcUn3fb8Jj3kYGxmMkPDDfwtgP2PsQ0/HeaRXPfvfcToJBHKX7ucamZQA0LtRFd2EhofEc6jj53q8u9we72ohstc0qiFT6uWlCqJU5TTkCxG5Ym/UAkOy2GplOieq2n9IqOOS1OeQv222eGalCspzPT17O9qpMuHkdK7nOr5LTq14196dL1Yc0XSF/bguVfcYra4Dszbrh7F4akwIipgkszqPdCO0uqk5x4jZQ2pF4ExGPl79Q7s+kPyho86SkZQ1rWn0fG+5olK4hWCvvPzd2mNITctxPghA5WjjhqMZeUUYPWs7Jvy513BfI6SPly/GawRrM2A36QQghTF2lDFWCGA2gBtK48SfLT+C537ZiW71hVigHRMGuqXsN0iMxr43r9V8Tx2PM0LH8qLmrRtboL9ozaqhsv70nrLCaX91ixM9XClJALD/bKYi1i9HVUOpVrwwl051K6FBYrSi9lOMLBPQxphdTuVKklYhwfm7zypcPVoP2FkPaWcDqmGMYfnBi1i4x9iS7G9sJQzDp63D8oOeB86apDuAuwH0k1lZh5g5UN4HbKysebOW4g8AS8U6N7XiI9GwqvuxelK2qDyDTIrfk6xUVgvZwxjk93G5MqLO5JRnkcndbepsVTWRojyoS1d0TI7XXdColaLPVPE493VPtv8txdzdpErGUFuH1TGM0vUryY7aPdkmKU5zblpkFxRjzeE0zXR9xhjeXXQAN3621r5tzeE0vLvogMuG0lPvaOO07bxOmZKMvCJsVsW4ubJoywkSJcncw0IqBGcUqKYmK78Yt01br6mgSPFNKw9dVNxo5GnGq1WN/eQX06t/7MazspgTNUSOVcHcrafQ5/0VmvvJTbFa/X/+3HEard9Y4rTdUySFUYrXKPZBhfMgoCYA+VLkFLQzdLoS0U4iWkhEzn4uF4zsrK+g5BbZ7HFL6uKLZtBTUprVUD7wzcqH1FX9rRua45pm2r3ilPubu52YUaaOiDfStSlp+GO7MuZPShWX8+cT3dGtfmWFBchKZL/BS9aHyzmFuPNr7Xhi6aG54Kmemu93ra+fDSjH05Yr/kB6OEgtLzYevYSzGb6pWSOHMbaGMUaMsVYyK6t2hLF6jjr1jozu++oq7maJFy1U8urX6hInFgLa1o4DoCy5Ii+boe5HKJ+OVnkJiS/vbo8vZBYwKeBbLfME0i2WqFaSNhx1xDseeGsQbpZZfqVrX/19qeevl4UnxQSNnaesLdW6VhzGDWmKduL35IrsgmJ78PlGVeyfVrLHXd9uxBcrjuDWDsLnmPGAMo5xQNNEzYB6vaKVWgUkm7kIIZAT8EpSXqHNVI2e45dy7Jkv7gaqZRcUY1PqZXysER0v3ZBHfbcJ98lKD6hbH8g1XukCvphVgJ82nFC0T1BjITIVFC1XkrSCvlce8iyjTw/JciRdwFeJJUnrwlF/8G0A6jDGWgP4BMAfuoNpBKpOvKklXrhGO7h5pweZF2r+erK7U6bMbR0cr91NaogMs+LursmwWAhf3d0e9RL0u6ybjX1Qr8C1dLa7v92EnSfTMfKbjU5ZK1qZQK2T4vDzQ11QVRY/kpxQwe5SuZRdiOd+2YF2b/2rKIUgR4oZa1xNsE5MubUVhrSsBsDZ3egKdzqMSxy5mI17vttkWFHZXaRK5tL3cPtXGzBo6mqfnsMT5D+53veldzVJdYU8vSNJyoi83p7aHWshQs+GQiC1jTHER4WiY3K8IuvTlSXp3UXaTZYTosPQuW4lhfVTCiZ/RWZFAwCQ9oIAcFZo5EqRuqq+lHHWvKZSKVDPX+85K7kO5+9WZseGhVjwUK96mK6TiCEnp6AYv4gZ3erv2lXNK+mZHqn6TJLi9oXK3apXMV+9MBzRKUm32bAavypJ36w+ikV7jLPSXPGCi/5WgMOqIjf/V4nW9uOa5X8yM57efV/tmpsu851KF7A6Kl+rqvCmY5c14326T16mKNonD3zTquWiTl1mdiXHed9tJ67ghs/WOgXEPjN7O279QjANSwKTZ6JjfTniFAB55HEtAIo7A2MskzGWLf69AEAoEWn6BdSBqhOGCeFNT/ZriNTJQ/0wfaBVrThFWwZAcG/tfO0abBs/EKtkxRzd5Zrm1XBXlzrGO5qgcdWKaJAYjdH9GuDXR7tq7nODzPwux2gO0vcsLwUyetZ2RYC8K6Qb6vAOSfh8ZHscmzQE7w9vZXCUA0/aJj3201asOnRRkSnoC9alOCwM0sNIXaiwLJD3EBzQVDtBQbr35hfZcPe3G5E8Zj4+X5GCc2JijKftqeyWJNHi133yMqfSElYLoYFYe6luQgVsGz8Qvz7aTbGPusirPCZpWCvn1jwAsOXVgYiLClMsOqVx1JYRguBS1kL92V0ZEvo0TsTvj3fD3V3q4KPbW9vdTHVVCx69uD3pOaZenIeKlqmYiFCkTBysKBQLAEPF78BCyvmp5z7q+026c5dQW5ukOandrXqFLuVKUqOq0Zh0cyvFc9dVHTq/KElSdtfb8/crCsYBrqPPtdhkUElTSxk0sszIg061kPsq16ZcUrjLpAvJlftJT3il3lJyjqbl2IvzSWw9fhmn0/Mwa9NJLNx9FgtV3eLNrDYz84rx0tydaPzqIvyz6wzmbDmJB3/YDMYY3vx7H3aeTHfqQv/HjjPYIipykgvwKmvDsBlAQyKqS0RhAO4A8Jd8ByKqJgapgog6QZAh59x+De504WrzJdVUtUqy8osRGxmquyp1h7u61MFzAx2WsA/ECsbusvjZXlj6XG88f01jtK9TCamTh+Kbe5ySnjQxsljd36OuR3NydT69c2q1Q/CkVtSh88I4Z9KVMRULdp/FOi9KDbz0m2Oh1XHiUo/H8TWRYVa8JcbbPN63geY+krtt1qYTWH1Y+A7kykymh8qepJRk5gn30dPpeYpFLiA8VK9rVR3zHu+G61vX0Pz91TE58gexVv9DOaEy15d87LdkMUjS5ibVnOOu1M8Yo96HbWvHg4hwU9taWDumH1InD8WEYc0Vn+H4JaGivpoLmfmaRW/llqgQq0VRKBZwFKS9p2uyYrs60/ToReXzWGryK0ftGpQ+r9msXfl+kpFBrri5qkPnFyXpggvzmVHNCDl/7zxjWH5eyw3kKhNrwe6z6D1lBVa4CGRUP0zk7rKz6fnIL3LtAtQzH0uCbsQtXzi6Pj82cxsem7lN8b2ZuQk/N2cH5mwRMvOe/Hk7Xpq7C0v3X8D5zAJUCLeK++y014vZrSrTL32vRsJXnmCMFQN4EsBiCBWD5zDG9hLRo0T0qLjbrQD2ENFOAB8DuIOZtNuqzeAP9KiLSTe3xOAW1Xz2GSQOvDXI/ncPnQBYTwgLseCp/o7CfX3dKFNgxIBmVfHXk91d7tOiprk4AjOsfqkv/ndHG3SQZfGZRYrDeFGj7srPG0+YHmfbiSu4JEtzvpTj+Du/yIbHZ27Dnd+YrskYVIzsVBvLX+iDdrW1v39JSdK7n0+/v6NH5w2xWhBqJXtSit65iQjtROVCC/V2uZJkFCIiJQa8c1NLxfa7NaykqRqLevkzpthWYq/xtez53i7PKycyzIpbVK7rTI2K+bd/tQH7NXo+qhUXNf2bVsXRd4Y4xf58ucp1df1xvzsnS3VIroTPR7bDihf6AAByxIw9eWhNZY1FIGMMv28/pXhmDm8vOAvMZmx7XpjBgOs/XaO5vbC4BJFhVhQU2wy17dFisKEr1J+zQ514l/Ezj88ULFt7XaTbV3bhrus1ZTkA1+a5Ao2YoSteBnO6G+ewU6d9Q1p2ASJDHT/7iUu5SKwYgSmyIoaFxSV2a9zaFFNGknKD6EJboNo2Tfb3pwA+dXdcrVie8aJb6LYOSVi45yye/Fm43j0s86UgItSKv5/sASKgnhulBMzyzICG6FS3EipVCMOGsf1NB217wk1ta2LTscv4+aHOSDDpSo8MtSKvyIZQqxD8qr4h3tCmBpIqRSGpUhRqV4rCTQYZSBIbxvZHfpENeUU2DP7famw9fgUbj15CZ1msitoqocWgqatgIcK+s5mol1ABdSpH4filXHy2/AiW7ruABU/3VChbJy/nOq3Ugx2LhZxcPnKk+7ietaB9HfMp6GoiQ634a8cZXKdThNJV0PicR7oqMvIk5FnVny9PweN96iMi1IrYyFD0blQFr13nqCZSqUKYaZe73GvRMDEahy9kY+XBi8jKL0L7OpXw8bIUe+NqX8m62vWmVavMTOC8xUJO2ayuGhPvPaMdLwgAQ1pWR0kJwz1d69jrscl/hz6NE/HbtlN4/a+9eF2sG7fzVAae/UUZsjO6n2C5lO4JRtXODT8lEX1HRBeISDsXXge9BoJXcgvx547TaPzqIkO3lxnUCpHFQqYysaYs1u/zEhlqxZxHtOMkJCSNe9pd7dGvSSJaylKGCzQUGlfZDmaYv+ssmlSr6CScalPs/d0FV4OWogYIpuVMWQp0bqENMzcexypZ4Pf1n67xWddmT8gvspkOqgsWXBWKs1oIw1rVwI1thBv2lFs9c2GpaVkr1nTzW3d5ZkAjdKsvWKiqxUZ4lI2nhfrm/Mb1zfHR7W2wdkw/1KlcwXTBvTGDm4jjMc0Vo3xbZVl9mC4GtV+qxUYgOaECmsoK6W2XBdy/8rt2d3k1B85lYd9ZYaF2NC1H4To6eD4L5zLzFUGoPd9bbmpcOcd0yokEC9JvFKLxMP6fRvq3O0SGWXE6PQ9DPtYOYneV/NOpbiVN5W6lLJ6suITZ+6/ZShgSosNdLr61kJ5j8vAR6buYuGC/3eOwVycRwVNKSpjdmCAhr1SdWDEcDROjNUuUaCWGVNDIZpXf369t7sicXbrPdakKi4Xw5g0t7Pe18BArxg5ugr+e7G4fU75IUZdVAJwtgN0auM5aNbP8mw5gkNFORkgR9n3eX4GnZ+8AAKw6nIafN57QvInpPSR7N6pi7+QMAK//tdceP/NU/4YID7HYrS7/7T+v8G+azQALtZJuwJzEAbFPXOXoMIRaHanG2QXFOHbR+ea08Zj3FpmwEIuT+1H+3S17vjcaVxNWEupCd5Lv+ZEZWxXtFw6dz3Iybx7QMK2mXMhWVHU9n5nvVvdoLUZ+s8Gp9cCZ9Dw0Gb/IKU7rauDVYc0wolNte8Dj1Uj1WGXtkkYe1MEBlNkwWu5MeaX72pWjMP+pHjjw1iDMftj14kiLGeuPI3nMfOQUFLvlapNzRbW6fmfBfsP+kbtPZbjsH3fPd4KbzqguVaBi07EkdUquhBvamO6dq4mRFyPeA6W/p8qtLVWLLrSVONUqM4P0HJM/CtUW2/F/7MFWsXdnvE7xTVe0qRUHAAoL7d+7zui2Fvnmng7Y+Ep//Puctltv9sNd8FDPulj1oiOIW+v6k4ePqBtMh4VY8Ejvek7H6PFI7/poVStOs32JK4OJFFMVamARM1SSGGOrALjfUEnFy4OaOG2btuIIXvl9N37acBzvLjqA5DHzwRjDhcx8TZ/u0FbV8f29HRUdv2dvPmn3N0aFWREVZrVXGH3ghy0KBWDUd85R9FqWXEnTXPSMsl7Ki9c6soY+/u8wACGTLtRqwekrebj7241o8dpifLf2mNOYWparirJVcVxUqL1wnx4EIS1ZjnxFW69KtCIFGnDU5WmrU8vCbHPD4hKGLpP+s7/u/M5/9puwJ6xLScPalEuKfkMT/tyDbpOXAYBbHcDVlJQwdJv0X9C1jUiIDsekm1s6xS5dTdSIi8TCpx1y52ml95va1UT12Ah8MbIdPr2znT1Gq1+TRMx/qgce7KG8CTevEev29y6loksdAZq/5hz0qn7YpGUX4MuVrmMyAMFyPFtVPVj9XVz36Ro86KKbgWQNVhei3TC2v9buAcPGV4T52WzalqSYSO+jRIwy46rptCJxxe0dkxTPiPwiG3ILi1FYXIJYNxSYtWP6oVWtWHu8kjzhQ11lesaG43b3ldl6gnJa1orFvjevVWQYuqqjNqBZVZeJEzXiIjFuaDNFqxitumjyeDB5Y961KWkoLC7xSEnVspy66vsmKUchFi+VJF+w9LnemqnoUlDwioMX8IVomjyfWYBO7/yHhuMW2vfrlFwJ93Stgzeubw6LhZBcWWnq/EFsw1FUXIIKYSFOFXoB/SJTMZH6F2+TajF25S4i1IInZFkYUhpqQsVw/LPrLLIKil0GZkuK3MO96uFpMfBVruDUio/EtLvb46cHOqN3I+1GhzmFNqcVVJ/GVbB2TD9sHz8QAFAvweGTHt6+FjokC0GRNeMicX1rc00g1ej13VFXMHUHuXKWW1iMk5dz8eN6h1XJE4GXKCguwZmMfLz8m3NQLSfwqRnvsCZFhXumMIZaLVg/tj8Gt6xu7zC/6ZX++HxkOzSvEet26yItZskKC+rx0I9bFIXsxvy2G5MWatfQMSI9txDZBcV4/a+9itZG6hYVgBDM21BMYR8nq7/z8Yi2TtmPgUbVmAg0rxGD1Ycv4uC5LKd6STE6DWfdQesZER5iwcwHO+Oru9tr9oMzgogUz4j8IhvSsoRYVHfK0tSMi8RfT/awu5TevqEF/niiO1rWjMXIzrV1lRhPe7RFhYUoMtWsRKgeG4GacZGKJA2twGgzRIY5xpbCQ+ThIEXFJeiYHI9OdSvZa5jJrWLq4HY9Dmpk4LlWkoTvyyi0w2dKkrxwXmKYw3ScMnEwGiRGY2AzZ5O3ZHJbLqtn8tRsZbD2nZ1rY86jXfHmDS3sJsHkhAqYfp8js2GyeNO5kFWAmMhQXM4pVMTYAPrBYhEqs2uySjikgmOSG2DNy8paEO427ru/e120E7Np5L5mAiHUakGPhgm6XdKz84sVF/NfT3bHTW1romZcJOLFC1ges/Tera0wpGV1/O+ONri3W7I9mM1d1HFQ8ouq7/srnG7SJy7larZ+kNOkusON8tqfe51iLrx5iEmrxOISZrrvHydwiJatPPUynzwhMSbCp1a6pPhI452gdF/vcxGY2qiq66DbyzmFWLj7LKavS1W0Nlq819H+ZM/pDDw1azvG/7kXhy9ko1v9yujftCqa14hB9waV/ZJJ6Q/iokKRU2jDtVNXORXulYoveoNWGZXH+tRH9wYJuKa5b76j7AIbLooutwSdHmxmsFgIbZLi8PfoHoiLCkOczsLemzhOeTHKdxbux9mMfJxOz7OPWSM2AlteHeDR2LGRDuVKshDJjRb5xYKLTe5Wlcc4juhk3DQbUJbukcZXK8PyIO0w8dlvlBTlMyVJXjivapUE/DO6B/54orvdVFqpQhi+VtVByda4UDepSpbrZYX1aZzoVKeisLgE9ROjkVtowz0q15qWUFQMD3Fq0vfR7W0Ur58d2AivXdfM7nqrFR+lSNN0pb231uhtExcVai8aJo+b+PA2ZbCu5FarXCHMXotG/Rla1YpzOn+kTGkjIoSHWHFDm5oIsVoUNxctc/KTfRsoMi76NBYsWvKAw3MZ+YqL6lhajlMqba8pyzF82nq44vglR1DqrxpuMSsJQv/6X3vtrreFu88aKl8AUGBzzKe76L7jBA8WC2Hpc72w5w3tXnSBQojVonAN6iEp7SkXsnFGo7fU/Kd64Mg7Q9Ah2TkO8pZ2tewB/QM/WqVZUVh+H31kxlb8tfMMZm0SYqNqxUci1GrB/Kd6YuaDXQzjLwIF+UNSXTamgYdxanK0vLi+/m6u5BTayzt4W+BYziWdZ6K6HpE7tEmKwybRzSlP2rlRrHX0zaiOHluqqlQMR1/xWSIFdkvnyC+y4dC5LCRXrqCIy4sKs2L+Uz3wwfDWps87++Eudp1Aau+Uq3pmTpHFM0uWJCPXq98kpkXNWCclxpOS+5kuHorPq9o73NOtjlP5cse5nc1uD/eqh5cHNVH001L7TyNCrbive11FoN9bN7bA7493w7ejBKXvebG4XsXwEIzqWgf/jO6BlS/2wcuDBP+03N8bEWpF8xoxGNm5Nibd3NLe0FRdOXRISyF4977uyfY6E5LL7sf7O2HxM/olCPSsW6FWCxY90xMVI0LwzSjnwn1SEb5xQ5ri54c6I1vM4Ksjy1jIyi9yuqimrTzq1H9Jvno+m5GnWOVsPX5Fs/q4nIy8Ivy4/jimr0vFkz9vR8qFLDw2cxte0aihoUYvs48TPDRIrKjZmynQaFo9RrGwuKtLbeyYMFCxj5TUMfCjlYrtvz3WDUue7YXmNWJhtRDGD22Gr+/pgKf6NbCvqiNCLXiwpyN+St2iBRDac+SIvbHUllN19fVgQV7Neo0YxjD19jaoGReJgRrd332Bp73g9Nh9OsN+nzPToNxbnh7Q0HgnF0Sqnhufj2yH+lWikTp5qOk+Z3q8P7w1nurXwD7HzWKR6HVH0pBTaEOXepXRJsmRTBEbGYrmNWKd6ji5IqlSFHo2FILnpRZirmo2Sr+3kSXJ8C5ERLMA9AGQQESnALzGGPvW1KxVdDPZIHJQ82pYtPccasZF4q0btLsgA0pLTNWYcDSvEasowy9x8FwWjqY5V8a9p1syYiNDMfGmlpgpZqUwkx2B2srcAJL/elS3ZLwgC9yrU7kCUicPRZGtBI/O2IqRXQRlLCLUiomin3X6fZ0024xUCA/BobcHI9RK9h9a+jF76cQsSWwcN0C3VlSTajHY/brzCj0i1GIvovlQL+GmPKlYcGPe0ak2thy/ghOXc7FozzmnzL+P/zuMGetTsX3CNU7j7jqVjus/XYv3bmmF2zom4ZvVR51aqGiRW2jDa3/ttb+WLE+nr2j35gGE7vGhVotuKxkOx990rZeAuKgw9G5UxZ5NW6SRpaRVIycyzIqBzapiYLOq2HEqA6sOXcTxS7mIMwj6fWnuLqw8dBHzVR3Tn+rf0CmRI1g4KbOYpecJlpP+TRPtlg1/4Is4NQBYP7Yfuk4SLNiSK9QX1e4l/hndA7dOW6fZw9Mb1AaCfj4sFFs5OhzPyRT2D/89hPpVovHEz0KpgeY1YtC+Tjxa14pDckIFtBKz7tylT+NEfLIsxR7ve9JF6Z3nrmmE7IJi3GiQKWmoJDHGRrg5T10SYyJw8O1B2JJ6BZtTL2Pq0sPo1yQRyw44aiN0rlsJ0+5uj7TsAsPCce3rxOOuLrXx04YTGNUtWZivhpJz7dRVTtuqx0YoVivrx/bD7E0n0dgDU+6QltWRnluEEZ20206EWi349l7t6rBhIRanRoPy9wAY3iTVmF2Bb3ylP7Ydv4LHZm7TFLj3h7fG79tPo2NyPN64vjnum74ZH/zr3FoFEFKYS0qYk3ImlZx/6bdd6NO4ilM23V9Pdsf1n67FI73r4cuVR+3b1aZvqSv8thPpup9n8P+EmifygHgOpzSR7ilThrdCp4lCNujXq4+hvZtVvR/qWRerDl1EdkGxqRpUagUJgKJ9TLAxflgzXPORcN+W3G3+dhX6qk9l9dhIvHZdM7zx9z6kXspFxYgQw5ID7tCiZiwOvDUYg/+3GvvP6hdFdhd1QLi/s2wlBQlwFMG8Q+cZapb2deJhtRA6iglLBTIDhFoGEytG4NM7lQ1ytSh1B3V4iBXdGyTgmQGNsPqlvvj6ng74XgzC7lAnHjMf7AwApirrEhHevrEl5j/VA4/2qg8AuLtLMh7rUx8/P9QZb9/obIVqWTMW8x7vhr9H91Bsrx4biWcHNvLI7xpqtWBUt2RdZcdbJAFzp3aEGarGRCDRxUqzcbWKGDO4CYjI1Gd7ce4uNJBlJQLKomyd3vlPfQha1YpD6uSheLyPkBUiNSdVd2pPueCwBBq1SvHljYPDcQdJSUqsqJQrdQ9LIzrVrYRhrarj/eGtNN3niV4EAgcDjapWxHViNu52sQ6Q2T5dZtAKBjZqJeIO94qLdsC38Uhyfn+8G5aLbTqCiZ4NE3z6W6qpFhOB7IJipGUX2LPQAUeBWXcp0yi+pEpRQnquqAQ0qV5Rs7qqEfKU3sgwK14e1ATd6iegsUZjwO/v64h2teNNtzcIFFInD8XYwU2Nd3QbczcGM0rSb9u0ArDNCUNsZChSJw/VbU66/6wjxunffedN1VHypYmbw3HFjW1qICzEgnpVHOVJHutT315EV87zJiw84SFWfHpnOzRIrAgicrrBbxo3AEfeGYJjk4ZoHh/oQe9mkD6zpLu4qt/jLpNuboWkSsrsRF9aquSLbX/dhyJCraibUAF/P9kDq1/qa3yACb6711yTaW9oVLWiYvGsVaXbGyqEC7USO7y9VNH5o8iDxtNAGStJEl3qVcKUW1th3JBmxju7gTxw/O8nhYq6waYc+Zt2teMxYVgz7HzNOZ5Ijqtmhq5ipKQ6FTerYglqxkVi2l3Gpk6p+rTcsvT07B148uft+HLlERQWlyAjrwjJY+Yrjptyayus8tGNg8Mx4t1bW2HdmH6KtikvD2qiCLqWUAfImuHR3vXtf698sQ8AQWkgIoViFh5iwbbxA4Mi6N0I9WfwNLtKj98fVzZT9rXFp6vYz6+lrLq7P2hZK9Znff36NfFPULycqDCrPbyjSbWKmPuY+1XuXVEh3LlWYtWYcI/DMAJCkogIwzuYq4XgDqFWi+kmglcrRKRrvZGTFK8UwpcGNUaY1YL7u9eFxUJ4ee4uHLmYjS2yrLXkMfPtN/cxQ5pg3nZHwPbaMf10z1UtJgLnMvPxz+geaJAYrRlvAQCTFh7Ap8tT8MXI9k7vDe+QBMYY9r85CFHvGn48DscrwkOsCI92Vn7u65aM3afS8ccOh+VTqwKxGa5rXQPbjl9BHVUx3QuZjgyeV4c1KzcW1Bgf1ENyRUJ0OCbe1EJouh5qdSuTygyvDGmKJ37eptltIpD59M62qOiDgp16yK//+3vUdXJNe0t0eAiy8h1K0nu3trI3xPWEgFCSOIFPfIUwTLq5JcbOExp4tq8dr+h8/q5Y1+mNv/fi+7Wp9u3TxBYMcsHYalCUbO2YfrCVMCcX35xHuuK2L5X1l7Lyi3HXt472KL0aVcGrQwW3JBF5tGrncHyFxUL46PY2+GvnGbvbyJMeWwDwv9vbaMbNyOskjfQy8DWQICJ8PrKdU7NVXzKycx3jnTykZa3YoLRmD2vlWWcGs8h7ufmierqaiFCrovvFDW28+zxcSeKYZkSn2hjSsjrWH7mk2wD4teuao3Pdynj0p62K7ZGhVvz5RHfsOZNh2A3baiFF/IHcGpgQHYa0bO1iagAQaiGPm6JyOP6AiHB00lDsP5uJl+buQo+GCcYHaWCxEMJcxOVYLeSzNPZAobvYNNbdzgacwEV+jaq7OfiCQ6r2JN5mFgZETBIneIiNDMWgFtVcxgcMalENqZOH2ottAsINvHVSnNcrty2vDkTq5KH2aqkPqlyFrnrxcThlSdPqMfh7dA+fuzKkdgxSrFJ5IjYyFD890Bl/qbKROcGL3I3aTqfxujfIM+cOTxzs/Xhej8Dh6NC/aVUsfqYXapnsceUOq17qi5wCGxokRuOpAQ2RX2TDqkNpGNjM/4GHHE4g8dnIdkjLKkCteN9mCQUKnlreOIHJda1qIKfAhpvb1fR5MD4AfDuqIw6ez8K1PurBx5Ukjl/RKsPgC6SGw4Dg146JCMWtPg685HCCAXX7Jw4nkLFYCHd29l/sXHJCBSQnVDDe0STc3cbhcDgcDoejATGdHl9eDUqUBeCgzwcWiAWQYbhXYI4frGP7e3x/z70xY6xMo7mDWCb4dVU245drmfCzPADB/dvwuZf+2ICeTDDGfP4PwBZ/jCuO/ZW/xvb3+ME6djmYu9+ux0CYQ5D/NnzuZTP3MpUJf58/yH8bPveymbvmNRmM7ra/g3j8YB3b3+P7e+7lnWD+bfjcS3/sq4Fg/m343Et/bF385W7bwhjzfxMYDscEgXA9BsIcOByJsr4ey/r8HI4avWvSX5akr/w0LofjCYFwPQbCHDgcibK+Hsv6/ByOGs1r0i9KEmPMJwJARIOI6CARpRDRGHHbFCI6QES7iOh3Iorz8fhviWPvIKIlRORRTXOtsWXvvUBEjIg8LgCiM/fXiei0OPcdRKTdItzDuRPRaHH7XiJ6z8dz/0U271Qi2uHp+Gp8dT0Gwhy4TLg9dy4TGpS1TPjy/Fwm3J47lwkNdK9JfwZCeRlEZQVwBEA9AGEAdgJoBuAaACHiPu8CeNfH48fI9nkKwDRfjS2+lwRgMYDjABJ8PPfXAbzgp++9L4ClAMLF/RJ9Ob5qnw8ATCjrazDQ/nGZ8GjuXCbK8T8uEx7NncuEG/+8tiTpaHvDRS2yhIg89Tt3ApDCGDvKGCsEMBvADYyxJYwxqaPjBgCeVhDUGz9Ttk8FAJ4EbWmOLb73EYCXPBzXzPjeojf2YwAmM8YKAIAxdsHH4wMAiIgA3AZglhefoUzhMmF+bPE9LhNcJrhMcJkwMz6A0pUJr5QkIrIC+AzAYAha5AgiagZgD4CbAazyYviaAE7KXp8St8m5H8BCX49PRBOJ6CSAkQAm+GpsIroewGnG2E7Ppux6fPHvJ0Uz8HdEFO/DsRsB6ElEG4loJRF19GTiLsaX6AngPGPssIfjlylcJtwbm8uEy/EluEzow2XCzfHFv7lMmMRbS5Kelr2fMeZtoTCtpi52rZqIxgEoBjDT1+MzxsYxxpLEsZ/00djhAMbBM2EyMz4D8AWA+gDaADgLwRzpq7FDAMQD6ALgRQBzRG3eV+NLjEAQr5jBZcKdsblMuB5fgsuEPlwm3Bufy4SbeKskmdHiPeUUBL+sRC0AZwCAiEYBGAZgJBOdk74cX8bPAG7x0dgnANQFsJOIUsVt24jIky58mnNnjJ1njNkYYyUAvoZwc/LJ2OL2eUxgE4ASAJ4EFLr6XUMgrCx/8WDcQIHLhPmxuUy4Hp/LhDFcJtwbn8uEm3irJBlpe96wGUBDIqpLRGEA7gDwFxENAvAygOsZY7l+GL+hbJ/rARzw0djzGGOJjLFkxlgyhIugHWPsnA/nXl22z00QzNk+GRvAHwD6AQARNYIQTJfmw/EBYACAA4yxUx6MGyhwmTA/NpcJ1+MDXCaM4DLh/ty5TLhBiJfHm9GyPYIxVkxET0KI8LcC+I4xtpeI/oRgkvxXtOJtYIw96sPxfyOixhA04OMAfDa2u+N4MPcZRNQGwg0oFcAjPhz7MIDviGgPgEIAozxZnRl8N3cguN0KAJcJt8Z2dxwP5s5louzhMuHG2O6O48HcuUy4gVcVt0Wz1yEA/QGchqD93Sl9GCJaASHVcIv3U+VwAh8uExyOEi4TnGDGK3cbE1IsJW1vP4A5ojZ5ExGdAtAVwHwiWuz9VDmcwIfLBIejhMsEJ5jxS+82DofD4XA4nGDHX73bOBwOh8PhcIIariRxOBwOh8PhaOCRkkRE40goJy81+Ovs64lxOMEElwkORwmXCU55wO0SAETUFUKBrnaMsQISOhSH+XxmHE6QwGWCw1HCZYJTXvDEklQdQBpzNLBLY4ydIaL2JPRq2UpEi6WCVUS0goimEtE6ItpDRJ5U9+RwAhkuExyOEi4TnHKBJ0rSEgBJRHSIiD4not5EFArgEwC3MsbaA/gOwETZMRUYY90APC6+x+GUJ7hMcDhKuExwygVuu9sYY9lE1B5CF96+EPqnvA2gBRzVTa0QGudJzBKPXUVEMUQUxxhL93LuHE5AwGWCw1HCZYJTXvCoLQljzAZgBYAVRLQbwBMA9jLGuuodYvCawwlquExwOEq4THDKA26724ioMSmb+7WBUEW1ihisByIKJaLmsn1uF7f3AJDBGMvwfMocTmDBZYLDUcJlglNe8MSSFA3gEyKKA1AMIAXAwwC+AvAxEcWK404FIDWku0JE6wDEALjfyzlzOIEGlwkORwmXCU65wO9tSXjzQg5HCZcJDkcJlwlOoMIrbnM4HA6Hw+FowBvccjgcDofD4WjALUkcDofD4XA4GphSkogoiYiWE9F+sRfP0+L2SkT0LxEdFv+Plx0zlohSiOggEV0r276IiHaK40wjIqvvPxaH41+4THA4Drg8cMorptxtYun46oyxbURUEcBWADcCuBfAZcbYZCIaAyCeMfYyETWDUBisE4AaAJYCaMQYsxFRDGMsk4RqYnMB/MoYm+2PD8fh+AsuExyOAy4PnPKKKUsSY+wsY2yb+HcWhHoXNQHcAOAHcbcfIAgFxO2zGWMFjLFjENI/O4nHZ4r7hEBoeMiDojhBB5cJDscBlwdOecWTYpLJANoC2AigKmPsLCAICYBEcbeaAE7KDjslbpPGWAzgAoAsCCsFDido4TLB4Tjg8sApT7ilJBFRNIDfADwj0/Y1d9XYZl8NMMauhdAlOhxAP3fmwOEEElwmOBwHXB445Q3TShIJHZx/AzCTMTZP3Hxe9EVLPukL4vZTAJJkh9cCcEY+HmMsH8BfEMyuHE7QwWWCw3HA5YFTHjGb3UYAvgWwnzH2oeytvwCMEv8eBeBP2fY7iCiciOoCaAhgExFFywQmBMAQAAe8/xgcTunCZYLDccDlgVNeMZvd1gPAagC7AZSIm1+B4HOeA6A2gBMAhjPGLovHjIPQf6cYgul1IRFVBfAPBBOqFcAyAM8yxop9+aE4HH/DZYLDccDlgVNe4RW3ORwOh8PhcDTgFbc5HA6Hw+FwNOBKEofD4XA4HI4GXEnicDgcDofD0YArSRwOh8PhcDgacCWJw+FwOBwORwOuJHE4HA6Hw+FowJUkDofD4XA4HA24ksThcDgcDoejwf8BAJAo1z12DNoAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "with open('data/net-traffic/AbileneFlows/odnames','r') as f:\n", " odnames = [line.strip() for line in f]\n", "dates = pd.date_range('9/1/2003',freq='10min',periods=1008)\n", "Atraf = pd.read_table('data/net-traffic/AbileneFlows/X',sep=' ',header=None,names=odnames,engine='python')\n", "Atraf.index = dates\n", "plt.figure(figsize=(10,8))\n", "for i in range(1,13):\n", " ax = plt.subplot(4,3,i)\n", " Atraf.iloc[:,i-1].plot()\n", " plt.title(odnames[i])\n", "plt.subplots_adjust(hspace=1)\n", "plt.suptitle('Twelve Example Traffic Traces', size=20);" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Let's use as our example $\\mathbf{a}_1,$ the first column of $A$.\n", "\n", "This happens to be the ATLA-CHIN flow.\n", "\n", "The equation above tells us that\n", "\n", "$$\\mathbf{a}_1 \\approx v_{11}\\sigma_1\\mathbf{u}_1 + v_{12}\\sigma_2\\mathbf{u}_2 + \\dots + v_{1k}\\sigma_k\\mathbf{u}_k.$$\n", "\n", "In other words, $\\mathbf{u}_1$ (the first column of $U$) is the \"strongest\" pattern occurring in $A$, and its strength is measured by $\\sigma_1$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Here is an view of the first 2 columns of $U\\Sigma$ for the traffic matrix data.\n", "\n", "These are the strongest patterns occurring across all of the 121 traces." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "hide_input": true, "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAEhCAYAAABiPitQAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8rg+JYAAAACXBIWXMAAAsTAAALEwEAmpwYAABek0lEQVR4nO2dd3gUVffHvyebTe89BELovXdEEUVRVOyK7WfH3sX++upr777YXntFsWMD6U2poYO0AAFCIL33bO7vjzuzM7vZvrM7u+R+nifPzszemT3Zcubcc08hxhgEAoFAELyE6C2AQCAQCLxDKHKBQCAIcoQiFwgEgiBHKHKBQCAIcoQiFwgEgiBHKHKBQCAIcoQiFwgEgiBHKHKBTYhoJxGdqrccgQAR5RPRZL3l8BQi6kNEm4mohoju1lsegfYIRd7BkZRUAxHVqv46McYGMMaWe3FNm4rP6nXarF77Kq/+GedyXUlEudJrHSOi+UQ0wZevGSA8BGA5YyyWMTbL+kkiOpmIqoiIrI4vIaKH/CalwGOEIhcAwHmMsRjVX6GjwUQU6ukLqV8HwGGr157t6XWdQUT3A3gTwPMA0gFkA3gXwPm+es0AoiuAnQ6eHwpgC2uf5j0UwGYfySTQEKHIBTaxtqql/YeJaBuAOiIKlfaPSlP2PUR0OhF9Ca4kf5MsX7csOiK6noh+U+3nEdF3qv0jRDRU2u5HRMuJqFJyBU2zc814AP8BcAdj7CfGWB1jrIUx9htjbKY715LGMiLqqdr/jIieVb1PM4loGxHVEdHHRJQuWf81RLSYiBKt3tcHpfFVRPQtEUWonm/3HtuRyab8RLQUwCQAb0ufR28bpw+DlcImohwASdbHBYGJUOQCd7gCwDkAEgD0AHAngFGMsVgAUwDkM8augaWl/bKbr7ECwMlEFEJEmQCMAE4CACLqDiAGwDYiMgL4DcBCAGkA7gIwm4j62LjmOAARAH629YJuXssVLgZwBoDeAM4DMB/AYwBSwH9z1n7qywCcBaAbgMEArpPk6gMb77E78jPGTgOwCsCd0uex14a8QwFssjo2DEABY6zUjf9boBO6KXIi+oSIiolohwtjs4lombRgs42IpvpDxg7EXMmSqySiuQ7GzWKMHWGMNQAwAQgH0J+IjIyxfMbYfm8FYYwdAFADrlwmAlgA4CgR9ZX2VzHG2gCMBVfqLzLGmhljSwH8Dn6zsSYZQCljrNXOy7pzLVd4izFWxBg7Cq5E1zHGNjPGmsBvJsOsxs9ijBUyxsrBFfJQ6bir77HH8ks3gQFob3kPR3vlLghQ9LTIPwO3QlzhCQDfMcaGAZgO7tsUaMcFjLEE6e8CB+OOyBuMsTwA9wJ4CkAxEc0hok4aybMCwKkATpG2l4Mr8YnSPgB0AnBEUuoyhwBk2bheGYAUB759d67lCkWq7QYb+zFW44+rtuvl5914j72Rv5/0uMvq+GgAG1w4XxAA6KbIGWMrAZSrjxFRDyL6k4g2EtEqyQoDAAYgTtqOB+BwMU7gMywWwxhjXzPGJoAvpjEAL9ka5wGyIj9Z2l6B9oq8EEAXIlJ/h7MBHLVxvTUAGgFcYOf13LkWwJVtlGo/w844r3HwHqtxV3416QAa1LMVIkoBf69/9VhwgV8JNB/5BwDuYoyNAPAgFMv7KQBXE1EBgHngPkCBjhCPTT6NiMLBlaTsbgG4Bdrdi8uvAF+gi2SMFYC7J84Cd5HILoB1AOoAPERERuIx7+cBmGN9McZYFYAnAbxDRBcQUZR0ztlE9LI715LYAuBKIjIQ0VngSk9znLzHatyVX812AOFEdDMRRUqLod8A+J0xtk2L/0PgewJGkRNRDIDxAL4noi0A3geQKT19BYDPGGOdAUwF8KWV9SHwP+EAXgRQCu4aSANf0AOAFwA8IfncH3T3wtKCXC24AgdjrBrAAQB/M8ZM0rFmANMAnC3J8C6A/2OM7bZzzdcB3A/upisBdxPdCWCuu9cCcA+4oqwEcBWAue7+jy7i6D0244H86nOPgy+23g0+Q/4T3Dd+nSb/gcAvkJ4dgqQQp98ZYwOJKA7AHsZYpo1xOwGcxRg7Iu0fADCWMVbsV4EFAoEgAAkYq1ayug4S0aUAQJwh0tOHAZwuHe8HHkpWoougAoFAEGDoZpET0TfgC1op4D7VfwNYCuA9cJeKEcAcxth/iKg/gA/BV/MZgIcYYwv1kFsgEAgCDV1dKwKBQCDwnoBxrQgEAoHAM4QiFwgEgiDH4yp23pCSksJycnL0eGmBQCAIWjZu3FjKGEu1Pq6LIs/JyUFubq4eLy0QCARBCxEdsnVcuFYEAoEgyBGKXCAQCIIcocgFAoEgyNFEkbtTW1wgEAgE2qKVRf4ZXK8tLhAIBAIN0USR26otLhAIBAL/IHzkAoFAEOT4TZET0QwiyiWi3Joim6GQnNZmYN5MoOa4/TECgUAgMOM3Rc4Y+4AxNpIxNjLWVA40VNgeuG8BsP4DYOET/hJNIBAIghr9XCuNVbaPlx/gj9u/B9a84z95BAKBIEjRKvzwG/AGt32IqICIbnR6Ur1qbXTZC8D6D4HKw8CiJ5XjCx4Dmuu1EFEgEAhOWDSptcIYu8Ltk9SulRUv8sd/fmk/7vg2IHush5IJBALBiY9+rhVZkTfVKsfyV/HHy78CBlzEt0v2+FcugUAgCDL0V+QVB9s/1/dc4KIPABBQXehXsQQCgSDY0E+Ryz7ycitFfstKgAgwGIGYdKC6wP+yCQQCQRCho0UuKfKyPMvj6QOV7bhOQNVR/8kkEAg6Jm1tgKmFPy5+Cti/TG+J3EI/RV5zDPjlDmDzV9zyNktkULbjs7hr5dOp+sWVb/4KyP9Ln9cWCAT+4Zc7gGdSgIINwF9vWEbPBQH6KHJjFLBnPleS5fuB7qfaHhfXGajIBw79Dax+y58Schqr+Af82TnA7/cDDZWun7vufWDNuz4TTSAQeMmxrTzsGQC2fs0fqyUPwPFt9pMWAxB9FHmIATA1K/tn/Ic/JnazHJfUHTA1+U8ua45tVbZzPwb2/unaeXlLgPkPAQse9Y1cAoHAe96fCMx7kLtUZH64Xtl+KQc4uNLvYrXD1Gopow30U+QAEBEP/LsSiM0AHi0Abl9jOS6tr7Idm+k38czUWxV0PL7dtfP2L1W2W3W8EQkEAgcw/qBW3tZ8fp5/RHHEJ1O428cB+ihy6f1Dci8eoQIA4bGAMdJyXPZ44LQngMHT7af0+xLrqVVjpfNzGquANW8r+7VFmookEAg0Ztdv3j2vFdu+4wut1hx13qheH0Xe2sgf+5/veJwhFDhlJtBlNNBS7//kIGvF3dKobNeXc/95Y7XlGNkazxzCH8v2+0w8gUDgBUndLfcjk5Tt+Gzgwg/49pZv/CPPTzfzhda/ZwGl+9o/z1j7YxL6KPKwaP44/P9cG59zMn8s3OITcezSUAEYwoEbFwPRqUBLg/Lcipf5Yu2L2cDcO4BXevEImyop7v2KOUBoBLDyFf/K7A67fge2/8C3Wxr4flubvjIJBP6ivgwYPQO4cyNw3R/Amc/w48Zo4L7twJDLgYEXu+5S1YpF/wK+md7+eHNt+2MS+ijy+C7AXZuAyATXxsek8sf6Mp+JZJP8v4DknkCXUUBCV6BVpcirjkgbDNjyFVBXDLzej4dJGqN5DPygS4GC3MBVjt9eBfwo1Tdb/yHf3/ip8rwDCyAgMbValnwQCNRs+QY4sp4X4vv1bu4GjU4FUnoCOROAmAw+Lq6Tck7GYKDqMC/sV+NjN2l0qrItB4PUlijHbLldJPRR5ERAcg/Xx4fHA2QA6kt9J5MtinYCPSbxbWOkpUW+Z77981rq+GPmEB51U1dif6wemFqAws2Wx0r38sc/HuAKvOIQ8HQCt9KDhd/uAV7ICr4bkMD3mFqAubcCH5/BY8U3fc6PR6ncKVnDgV5TgEmPKce6jOaPK14E3vVx8b6IeGW78jDwVLxl/syGj+yeGhyt3kJCgKhk/1rkzfXclx8trRarFXl9OcBM9s+VI2ziO/NHs/WuE0c3Aa/2Af6TArw+gIdcfXCq8nzpPpVPjvG1iJ0/8d3df/hbWs/Z8hV//OsNfeXQAlOr3hIEP4wBO37iSvyd0crxL6Yp2+r3OSoJuOo7YOBFyrHsccp2QznvYOYrmuuBIVcC3U5Rjm2bwx+zRjo8NTgUOcBDFCsctIjTGvmmEZXMH0MjlEVa6wXMRw4r2z1OA26Q4s3ju/DHPx/R94d5cAVQexxoa+G1azZ+Zvn82yOBI2uV/ePbFcUeGu43MTVjydN6S+AdeYuBZ5L975s90di3iIcWLnpSaVijZsT1wFAnFbiJlDU6wDK3RCtam4GmGp7tHpkITHzE8vmT7gVuXgJMs58UGTyKvMsY7t9qc2AJa0XJHuBNqeaLvJLdUAGU7OZK8Odb+LEpzwN3bwHCYpVzT38SSMzh2wmSIi/YwDse6UFVgeslBkbdBFAIz2rbMpsfqy32nWy+5AfnvU18hq3vaG0xsPxF/qNtawMOr20/RuaQlE+h13cmWKkvBwo28u3Kw8DXl/LtDR/zx/A4ZawhHDjvTUt3hj0ufB+4SMoA/Xiy9lb5lxcAL3QGwID0/rz/gkFlQJ10D390EByiSWMJv5AxiPueq44oitJXyEoM4DMBQLHGf5PeVAoBRt0MhIYpY3tOBjoNU/bVXxIHK84+48AKy2mkM+I68ZnH6lnKMVtlhgONglz++YSEAm3SzGfHD9JNtat/ZWmuB57P5K998gP8GGPAq734dlg0zy1Y/RaPlMiZwNdiCnL5ustFHyh+28rDtl8j0Nm3mCf9yetL/uLry4GC9UBKH2DABcpxOTv82l/52tCQK92bacZn8cCFn27m+99fC1yhUUhiSyMvQSIz8GL+3v2rmPvIASAsxullgsciT+nNHw+tcTxOC9Sx4fLrXvqZ5ZjwOEsl/lghcMW3PhfNZQ6uslTi2eOAGStU++OBPucAnVW+w15TgChVBllyLz47US/y+ovaYsvaNjVF/It9YDnfL9nDwz0LNwMfnc7r4bSZgAn3K+fIMyd/sm8hf/zrTeVYk+r7tPAJpW5Q0U7g+A7gvfHAb3cDe+dzt4qc/FZ9zC8ia87si7mV6U93YtVRrsQBoHQPsOKl9mPiuwAjbwCMEUoioqsQAePv4tt75nknq0x9OfD+KZbHrJMiAUs9Y4fgUeRZI4DoNGC3j6MoDq8Ddvyo7EdI0zF54VKmuc5yPyyaJzDZY96DvnVTmFq54lv7HrDwX0DeIsvn60oswz3PexO44mvgpkW8TMKjBUDGQOASaRqaPZ5blMzk3+YerU38xvFqL64MZIokf/EXUhLZO6N5uOe275QxxihLC/zwGmDnXF9LrNBm4tYaoKytrPsA+PB02+PnPwT87yTLYz/drCihwk1AnZ9Dbr1FnTTnr9lc4Wbgjf62n+t9trKtTvjxhMlPK0lEuzVQ5ov/zW86MqE2lLiLBI8iDw3j1rGvKpJVHAJe7MqzNWULNC7LcswNC5WFjzbHRWzMXKKKyy7a6b2ctmCMR6G81JUvrK6eBfz9X/7cJCl8adCllj5CdYEyIl4iAeDhVjcuBq7+UYnfX/W6b+S2pmw/8Gwa8JzkzircrCgytd9ZXb9m0xfKdkud5YwC4IrVX3H88mwB4Ers4Cpg/kygzEaWnj3aVFasqZm7iIKFPX8Cz6lKUhfv8s/r/nCDst33XGX70QLgbOmmOO0tHv3mDSEG4DpJgW/+yrtrAcCxbfyRDMCZzwI3LvBcNO+l8SORCb5T5Hvm85T8sn1A/2k8Yem2vy3HZI/hJQPcYeBFwDVz+bavCmgV71IsVjVhMcDEmTyq5pSH+Ir4KTOBO9Y7nq51GQWERSl14rd85ftkCID7OK2RZ0fqz33+w8q29dpD33OAiz4CTvuXcqzJD3V6NnwMfHURf4+nvsqPfX6u5ZguY/jjdCf+1UGXch97VDKwdY4+dYbcZd8i4Burz++7a/iis69vpCHSTPjC94Hps4GHDgIzlnPjJLEr8FSV61nkzojLBAZd1j4Pw10Y44Zd5hAe5Tb+LqWsh8yNi4DLvnTpcsGz2AnwH4mvFLm6oUWnYfYTlmz5sJwhZ4r5asHTuqjOA3t4pIycqaZedD3NjQYd8vkAd83EptsfqwVqyzUmg1uk82cC/c619Hers09lRlwPdBrKZxeDL+X14GXqyvh3x5fI1vgln/LvzrwHlee6n8rXIsbcwm+6OROU525ZCaT2A3b9CqQP4DHw57wOhMcAS/7Dw2BXvAxMec638nvLUSlaJGskcNkXwLyZwJ4/+Ixixw/Ao0f5/6QlrU08rLB0L9B9EjBESmuPSrJM9NGaTkOB7d9xV2lMmmfXMDXzWX2/85SkI2vsHbdBkFnkiVIyjg8y92qOK9uOgu89iauWV52batw/1xmMAb/eZXksNkP6gozy7toxqdwyBHybjNVYBbytktUYxaeZgyULzzruXWbiI8CYW4Hb1nCf/4jrlOf6qcqP+iMjuLGSW9w9JgEJ2dwKlBl+LXDa4zy5rNvJlgttyT357GjQJUBaPx61Iis8eaHd14lwu/8A/vkVqDzC08DVaeH22DqH1+lprOL1hEr38gzsm5fwKI/ps4ErVeGTrtbyd5XmOu6Gk7Mtx92h7fUdkS295o6fPL+GvMbmQkSKKwSXIo/vzEOJfLFoqK506OhOGBrh/rVl/7MvFLk6/Z8MQGcvlbc1fc7hj75Uhse2KiUCRt4APH6Mh5jK4Xvy4t+5b1qeN+lR7gNNt7HQFdcJuFmqROmPTi/1FfYX02zVFIqTFs/lAnK2uFYqn9raaH+Mt3x9OTDnSu4GmX0JnxG82tP5e/bzLbxOz4vZwNJnuQtM/X8SAb3P5FUEAcVi14rZl1ru9zhN2+s7ImsEkNQDOORFC0hZkRujNBEpuBR5ah/+uNk1v5FbtDYCsZ2Af5Vaulms8cYi94VrRe1CeKwQuOZnba8vTx19GbmitjgjElSvnWo5bsR13NJNG8Bj+J0h33T90dyjoVyJVLFG7aKSuXUVcI+TLMHYDCBzKLBT489UjdpSLtmtbFuHPjIG5H7CrXV14xQ1ttxXd2/moa95i7X1lR+yWr9y9Jv1BWn9gJK9np/fUs8fHd3I3UATRU5EZxHRHiLKI6JHnJ/hIVkjudW5/kPtF1Bam3h8qcHoeJwnFnlICP8xq38oWtDaBKySFtbOepHLL1v/WhGVxK0qX8bvy0pj3J38zxbDr1VcErevBs551fl15ew4Xyrysv3Ax2fyXo/W/lLZ6pYNEDVRSa4lth3bwh99UcLZUQ/aBqvuWLkfA7/fx9146sbE6igRW/5iQyi/AZfuBf6TqJRN9gb5+zLiOt7TYJIb6z5akZjDE7Y8dfPKRl2gKHIiMgB4B8DZAPoDuIKI7AR1ekl4DPc/1h4HdmvctaO10TUl7Wntke6n8hIDWlIgLXJmDOK+Yl/R7zyerGLd+k4ragq50j3zWSDajlXrziKtjByZ48u+r28NB46s49sZAy2fu3EhX8z0xlqU1yi0NgKK/gH+O5hv20pTt/6s/5DcXLVFQGmeMvtQu33sNYpRK/u/3/RIXAvkeieDp/OF1YluRpJpQUw6L2utTvZyBmP8JvjueKV6aqAocgCjAeQxxg4wxpoBzAHgpPWPF8h+U63D4VqbXFPSnljkAJ8m15Vqu1D72VT+OOlx9zPV3KH7qQBrs921RAuqj/GwLlv/g1xAyDo+3BX86VoBLIsrAXzRzzqkzF3G381r+fzzq3fXsWbVq0pY450bgTOtomK2qkIk1ZnODRVcgY29nVulE+5Tnht6le3XUkeraPH1P5oLgNrfOP2JXOF023eu/6YLN/P8juKdSsOZAFLkWQDUdVoLpGO+YfBl/FHr2GBXLXKDhxZ5dAoPN/JFTLBGCyZ2kUMxy/K0v7aphS+ExXay/fykR7lf3JNkDoNskfuw9KjM1Fc9D0VzhMHI8xoKNJ7NJUgZsOe+wdcixt3Bcw1k1Gsi26Xs2fSBSrZmWj/u48+ZANy7HbjvH8fGxNkv88fa4/bHuEreYh4hpLUb0R3kDM95Dzpu3qzmQxu1Z5Lc6MvgAC0Uua1Pr90tiohmEFEuEeWWlHjRaCE0nFsoWk/zW5uUH74jPM0Oky3KOo2iP9TlNLNGaHNNeyR05UkXWivysv28O3jFQdeq0LlLqMpHfnST0oZPC6oLgY+n8O0uY3jlSF+R2I1HJ2lZ88bUzA2AkVJWpLqWCMAt74Or+NpIxSG+NqV2b6kXcBOy+ezDEWNu4a6zuhJgwePeyV5TxLv66EnWcCXcdefPzquy/vOL7eOudklzghaKvABAF9V+ZwDtQhwYYx8wxkYyxkampqZaP+0eUUm8dq837F0IFKv8jq5a5J6SIlW/y1uszfXWf8hvaA8f0j7RwhpDKFcm7qSaO6OxmvuXZXpN1u7aMvLsydTMraE3Bmh37S2zlRruJ93rW9eWuUHJUe2u2VhlWbIB4HWF/l0JjL4FqDzEM1M/PYuXfIhOATqpPi9PZh9ybP+atz0WGwD3S4f74MbvDkTAef9V9u1F8gDc6PxOlVl6o6QD0rRbStRCkW8A0IuIuhFRGIDpADR26FnR9SQgb6nnkSuN1bxW8aeqgjqu+sgBHiFy4yLn49R0HsmjPwo2uHeePcr2c/+rRnd0p3QZDexfZlkUyRvWq8ImL/oQGOmD+uEhIXwmofaRa7FG0VRj2fQha7j9sVrgi05Tm79sH5kCcAVVZyNPIzqVZ/bevJS7kRK6tB/jjMQc7lsHed4kps3EIz4i4pyP9Qd3SvHx6uJtv93DO3LJfHym5Tlp/YCblvAyxhrhtSJnjLUCuBPAAgC7AHzHGPNRdSiJziO5j9xTf1vRDv6o/iK7Y5GPvc2t9Fkzqb21s2prj/s+ZV5Nt4n8B6SFe6KtDdjxMy+F8FQVX/fwlUVrCLf0kcvxu97wzRXKVDk0UqlZ7yu0VuSye4/s/PxtrQPJBeSyRgCjXYjht8fomwEw+64GZ8hJdXr6x9Wk9ORJc4Wb+E2mpYFnItce5+6pFa+0/80bo7gO07CMgCZx5IyxeYyx3oyxHowx3xeFkONvyz0sk2kra80di9xTkntxS9pbq7BoJ68xYT019iWysvLWpQXwL3bxTmCIkzZbWhAabhmBoUWWZ/4q/jj2DuAxDd0d9ojL4kaGVh2D5ASsc+30Nj3rhfbH0jVySyV153XBPc30lMP9/Pndd0bWML5+9EoPpXInAHx7DbDsWb6tLrbnbRVGGwRXZqdMklSCtSLfs/NtJUI012lW98AuyT24VeutMlzzDn/sPtF7mVxFDreq8XAW1NIIfHkRMPcOYK9UrjO1rzayOSIk1DJzVH5tb5B9xZP/7Z+MwtAwoN80peypt8g1QmLszOiikoA+U5X9wdO1zVPoPpGvFXmyeCuHQgaKawVQymJYGwnyDR9wLRPZC4Kr+qFMfBe+iu5p4Xp1XRVTK/8xNtdqFtNpl7R+/LFwC7coPF2kLN7FY7sHXKiVZM6R3TieurMqDwP7l1ges6dItMTa3/vH/cAoL/3xjZXAgIv825g6fQAPA2ys9kyJtbUBc2/l4YIrXuTHHE3tL3iP108ZcKH2lQQHXsLree9fBvSd6ny8mkC0yLue5Pj5nmfw30/WCO1rzkgEp0VuMHK/oSeulbL9wILHlP2WOu43ZW2+j/7IGMQf51wBvOBhqP2B5dwfJ8cB+4vwOO4P9rQOM7MRnuWLuGtrtLaESvO4WyshW9vrOkNeXPTUT15zDNj2rWWlzGgH739kAr/h+aIcbLqUyFPtgVvK7CMPIEVuMPLQTTkKJV61EPzwIeCKOXz7+j95PSQfEJyKHOB+cldcK43Vlp1KrFvFNddpXlLSLt7GSs9/RGl15utICWuIeEbfjh89S2oySR2VzPVFyLJAlq846wUlVlqLTE+5SmMfNy1Jb5Fv3JUeKnLrmdSkx53HfvsKOdLKk/WKQHStADxG/vY1wMz9wNWq8raRCUoLyNAwn836g1yRu2CRL3ma1ywu+ofvM6uQxeUvKE0L/LESHqIqytXsZgTFuvf44/i7LGtv+xtPyiPIitw8DWU+WfRph8GoNPaQXSGeJpO1tSnKx7oyo6+RrbzKw56dbx1tJJe60AODkedANFTw9nDuhLTKGd2BZJGriU5Rvm9+JHgVeVJ3voj1VDxQ4MDvtFuK1ZSryKnrRgC856MczB/ihyUDdfs4dS1xdxh4sTayuMtlUn9MTxodyCGA/S/QTByXkeuER0vK11b8tCusfBn45Xa+7Y/ZhJqYND6jqPJQkaubUPc8w/9lX62JTATylvD2cOpqis6QXSuBZpGrka3uZP9lnwa3IpdZ/4H9cbLVO/c2/ihbVBMfbj9WfU1foS5d6m66fkofXsq30zBNRXIZWXZPFLncrDrMx3VhbDHsGv55n/EM3/e0487a95Rtf1uERHxdyBOLvKES2PkT0OtMnoRyySeai+c2kfFKB/nDbpRIrinicdi+zML2FiJgxgrerN1PBK8iV/fUtJfYUFdmWVyrroyveid15w1U1Ux53j9+59BwoKvUs9Fdi7ypGkjzQ8iePeTSpZ7MJGSLPMQI3JnLCy35i9AwYNJjStiqpx2m1B2eDDoEfCVke6bIlz3PH+V+oYFgzZ50r7JdfsB5rZK2Nh5hVrqHt8DzZUkELeg01H5JZh8QvIo8sZuyXWwnkVTufiJbksU7+Y8xPK699e1PC+tCybIr2Q1s/RZodaE6X10pjzywd9PyBzEZXBFXHuI/qt/u5VEcriD7yA1GXnfG31EfgJKd6EksefkB25E3/iQxh0cNuXsjkt0ocr2fQGDQJcp2cy1vN2cvUa78AG9K8d/BPBnOH/kHQUbwKnL1FP3YNiXyRM3h1dwveoP0wy36h/vIw2P5Qtv0r3miy7g7gUGXtj/fV8iVEBf/G/h5BvCnC02V5JtSmI6pyYZQILErD+E8upF3s//tbtfONStyFypM+grZEt3uRg1pmV+kzkWZQ4CrftRWLlchSSF/f51758k+24s/1lQcr5l5ALhSqlGy90/7zTPmXM0fq4/yxha2Oi51cIJXkQM8LnPyUwCYEpUCcGvxg1N50kFiN554EpkIlOziTYTlMMC+5wAP7AamPMfbpPkLaz/x4bXOz5EjLU55UHt53CGtHy+hK4cgurpoJrtWnLXS8zXyTM7dEEpZ7hsX+aZSoyvItfjdfQ+bani1QF/EhHtDdDLQ7RRlzefgqvZjmmraz7h9XbY5CAluRd51HM+wA4Ailc/14AolcSU2nfvTotOAIxt4TQRf1L52l7G3K9uVLlSCqyvhxYxsNbj1J9njuLyFm/i+qzMEtWtFT+Sa2rVuhlC2NvO1DX9mc1rTZTR3K7gbJutpNqg/MEYCM5ZzV5t1Q2WAu1IAZV0J4MpfYEFwK3KAfwEi4nl98eNSVUOLRSnphxceo9zZh13jXxlt0W+asi03YrVH8S5eExrQf5Enexx/XC4VVnJ1JtMWAK4VQCkLUO1mhl19mV8Xr+wSlcIX7d2hqTpwqgXaI60/d9lZI39OU18Bpr0NXPm9/r+BACQ4a62oIeJNXzd9wRsE/7vS0tqSLSh5ah+byS15vQm1Umj2rCbG+EIQAAyZ7nu5nJE5lFtEB1fy/R0/8oSO6bMd/8DUUSt6Ii/4lewGethovWWP2iIe8aE3sel8ZukOtcVKxFGgkpjD8znKD/Awz+pC3tRajpCKywTSA8AAC1CC3yIHLIvWtDYqijxjEDDhfr5dns8fL3IQc+5PrC1Te3UnGir4l/u0J4Bps3wvlzNCQiwb7gLAnj+AVa/x7eY64IiN/pKB4lqJzeAL4PLszRVqinihrECI+sgcwpOC3MlBqC5UapoHKj1O4zf7WcN4Xsju3y3DXP2dgBVknBiKXN29vKmWK/LYTsCtfym9/Zold4seYW+2sC7eb6+Nl1zyVqMmrZpgq0XV0md4hu1PM4CPz2hfRyMQolZkkrq7ti4BcJfda735diBES2SN5I9HN7k23tTCv0NxOtVVcZVeZzpu3ybcKQ45MRR5fBZwwf/4dlM1t6DsVdaz163d31hbptVWtTBMLdy6rZYUuQ71G+wSm8GTeu7ZCoy5TTn+yx087Rqw9OPm/61E5uhtkQPuJdb8rerLmNrPN/K4Q+YQnktwNNe18fuX8fj3QI/0IOKzaWsufB+4fr7/5QkyTgxFDiglaJsli9y61vV1f3A3i7VvWi+sox/W/o+HTcp8fx3wfCdg2XO8BkxKb7+K55SUXtyvefaLXKEDPLyzVWoWUC9N/Y9vBz6byt0vgP4+coDfFGuOuRZLri5t7OuWbq4QHsNvKHsXuCZ/mZSwlT3Wt3JpwXDJB372y7wcRd9z+bpQ1/H6yhUEnECKXFqVb6qRXCtWijxnAu/oEihYuxhKdgGzVdlucrndwk38yxxoMcBqEnN4ISY1c2/nFff2/Gl53B8VD50Rmcj9sa50qFFn/AbK9L7XGbwIXJELfv66Em4IBIOP+awXgQf2AGNuAe5czxfQBS4RAL8qjZDjmRur+JfXH91nvMGWrzj/L8XKUpcQOPNZ/8jkDVf/AAy7Wtkv3w/8fCtwXKP2ZFoix+K7VA9b+jwCKS18oJQ7YStcT8bUCmydA/z1Oq+zHwg3UGcYjIEx6wlCguDTdRHZIq84xGuOB7oiV7tW5ASlthblx8kYd6c8WqB/EpCrqBedAaAg17Gy0Qv5/fzyAudjTc282t6Ni3wqklvI2amOFmx/u0eps69ubSg4ITmBFLnky5TrNQS6Ilf7iu/MBc55nW+vlRorN1QA3SYGfiKHGuv2c60NPAmLdK59bY1caa90r/NUfVMrnx0FUmZkeCwA4hFaAP9/1M0Z2kzAlq+UfT0LrQn8wonzCctt2g4s54+ZQ3QTxSXkqW7GYB5hM/IG7h7K/QRY8y5XMNEp+sroLtlj+UKVNbGZ/pfFET1PV2ZBH5/puENNW4t/Go64AxGXaeXLwJavgdf7W66vyCGrMoG2UC7QnBNPkVceAozRgRMv7og7NiihVUTA8P/j2wseBcC4RR5MEPGFqthMpRsP4LM+hR4TEQ88mMcTxkp2A4f+sj/W1BIYse/WyCUP5t7G+3Hmr+LNyCvylb6e2eN4TZ+rftBNTIF/OHEUeUiIoswj4gMnwsARqb0tw9umPGf5vNwIIdi4ezNvHCFbvZ2G6iqOTULDgAulLF91bR5r2loDI/bdFWYNBf47RMkSPvdN3nw6oYujswQnAF4pciK6lIh2ElEbEY3USiiPkf3JgeTPdAciy5rRgV4fwx7GSP53/27+N/AS5+fogTxTsFXLXsbUHHiuFWvOfcNyXy7CFkzrKwKv8NYi3wHgIgArNZDFe+RO44E4FXaVzqOU7WCxBO0RFsWLHQVKEpY18gzOoSJvCfzPYfDllvutTfwxkPtaCjTFK0XOGNvFGNujlTBe00tKSgnE2GVXSezqfEywEQjZnLaQG3w4UuRtAeojVxMWDXRXVXI0K3Ida6cL/MqJ4yMH2lflC1ZmHlDS3k8EAlURhkbw0DyHFnlrYLtWbl7KHy/9VImPb6rmj0KRdxicfkOJaDEAW+lWjzPGfnH1hYhoBoAZAJCd7aOIEoMROOOZ4A+3ik4OjCYGWqFHx3lXIOLuFacWeYDOKAClqmFkInDqo8D8h3iJWwoJ7BuQQFOcftKMMU0aFDLGPgDwAQCMHDnSzc63bnCSi82ABf4jUC1ygLslrDs0vXcS0P8CYOJMabEzgBW5uhaMvLhZXyrNNoIgckugCSeWa0UQmMiKMBAVujEKaKlX9k0tvBjVMqm+jSnAww+Nkcq2vHhbVyrcKh0Mb8MPLySiAgDjAPxBRAu0EUtwQiGniPc5W185bBEWbelaqTpi+bypObAVudrqli3yulIRsdLB8MqJxhj7GcDPGskiOFFJ6Qlc/hXQUxMvnbZY+8grVIWoGOOlEiIcdK4JJNSulWCRWaAJYjVE4B/6nae3BLYJi1aaYAA8xV2muZYvdkYGYC34UTcDpVaRv7JrpaEi8IvGCTRFKHJBxyYs2rIcrHq7tpg/BmJTj3NebX9MnckpXCsdCrHYKejYhEUDzarFTnV3+qXP8MdAtMhtoa7bIyzyDoVQ5IKOjTr8cPlLwLbvlOd2Sss/mYP9L5cnhMUqLd1Ep50OhVDkgo6NHLXS0ggsfx4wNVk2wrj0MyC+s27iuUVICO9NC/AG04IOg/CRCzo2YdF8QXPeA8qxHpOA+jJeV33AhfrJ5gmnPcEzOoddo7ckAj8iFLmgYyNHeuxQRdGGhAIzlusijtek9QMu+1xvKQR+RrhWBB0bo1QBsaUOiBXuCEFwIhS5oGOjbkMn+8IDvd+rQGCFcK0IOjZhqpC9sbcC9ZcpvVMFgiBBKHJBx0ZtkeecDMSk6SeLQOAhwrUi6NioGxMLJS4IUoQiF3RsEqTWeplDdRVDIPAG4VoRdGyIgPt2WjZoEAiCDKHIBYJgydwUCOwgXCsCgUAQ5AhFLhAIBEGOUOQCgUAQ5AhFLhAIBEGOUOQCgUAQ5AhFLhAIBEGOUOQCgUAQ5AhFLhAIBEGOUOQCgUAQ5AhFLhAIBEGOUOQCgUAQ5HilyInoFSLaTUTbiOhnIkrQSC6BQCAQuIi3FvkiAAMZY4MB7AXwqPciCQQCQfAxe90h3PDZBl1e26vqh4yxhardtQAu8U4cgUAgCE4e/3kHAGD38Wr0zfBvWWQtfeQ3AJiv4fUEAoEgaEiJCQMAfL76kN9f26kiJ6LFRLTDxt/5qjGPA2gFMNvBdWYQUS4R5ZaUlGgjvUAgEAQAraY21DWZAADfrD+MDfnlfn19Yox5dwGiawHcCuB0xli9K+eMHDmS5ebmevW6AoFAEAgUVjbg3m+3YP3BciRFh6G8rhkAkP/iOZq/FhFtZIyNtD7ubdTKWQAeBjDNVSUuEAgEJxIv/bkb6w9yC/zGCd3Mx2WF7g+89ZG/DSAWwCIi2kJE/9NAJoFAIAgath6pNG9PG9IJL188GABw++yNfpPBK0XOGOvJGOvCGBsq/d2qlWACgUAQ6FQ3tiC/THFGxEUacdHwLOQkR2HtgXJ8uPIAKvxgmYvMToFAEBBMfn0F7p2zWW8x3GL3sRqL/djwUIQaQvDrXRMAAM/N24U3F+/1uRxexZELBAKBFsxedwh5xbXIK67FgE7xSIgy4tKRXfQWyylF1Y0W+yEhBACIizCajx2ttBzjC4QiFwgEuvP1usPm7efm7QIAXDS8MwySYgxEGGNYsZeHUr98yWAUVjZYPH/d+Bx8tjofTa0m7CuqQXp8hIWC1xLhWhEIBLrT0Gxqd6ysrkkHSVxn0T9F+GFjAQDgomFZuHdyb4vnn5o2AJnxEVi1rxRnvLESl/1vjc9kEYpcIBDoCmMMx6oakREXYXF8zf4ynSRyjcr6FvN2qMG2Kk2ICjNv7z5eY3OMFghFLhAIdOWtpXloaDHhxgnd8NPt49E3IxYAcM+cLfoK5oSmVj6LePXSIXbHzJo+1C+yCEUuEAh0w9TG8PoiHtXROTESw7MT8e0t48zPL9tdrJdoTpEt8mlDOtkdkxYbYfc5LRGKXCAQ6EZ+WZ15u38nXjEwPtKIZy4YCAC4XqeysM5YsbcEi3cXIzrMgLBQ+2o0LtIynuSQ6v/VEqHIBQKBbhyv4qF5fdJjkZ0UZT6eHK34lmubWv0ulyNW55Xi2k/WY+uRSozISXI4logwuV+aeX/a23/7RCahyAUCgW7Icdj/u2YEiJRQw1BV2GFxte/jsN3hyo/Wmbfvm9zL6fgP/28kzuyfDgCoamhxMtozhCIXCAR+p6KuGbVNrThYyl0NabHhFs93UVnnRdWBG4Y4tEuC0zFEhJtP6e7yeE8QCUECgcDvTP9gLfYU8XC8sd2TEB1uqYr6Zcbh42tH4sbPc1FcEzgWeYupDUTAhJ4p+OKG0RazCEeMyklCVkIkeqTG+EQuYZELBAK/IytxgGdA2mJUN+5/Lg4gi7ykpgmMAVMHZbqsxGXCQkPQbGrziVxCkQsEAr+jTv6xZ6XGhoci0mhoV89ET45V8TT8jHj3wwrDDCFoaRWKXCAQnCDUNSuRKJkJkTbHEBHS48Kxr7gWe4t8lxXpDsekKJtO8bZldgQR8OfO4zC1edeVzRZCkQsEAr+yv6QWNY2tuGpMNr65eSxiwu0v1Y3plowVe0tw5hsrsfGQf/tg2kIOl/TEIpdT9P/rg7K2QpELBAK/cvprKwAA0eGhGNcj2eHYc4dkmrdv+Ez/Pr/P/sErM8ZFeB4nsqOwWitxzAhFLhAIdMGVzjkTeqbgvauGIyshEg3NJrT4aLHQFVql1+6WEu32QqeaUB+U5hWKXCAQ+A21Iq6od54cQ0Q4e1Am7jqtJ5pNbej1+Hyf+JhdoUy68dygarDsCaEGocgFAkEQU1qrhBI+fFYfl88b3jXRvG3dwMFfXPY+rydunbzkLmKxUyAQBDXjXlgKgKet90qPdfm83umx6CQtMP6wsQBP/boTjPnPMi+uacQhqcnywKx4r67V0KK9e0gocoFA4Hc8sWp/vH08AOC/S/bhs9X5KKzyX3z5xvwKAMCn141Clp1wSWfMnMJnICv3luCDlfs1kw0QilwgCGpaTG1Yf1D/sDx3SYtzX5Gnx0YgwqiorC2HKzWUyDaNLSbc8fUm/OuXnQgPDcFJPVM8vtYdk3ri5F78/Ofn7dZ0RiEUuUAQxLyzLA+Xvb8GOY/8gX98ENamJa2qhc6UGPcVeUgIISc52ry/5UiFJnI5YvX+Uvyx7RhKa5uQlRjpsPa4K7SaFOXd7dF5+HlzgbciAjiBFHltU2vA1S0WCHzN4fJ68/bUWatwuKzewWh9KZEWOv9z/gAY7fS4dEa/zDjz9v4S3zRpULOvqNa8rVbCnmK90Hnft1vR2NK+8bS7eKXIiegZItpGRFuIaCER2e955EMYYzjrzZWY+PIyPV5eINCNhMgwi/3CKn0iOlxBXuj0xBqXUTef8EdVxCMVyo3xuAY1X2JsJBI9+P1Wr6/rrUX+CmNsMGNsKIDfATzptUQesOtYDQoqGlBW1+zXlWyBJQt3Hkd9s5gV+ZNYK8WgV2ieO2R6kN4u0y1Fca3sOFrt8/WBuiYTOidG4v/GdcWs6cO8vl58pLHdsd+3HfP6ul4pcsaY2ikXDcDvWrSstglTZ60y77doMP0RuM+ML3Ix48uNeOrXnXqL0qFobeN+51N6pwIA7v/Oe+vOF9z59SbzdicPoz4A4NzBmXjk7L64RWrUcNn7a/Db1kKv5bNHfXMrosNC8Z/zB+KsgRleX+/+M3q3O9Y50fP3Q8ZrHzkRPUdERwBcBR0s8k1WK9d6pvB2VDYeqsDCf4oAcCtJ4D/qm02IDQ/F59eP0lsUuzDGLKxObxJqQg0huHViD3OjZgC465vNPvvd1zebEBlm0Ox66s5HAJAaG46CigZ8tOqAV9d1qsiJaDER7bDxdz4AMMYeZ4x1ATAbwJ0OrjODiHKJKLekpMQrodWY2iw/QKHI/UtJTRMufm+1eV8dHibwPY0tXNEQEe6bzK29Zh/VvPaUkholm3PqoAyv6pTInDUwA+mqEMayWud1W9yl1dSG0tpmRIdrp8gB4K0rFBdNT6kWu1yMy1Oc/uoYY5MZYwNt/P1iNfRrABc7uM4HjLGRjLGRqampXgmtuiZu/YpP2S4angUg8L7EJzo3fr7BYt9XzWUFtmlQWYyy7zmQGjEAwOjnl5i3a5u8j9AAgPBQA56eNsC8/836w5j4yjLkPPIHvs89gvrmVuwvqXVwBefc++0W7DpWjUijth0xzxvSCecM4lUde6crTTW8Wd/zNmpF3UJ6GoDd3lzPXQ6pQq36SOm+vmqlJLDNtoIq8/bpfdNwpLwBI59dFJRJKsFIbZMJkUauyOUa2VpEV2hFdaNyYx/aJQH/Pq+/ZtduVYXy/XfJPrM+mPnDNvR/cgFOf20F2lRjXvpzN3o+Ns/l68vuoJpG7Y2TzkncLz6uR7I5SWhDvudx8d7Og1+U3CzbAJwJ4B4vr+cWBRXKCn1SNA/Dam5tg6mN4cOVB9DQrM3dX+CcM/uno2daDJql6ejHf3nn8xO4RlldkzmcT7bIV+0r1VMkM4fL6vHF6nwAwJhuSfj59vGaNh+e3C8dk/ulm/dvslGVsLxecbm8t3w/WtsYXlu4B1+sycf/fbLe5nVLa5sw7e2/zPudE6NsjvOG+8/ojecvHIQz+2dgZFfem1QuyuUJ3katXCy5WQYzxs5jjB315nruUlLLLY/J/dIRFcanPy0mht+2FuK5ebvwpg86cfiKlXtLUBxAlpQrlEtlPbMSIvH8RYMQpwqt8lW3cIElR8rrkSotHsoW+awl+/QUCQCX65RXluHVhfw3eP8ZvTXxjauJMBrw0bUjzfsGG3W+j9uox/LW0jw8+ctOrNxbYpFtCgD7imrw9tI880zz1ok98JAbVRpdJTzUgCvHZCMkhHCeqnmGpzogKFem9hyvwQvzduG+b3mo1euXDzGnzraY2sz9ACtdqHccCJTUNOH/PlmPe7/dorcobpFXzH2Qz104ECkx4RjaJcH8XGxE+3hZgbas2FuC0tpm89Q/NsJojgjRO5/iYKll1mVyTJidkd4zPDsBAI8wkXX5nBljASjrBfbWzsrrm3HtJ+vNUSNnvLESn0mzCAB45Oy+SI/zPO7dFbqnxuDmk/ls4qnfPAvfDUpF/vKfu/H+SmXqHhseCqNUrL2ptQ0h0p2/skH7lWxfsOZAGQBg9f4yHPBygcafyIpctr7H90jGp1IY3BuL9vol864js/4g/95cPLyz+dgMKb6626PzUKWjIZNfZqnIE6J8p8g/v2E0pg7KwG2n9sCPt43HPaf3Qtdk7g7Zdawat365EW/YmZ3f9HkuVuwtwbN/7LLw5wPA/HtO9pnM1tw6sQcAeLywGnSKvMXUhg35ykLaNzePBREhzKBY5PIEa8HOIovQp0Bk9/Fq3P3NZvP+aa+twJr9ZTpK5Dr7S2oRaTSYy3oSESb1SQPAF52f8zKkyp8wxrDpcIXulqw7lNQ0ITU2HGcPUqbmaSrrcV+xPp3nK+ub8eQvimV5/xm9vUrLd0ZshBHvXjUCnRIiMSw7Efed0RupMeEIIeDVhXvx587jeG+5Ujb2uvE5SJFmCOrF+kOlSvBEz7QYi7ouviY5JhydEyM9/v4FnSLffawG1Y1KGricGCC7Vppb2/ChKrh+9f7AWPixx8erDrY79vX6wzpI4j55xbXonhqNEDs9CG35LAOVNfvLcNG7q7F8r3Y5Dr7E1MawdHcJhnS2bHIQo4p59rZSn6d8l3vEvL3xicm4+/ReDkb7hlBDiDmaR83LlwzGY1P7YfZNY83HRuXw7kNbCir9JZ5NYsJDUV7fjEX/FKH3E/Nx6f+U/Iz9JbXYfNh+VEvQKXJ5FTolJgwDOsWZu1nL1dSaW9ssqqLdM2eL32V0h1AbVeDyS31f1c1bqhtbsGJvicNFzeRo302ntSQ3vxxXfrQOALAhSMImdx+vRmltE84ZnGlxPDpMmZpf/+kG69N8xsKdx7F8TzEAoLCSu9SeOX8Akn1oiTujTopa+/T6UbhlYne8feUwXDayC8JCQ8xRbgBw1kD+Hm5UzfTbdJiZRYUZsHxPCW7+IhfNrW0W4Yinv7YCF7672u652ka6+4FKSZHPmTEOPdMUJRIdzv8VW6Vs65tbzVEtgYbRqhFrj9TogEvosMWsxTwyItyB1RcsdW9Wq1xZmxxYPYHCKwt2451l3FUwKCvB4jl1db0yF7rUa8WMLzcCAPJfPAfHqhrQKy0G14zL8dvrO2Jgp3izy08mMUpZjO+XwXNQ1h5QFLkeHrZyG5/XW0v2YVLfNBujLQkqi3zXsWqz3zUhyjIqQv5g5KSACGMIrhnbFQDw1dpDfpTSPUJDlI/gwPNTMbl/OiobWgLeVysnY9wiLdLYIpDrwze3tuGdZXmoa2q1CEHbVlDVLiQtkGhrY2YlDrSf9cSEWxos/v4erT9YjgU7i5DpRWEsrfj8htG4YnS2OTxTjXomPFByTx2vbkRUmAHdU6Jx56SefpNTJkJyBckRLADw2qK9OPetv+ydYiYwzVQrGGN4e2keXlukrDwnWJWDlMtDHijlkRQvXjQYKTHh+HLtITw/bzdmnGJf4ejJxkPcCjijfzpCQggJkWFobm1DQ4spYGcRAHetZCVEWsyKrKltDFxFvnR3MV5ZsAevLNhjLu8A8BC2PUU1GNDJuwa7vuKoVZnaOKvfQbSVIq9rNrVT7lqjvlnISS3dVeVm9WJi71RM7G2/HMjT0wagS1Ik4lShsvXNJix98FQ/SNeep6YNwL6iGlwzLgfhoQa8vSzP5XMD3iKvqGtGt0fnWShxoL1vOdQQgriIUHNqeFpcOMb1SAYAjO6W5B9h3YQxhq3SqrlcSEeeaQRyDHxJTRN+2nTUvPJvj0C2yNVdWZbuLrZ47tsNR6yHBwyfq2KcgfYLytZKe8muIl+LhBobn7OjG3ygcO34HJzWN93i2AfXjNBJGmBs92SzO+qCYVmOB1sR8Irc+kfmiMz4SByTMrl6pMbAEEI4qWeyRb2FQKKxRZnCy9OqVGlx6FgAd3p57o9/AFjWulBzrrQAZ+sHHggs/qfIIvlKvmmGhYYgJjwUX6w5hDydQvfscaS8HrfP3oiP/mof5aQmwmjAz1K3eYAv9vsynr/V1IYL3vnb4ljnxEjzdyDYGCsZf3rj7o1QV0Xe2GLCvXM2O+wz2Njavl5KdpLt2gdvX6mUh5Qz3GLCQ1EToFN82WJ95nylitsQKTty/vbjeojkEnI0wDMXDLT5/NtXDsc5gzJR64NiQ1pw5zeb2h0b2z0JK2aeijcvHwoA+HClY4XpL46U1+OfwmrcPWcz5knfiVsmdsfUQRnoKy3SWdM3wzL+uajKd7kUOwqrcUAVJfbeVcPx18On+TQByBfIi/axPnZDucOEnikuj9VN6vu+3YKtBZU4UFKHsrpmfHnjGJvjrGslRBoNmGcn46pXeixumtANPdJizHUdYsKNATvFl+VSRxqkxobjgqGd8NnqfMw4pbtFgkegcKyqAaf0TsXw7ES7Y2LCQwPyfbdufiszbUgWMuMjkRkfiUijAU02DAg9ONlGH9oz+6djRFf77sLIMAPev2YEbpEiSXxZWniOVc5DWpx+4YbesODeU7CvuFbzejDe8PrlQ3C4rB5PzN2B3cdrsOlfZyD5JdtjdVHktY2t+HmzUl/L0RftiNQl/JxBmXj6/AHm6a89njjXskxmbERou9TbQKFOUnTRVoual4zogrlbCnGgtC5gFHl9cyu2HKlEXIQRO45W48ox2Q7HR4eHok6j2tNa8l3uEbNLq19mHKobWnC0sgFDuiiLm1mJkQFRDtleC7Pe6bYtcTWT+6UjKyESRysbNC9VwRjD7bM3oaK+2SJkDwjeGjs5KdHICYAFWjVpsRFIi43A3DtOgqmNtVvIVqOLIj9YVge1B63OgeV2pKIBY7sn4Z2rhnv0WknRYahpbEVza5tumW62KKttMnfPtr4xyVZNoJQXMLUx3PLlRqzaV2ruyiJnw9mjocWE2qZWrDtQhjHdA8PvCABbDlciJSYMv901ATHSzaa2qQU90xTlGGEMQVOL/or8LlXpBpknzunnkrI0hBB+vG08xr6wRHOLvKCiAfN3KK6/zPgI89qUdViwwHsibGSoWqOLZguxmr6U1DTZjHfdkF+OjYcq0D/T81AwOYb0+42BFYnw3Lxd2H2cL6jFWHVClxc87/pmc0DMJt5dlmeucV1U3YSRXRNxwVDHq+r9MrlidCeEytdsK6jE79sKkRobgcz4SMRGGJERH2GhxAFeYtTW2oy/sY4RnzIgHTed3N3l82WlqrUiz7Mq7Lbm0dOx8+kp+PG2cUiLDYwZZEdDF4s81EA4Z1Am/tjOO3BUN7aiurHVHAsO8OnbTZ/nAgAuG9XZ5nVcIVZSko//vANXjenqhdTaUdPYgq1HKs373aymdGqr5kBJnUV5WD1YlWdZr6ZzYqRTX+LVY7pi7uajARNG2Wpqw7S3eXRFbITjr30gWOSMMdQ1t+LqsdkY0CkeOcnRFg2HXSHCaEBYaIimVRBrGlssUv8n9+NZh9HhoQ799gLfoosib25tQ5RVZ+rS2iYLRX6kvAFVDS24bnxOu1V4dwiUeNaGZhOOVjbg3m83t+s0bz1VJiJ8d8s4XPb+moDogWldjznShUSlkBBCn4w4LNwZGNE3T//2j3nbWV/X8FADqhv0XaiVffn9M+NxxWjH6xGOiI80avIdktPHC1UJSY+c3deihK5AP3RzGkcYDfh2xlg8PrUfgPb+4LVSjW5ni2rO6JsRh9P6prWzev3J97lH0O/JP/HSn7vbKfEwG0WzAKXkgN6KnDGGpVZJJY7WNNR0ToxEWV2zxY/f36w/WI6DpXX4UirTcPbADLxw0SCH54SHhlgkDOnBwz9uB6C4qDylpKYJczYc8dpFN/yZRRj+zCJze8Vf7jgJt07sYTP9XeB/dFTkIRjTPRmn9uEptOoEmKqGFny59hAijQb00sCizk6KQqmOC4fywtCifywVYreUaCy47xSb58izk6W7inRtEPD7tmPmuPHbT+VlDirqXYuCOF2adq/QsTTsZe+vwaRXlwPgSvy9q0c4rTMdYTSgyYnV7i07jlbh162F5iJw1mQnRYEImrnVdhVWOx/kArd+xUMa5f6ggsBAV4sc4MosNjwU6w8qVeeu+mgtth+tQmpsuCZxnYlRYaixKo7kT6xjkq8/KQcAMH1UF7szBbmGxtwthbj0ffvlK32NujLg2VK5T6OdWYQ1XaSmtdUB4B4CXJ/dhYeG+DyO/Ny3/sLd32zG0P8sMh8rrGzAObNW4dGftqO0tgnXjc/x+vsvJ8Z9ZpXa7y1JQVKiuKOgW0KQrMhDDSHo3ynOIiVadj+EGrQJzo+P5P9mdWOrLl/AyvoWdE6MNE9LZR+toxKw6pCjvUW1KKpu9HnvQFtskRZlX7t0CAZmxeGJc/ph2pBOLp0bFWaAIYR0i7xhjIGIlyQdlp3gcqZcTHgoiqqbsL+k1idNpK0Tpd5YtBfvLMszlzzYKVnP7mT22WPpg6di4L8XYP6O4yisbEAnjaoS2qqjL9AP3T4NtRKLjTBiQ34FDpXVobRWcYHER2oTkxqvs7+5sr7FYtH1JOkHOsxBZiTAu5nI6FGjvLi6EXuOV+Ou03ri4hGdQUS46WTXs02JCLERvi2RUFBRj/lS9JM1DS0mMMZbjf1w63iXrduRUoz86a+t8EkZ2F+2HLXY/++SfTbr1pzmQh1qZ8SEh+Kp83iS3N4iz+rHtARAcpTAMbq7VgCgrI4r77mbC3G0QvGV36JR6Vn5hqCXIq+obza7UCKMIZg6KBOb/3WGua6KPS4b2cXczLih2b+Lb40tJjz84za0MfcrsamJizD6VJFf9+kG3DZ7Uzsrd/a6Q1ggRcwkRhndajs3uZ9SEe/vPO37p8pJSXdMsv/9zoiL0Cxd/FxpBrV0d7FHN6ZACSEV2CcgFPlrlw4BALyxeC/OlyqpzZkxFmcNzNDkteIjuTuloMJ+cS5f0dRqQn2zCcnRYXj54sH4/a4JAIBEF1088k2o3s9RFM/+8Q+W7SlBmCHEK/dCbESopj7yv/NKzWsdbW3M3BZvz3HLxbzHf96B+77lmbOOUpttEWoIwTKpJrWnVqwtyuuacaiM1xZKj4vAhJ5KrWw5xHBUTiKuHdcVn90wSrPXTYkJx1kDMvDFGuXm5g6Hyvh7nBUAzSIEttE1akUmJ7n9gl+chjUbBmXFIz7SiJU6RE/I1kxCVBguG9WlXRahM+QGso0aWORyyVG5t6Ij5O7icZHeLaNEh4Wirlkbi3z9wXJc9dE6zFrKs0VnLVVcEgWqmZx12WJPGivkJEchNjzUrMS04NYvN2LiK8tRWNmA+EijxXsry3zhsM54+vyBXuVO2OLtK4chOsxgztB1hwPSzfJ/V/Na3ffo0ExZ4BhNFDkRPUhEjIhcXp2JCFUscltd2J1l37lDWGgI0mLDdanGpyhyz25McuJUvQaKvLy+GVuOVOL+77Y6HSvfQN650rMaN+brhBnQoFGWpBz2uFaKpFmtcntUqPodWrvQPKkxTUSIizSiVsPCX+ul5r67j9cgIcpoYazIzX59tYYYaghBWlwEZq87jKOVDch55A9zbL0ziqX1mV7pMdj+1Jm4d7JQ5IGG118bIuoC4AwAh52NVeOsEIx1CytviQwz+N3PDCjKJ9HD+syyQm3QwLUip507y2xsa2PYdawa00d18brgVVSYAQ0aWeRy8tT6/HLkl9ZZFEErV/lxrZsOezq74zch39z8uUWuyGWSFLl1HSItkV2VH6zgPT8/XnXApfNKa5sRGx6KCKMBsRHGgCr1KuBocf9/A8BDANxaRVG7VgCe+HDekE7mpBOt+wxGGA2aKEN3kaf8HityySLX4iYkW/W1Ta3o88R8PPP7PzbHFVQ0oLqxVZNklMgwA/YW1WqSKamO7T711eX4K68UKTFhSIgyWljkZbXaJH9FhRlQ09jq9Uxu9f5S5Dzyh8WxhKgwcxOD6DADHprSF2cPzMDUQb7rrDNlAFfkn685ZJbBGc2tbfhsdX7AdnsScLxS5EQ0DcBRxpjzuboV1hb53DtOwltXDMPMKX1w8IWpbkUZuEKUjy1yW1buir0l5lK16R4W3Jctci38zOprNLW24eO/DiK/tA6MMXOsd1VDC/67ZB+A9sW8PEF2Lf3fx+u9vpat+ualtc1Iiw23aEpcXqdN/e0II/cpD/z3AqezGEe8NH93u2Ndk6IQEkJ46eJB+OXOCciIj8B7V49we2HWHazT6dtciGA5XK7dGoHAdzhV5ES0mIh22Pg7H8DjAJ505YWIaAYR5RJRLtDeIleN88nULVJDi7ytjWHVvhJzKNf6g+Xo/cR8rM4rRXldM+7/bgvWHSjDMlW/UU8t8lBDCJKiw1BU7b2VWW9DEVbUN+PLtYcw+KmFKKioxz1zNuPHTQUAgO4aJMPIbo71+eVe906VI3fU4YEAn81tOqxkBpdKr3npiM6YdcUweEqkytiQr//DxgLsLKxy+Rrztx8zN9hW0yudv7eXj8r2W2G3NCtF7koNnMJK7h93Vp9GoC9OFTljbDJjbKD1H4ADALoB2EpE+QA6A9hERDZjBhljHzDGRjLGRgK8wpw/iTQaUFarjaU2e/1hXPPxevwqdXDJPcQXsa78aB2en7cLP206iss/WGtOizaEkM0FXVcJM4Tgm/WHvUrM2F5QhUX/tA89+35jAeZK3Zo2Ha7EOlXHFy0KItWoFh5rvZxV1EvTe3VTi2vHdUWXxChU1rfgQEkt5m0/hnLpc37uwkEuZ6HaQl2h81hVAxpbTHjw+6245L01Ll9D3QlrbHelzKseJV+NhhDkPjEZ/7t6BG47tQdKa5vx5C87HM425BpIWmSZCnyHx64Vxth2xlgaYyyHMZYDoADAcMaYS4GqrnS90JK8klqU1TVjiVUlP0/YXlAJAPjnGI9dVldu/MsqvGt4dgJWPjTJq9dLjuHW/O5j7sc05+aXo++/5uO8t/8y+0bVfL3uMDYdrpSuX41waab07YyxngusQu1n97bGt1x1Ue6gxNv/DTRHOJ322grcPnsTSmubEBcR6nVHKPV3tKi6CZsOcau8qdWE1xbuwZQ3Vjq9hvrm+83N/D09a4A2+RGekBITjrMGZphzA75YcwhvL91nd/zRigaEEJAhimQFNLrFkRs1qqPiKrJrQ3YbeINswchVCT/9O9/83HGrVPruqTFeJ1I8cQ5PsXa16qCaD1cdMPeodMbf+8tQWd+CmVP6aNae7fmLBuGmCd0AwOsFz/L6ZnN5XwCQPXAxVlEph8rrkRzj/WxCnTZ/rLIBV360DgDQNTkaby3Nwx4XkoXk9/61S4eAiLD1yTPx1pWeu3u0opNKMS/aZT+voKCyARlxES4XShPog2afjmSZu5RtECmFMfmTWdOHIcwQ4vWC59zNR7FZKiRV29Rq091xnmo6f+24HK9eD1AsUE8UeVZClMW+usaNtf9Y7lrUx4Xmvq4SYTRgUGfeqs+b0rAVdc34au1hNLSYzP/ToCx+Xeucg5V7S9q1SfME9Xu1RLXeoV6Id1ZRs6yuCWcNyMDFI3gDhvgoY0AoxXSVIq+wsTjc1GrCHbM3YcGO48hKFBmdgY4u36ieaTGaR6U4Iz7KiNHdkrBsT4nHlmF1Ywvu/XYLDpXxVP/6ZhO+3cB7gd45qad5XNckrmgijCFmJeYNSdJsQh2N8dc+HtLmrJiWuoLkOYMzzSUCAO6auHZcV8y6YhjuPk2R31kNGHeRXRTWpWGX7CrCaa8ud6lk7Cd/HwTALdzR3ZIw946TcLPUv9JW8pgWVS7VRdvkMNIJPVOQV6z0rJy1ZJ/FQqua4ppG7C2qNbvGAgl5lhhmCEFZHa/0qOapX3fij+28Fr1IzQ989DcN/MhfUu9Jd90ry3YX47WFe7DjqGX0wdLdxXhi7g4AvBuOzMCsOLx71XD8eY/tphHuEh9phNFAFpErn6/JBwDk5ttWIjLVDS2IjzTio/8biXeuHI5eKmvbEEJ4+vyBmDakE66RZg5XjM7WvOuLbNnKboajlQ0Y8/xi3Ph5Lg6U1mH9wXK755raGOqaWs2Ft0Z344uEQ7skmBeQEyLbK8ocDUInz+yf3u7YAKu+mbOW5uGid9vXi29sMeH2rzYBgCbNUbQmwmhA/ovn4IEze6PFxHD6ayvwm7R4f9KLS/HNeqVZubDIAx/d6pHrwbjuyVhzoMztqe31n/Fms9lJUXbHhKvCKacMyNA0hDIkhNAtJdrCEpSzHO1Zs3/uOIaK+hZUN7YgLTYck1VK6eWLB7eLS0+NDcf6x09HSrT2rbvkCKUv1+TjtYV7LJpVAMChsnqcbCfr+8lfdmD2usM4f2gnJEeH4asbx7Qb0yejvSvo5F7eR1mM6Z6Mvc+ejWV7inHLl7wzTi8X3U5vL81DrrQ4enq/9jeEQKGvqlvSPsnnf9QqLHFAJ+9nlQLf0qEU+ZvTh2LM80s8dq3M/GGbzeNxEaGYOigTJTVNGNE1ySdx8P0z47B8L3cLRRgNYFIirb2QylslaxAAeqRaWqeXjepi85y0WN9EJsg3ublbCm0+b8tHKzN7Ha/8cLSiARnxETYjUQwhhKUPTMS1n67Hk+cOQHS4AeM0WqwNCw3BlAEZ+PG28chKiER6XDi+WnvI3HBDfv0tRyqxv7jW7AtXV9rUsgCc1kzsrVRgrLRTpVLPKBuBa3Qo14rs86xpbEVBRb1L9cld6Zf56NR+CA81YMYpPTCiq+NmEZ5y9qBMVNa34NGftqO8rhnztvMoz/X55bj4vdUWaeTWzZH1ricd4SRnoMIF+Q6X1ztsNNI9NQarHjoNZ/RPx/geKZrfTEd0TURGPK8RfuYAbmHLvnmjgXDBO3/jge+VBGf1dytGwwJwvuCj/xsJwHZGbOfESK9yIAT+oUMpctlX+8qCPZjw0jJc9dFap+d8tc52hbgHzuht3lYnjviK3tKU/ufNR/GvX3aYjy/6pwgbD1WYKwIC7TP2/L2wbE24jSze965Sqiq6Eo1TXNOkWccob7nhpG544IzeyH1iMu6b3NsivLO2qRVHyuuxbI9SMlnv998Zk/unY3h2QjtF/vtdE7Bipnc5EAL/0KEUubWVJvcGtQdjDO8uy0NqbDjirKyq21VRKv6oqqheTP1jW/vWZurkd2sfpys1NXxJrI36Ierw02NVDahvbsXM77dauCSsa4EHiiKPMBpw1+m9EB5qQHS45U38eFUjTn55mU6SeU52UlS7yJU+GbEBfxMScDqUIgeAC1Vty5zNvivrW1DXbMItp3RHnaSsM+IiEBMeavEF7+JgEVQrnC3QmlTJK3J9DBkvS5x4TYoqOWdc92T8cOs4qPVDXnEdPv07H99vLDD7xAFg4U7LLNxALJ/aYrJ8c49XKe/9vZN7YZWXWb3+YlDnBBRVN2GF1Hzl1ok9AiLeXeAage288wGvXTrEXP/CURd7QLFsOydGmhXl1zePMReT+nbGWDAAYzVaWHOHib1TzT86wLIze2FlA4iAwVnx2FpQ5VW9ES1Q+1jHdk/GyJwk5BXzCInYiFCU1jaZ672kS6GPW49U4rl5u2AIIfN7H4hNgK0XzueqGiv3zYj1y01eCzKlBKFrP+FVKk1tgfdeC+zT4RS5WqkYQywVeVOrCQYihEqWyLlv/QUASFVFc2TGKy4OrdLY3WXjE5ORHBNuUeO6uqEFP28uwNjuySisbECn+Ej8cucElNUGhm/5qfP645O/83HFaB4x0zMtFksemIj80jrc+Hku9kmhlfUtJnz690E8/Ruvla52CwWiIreum//DRp6jkBhlNNf/DgasE6jUoa6CwKfDKXIA+Oz6Ubju0w2obW6FqY3BEEJ4feEezFqahykD0vH+NSMtxidGGTG0SwK2HKk0N3rQE7mOyJVjsvG15Ir4j9QkYnDneISGkNmnrkXNES247qRuuO6kbhbHeqTGtLuZvvznHot9xngj7ukfrDWn5AcS147PQV1zK87sn4Gps1aZj58/NCsgXUH2sC5p8OCUPjpJIvCEDukEO7VPGp46rz8YU8LE5Ia+CyS/rHrKnBgVhtk3jcG6x073v7AOeP7CQVh8/0SLY+V1zdh9vMZc7zrQcaWq3tjuyVh43ym4wepGEAiEhYbg3sm90b9THObecZL5eCDc8N1B3S2oe0q0SAIKMjqkIgeAxOj29UtkGltM6PuvP837cZFGRIeHIj1O31KeFwzthH6Zlini1k0JCioaUN9swphu+rh93MXVUrO902MDPp5ZXWws0s9lmr0lNTYcT5zTD4D+UU4C9+m4ilyyQOQY5lP7KBluN36+wWJsoIRgvTl9GObfc3K741/f1D5tfaLq/wl0ZpzSHTPtTOXVRb4CncgwA4ZnJwBAuxtuMCB3XhLRKsFHh/SRA8rijpweXtfUih6p0dhfUoe/85Tkmlsn9tBFPncY3zMFl43sjO9ylWJgtmK3A5XHpnJL8JUFin98Qs8UPHRWHwwMQL+4I368bTy2H63C4M4JeoviNtlJUbhpQjdMH52ttygCN+mwt17ZtSJb5LVNJnRLiUGXJMtKb6O7+SblXmtevmSIxX4wLbTJqJs9f3XTmKBUhkQUlHIDPKLriXP7+62HqEA7Oq4ilzrNlNfxxc66plbEhBtwpNwyK1Jvv3hHQr1YKBAIXKfDKvJIowHhoSFmi7y6scVm16J+GcHn61wx81S9RfCIQIh3FwiCkeBxpGoMESEpOgwfrTqAswdmoLK+pV1Dhbznzg74SAlbdE32vqmCXrx95TBzRySBQOAaHVaRA8AxqS7GDKlpQFpsOPqkx2JPUQ0W3XeKOcNT4D/OHaxvOQGBIBjp0IpcpqSGt1BLiwvHd7eMQ2ldE3qkigUfgUAQHAhFLjFlQDpO7pUKoyEE8VHCVysQCIKHDq3I02LDUVzThJUzJ6FLUmRQhuyp6Z4ajQMldc4HCgSCE4oOrch/ufMkHCytQ3ZycJQadcbCe0/Rvfa4QCDwPx1akWfGR1qUpQ12xOKsQNAx8eqXT0RPEdFRItoi/U3VSjCBQCAQuIYWFvkbjLFXNbiOQCAQCDxAzMUFAoEgyNFCkd9JRNuI6BMiCo4KUwKBQHAC4VSRE9FiItph4+98AO8B6AFgKIBjAF5zcJ0ZRJRLRLklJSX2hgkEAoHATYhp1A2EiHIA/M4YG+hs7MiRI1lubq4mrysQCAQdBSLayBgbaX3c26iVTNXuhQB2eHM9gUAgELiPt1ErLxPRUAAMQD6AW7wVSCAQCATuoZlrxa0XJaoBsMfpwMAlHkCV3kJ4gZBfP4JZdkDIrzd9GGOx1gf1yuzcY8vPEywQ0QeMsRl6y+EpQn79CGbZASG/3hCRzcVFEUfuGb/pLYCXCPn1I5hlB4T8AYlerpXcYLbIBQKBQA/s6U69LPIPdHpdgUAgCGZs6k5dFDljLGgUORGdRUR7iCiPiB6Rjr1CRLuljNafiShBZzHtYkf+ZyTZtxDRQiIK2P5qtuRXPfcgETEiStFLPmfYef+DpticvfefiO6Sju8kopf1lNEedt77b1Xvez4RbdFZTLewqzsZY+LPzh8AA4D9ALoDCAOwFUB/AGcCCJXGvATgJb1ldVP+ONWYuwH8T29Z3ZFfeq4LgAUADgFI0VtWN9//pwA8qLd8Xsg/CcBiAOHSuDS9ZXXnu6Ma8xqAJ/WWVYs/n1vkdu6Kl0p38jYiCmRf+WgAeYyxA4yxZgBzAJzPGFvIGGuVxqwF0Fk3CR1jT/5q1Zho8DyAQMSm/NJzbwB4CIErO+BY/mDAnvy3AXiRMdYEAIyxYh1ltIfD9554O7DLAHyjk3ya4lNFTkQGAO8AOBv8Tn4FEfUHzwC9CMBKX76+BmQBOKLaL5COqbkBwHy/SeQeduUnoueI6AiAqwA8qYNsrmBTfiKaBuAoY2yrPmK5jKPvTzAUm7Mnf28AJxPROiJaQUSjdJHOMc5+uycDKGKM7fOrVD7C1xa5PYtwF2MsGBKCbDXxNFuARPQ4gFYAs/0mkXvYlZ8x9jhjrAu47Hf6VSrXsSV/OIDHEbg3HzX23n+Xi83pjD35QwEkAhgLYCaA7yjwGt46/O0CuAIniDUO+F6Ru2LRBjIF4L5Ymc4ACgGAiK4FcC6Aq5jkcAtA7Mqv4msAF/tNIvewJf9hAN0AbCWifOnYJiLK8L94TrH5/jPGihhjJsZYG4APwQ2eQMTe96cAwE+Msx5AG4BAW3B29NsNBfcIfKuDXD7B14rc2V0x0NkAoBcRdSOiMADTAfxKRGcBeBjANMZYva4SOsae/L1UY6YB2K2LdM6xJf9PjLE0xlgOYywH/Ac7nDF2XE9B7WDv/Q+WYnM25QcwF8BpAEBEvcEXE0v1EtIO9mQHgMkAdjPGCnSTTmN8naLvikUYsDDGWonoTvDoCAOATxhjO4noF/Ap/iJpRrmWMXarjqLaxIH8PxJRH3BL6hCAgJMdsC+/zmK5jIP3/8tgKDbnQP59AD4hoh0AmgFcG2izUiffnek4gdwqgI8zO6UpzF4ApwM4Cn6XvFJ+Q4loOXgYlihOLhAIBB7iU9eKFKIn3xV3AfhOuqNfSEQFAMYB+IOIFvhSDoFAIDiR0aXWikAgEAi0Q1Q/FAgEgiBHKHKBQCAIcnyiyInocSkFXy7MNMYXryMQCAQCH4QfEtE48ESZ4YyxJqkyXZjWryMQCAQCji8s8kwApaqCOqWMsUIiGiHVZdhIRAvkpAgiWk5EbxLRaiLaQUSBmuUmEAgEAYkvFPlCAF2IaC8RvUtEE4nICOAtAJcwxkYA+ATAc6pzohlj4wHcLj0nEAgEAhfR3LXCGKslohHg1cUmgdczeBbAQCiZkAbwYkEy30jnriSiOCJKYIxVai2bQCAQnIj4JEWfMWYCsBzAciLaDuAOADsZY+PsneJkXyAQCAR20Ny1QkR9rIoyDQXP6kyVFkJBREYiGqAac7l0fAKAKsZYldZyCQQCwYmKLyzyGABvEe9j2QogD8AM8Kahs4goXnrdNwHIRWwqiGg1gDjwRg0CgUAgcBHdU/RF4SyBQCDwDpHZKRAIBEGO7ha5QCAQCLxDWOQCgUAQ5GiiyImoCxEtI6JdUo2Ve6TjSUS0iIj2SY+JqnMeJaI8ItpDRFNUx/8koq3Sdf5HRAYtZBQIBIITFU1cK1K6fSZjbBMRxQLYCOACANcBKGeMvUhEjwBIZIw9TET9wZOARgPoBGAxgN6MMRMRxTHGqqWu3D8A+J4xNsdrIQUCgeAERROLnDF2jDG2SdquAY8bzwJwPoDPpWGfgyt3SMfnMMaaGGMHwUMUR0vnV0tjQsGLbQknvkAgEDjAFwlBOQCGAVgHIJ0xdgzgyh5AmjQsC8AR1WkF0jH5GgsAFAOoAbfKBQKBQGAHTRU5EcUA+BHAvSrL2uZQG8fMljdjbAp4FcVwAKdpKaNAIBCcaGimyKUKhz8CmM0Y+0k6XKQqV5sJbmUD3ALvojq9M4BC9fUYY40AfgV3wwgEAoHADlpFrRCAjwHsYoy9rnrqVwDXStvXAvhFdXw6EYUTUTcAvQCsJ6IYleIPBTAVwG4tZBQIBIITFa2iViYAWAVgO4A26fBj4H7y7wBkAzgM4FLGWLl0zuPgdVVawV0x84koHcDv4C4VA4ClAO5jjLV6LaRAIBCcoIjMToFAIAhyRGanQCAQBDlCkQsEAkGQIxS5QCAQBDlCkQsEAkGQIxS5QCAQBDlCkQsEAkGQIxS5QCAQBDlCkQsEAkGQ8//OXMQP0Iw/EgAAAABJRU5ErkJggg==\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "u, s, vt = np.linalg.svd(Atraf, full_matrices = False)\n", "uframe = pd.DataFrame(u @ np.diag(s), index=pd.date_range('9/1/2003', freq = '10min', periods = 1008))\n", "uframe[0].plot()\n", "uframe[1].plot()\n", "plt.title('First Two Columns of $U$');" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### Low Rank Defines Latent Factors" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The next interpretation of low-rank behavior is that it exposes \"latent factors\" that describe the data." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Returning to the low-rank decomposition:\n", "\n", "$$ A \\approx U'\\Sigma'(V')^T $$\n", "\n", "In this interpretation, we think of each element of $A$ as the inner product of a row of $U'\\Sigma'$ and a row of $V'$.\n", "\n", "Let's say we are working with a matrix of users and items.\n", "\n", "In particular, let the items be movies and matrix entries be ratings, as in the Netflix prize." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "Recall the structure from a previous slide:\n", "\n", "$$ \\mbox{users}\\left\\{\\begin{array}{c}\\;\\\\\\;\\\\\\;\\\\\\;\\\\\\;\\end{array}\\right.\\;\\;\\overbrace{\\left[\\begin{array}{cccc}\\begin{array}{c}\\vdots\\\\\\vdots\\\\{\\bf a_1}\\\\\\vdots\\\\\\vdots\\end{array}&\\begin{array}{c}\\vdots\\\\\\vdots\\\\{\\bf a_2}\\\\\\vdots\\\\\\vdots\\end{array}&\\dots&\\begin{array}{c}\\vdots\\\\\\vdots\\\\{\\bf a_n}\\\\\\vdots\\\\\\vdots\\end{array}\\\\\\end{array}\\right]}^{\\mbox{movies}} =\n", "\\overbrace{\\left[\\begin{array}{cc}\\vdots&\\vdots\\\\\\vdots&\\vdots\\\\\\sigma_1\\mathbf{u}_1&\\sigma_k\\mathbf{u}_k\\\\\\vdots&\\vdots\\\\\\vdots&\\vdots\\end{array}\\right]}^{\\large k}\n", "\\times\n", "\\left[\\begin{array}{ccccc}\\dots&\\dots&\\mathbf{v}_1&\\dots&\\dots\\\\\\dots&\\dots&\\mathbf{v}_k&\\dots&\\dots\\end{array}\\right]$$\n", "\n", "Then the rating that a user gives a movie is the inner product of a $k$ element vector that corresponds to the user, and a $k$ element vector that corresponds to the movie." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In other words:\n", " \n", "$$ a_{ij} = \\mathbf{u}_i^T \\mathbf{v}_j$$" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "We can therefore think of user $i$'s preferences as being captured by $\\mathbf{u}_i$, ie., a point in $\\mathbb{R}^k$. \n", "\n", "We have described everything we need to know to predict user $i$'s ratings via a $k$-element vector.\n", "\n", "The $k$-element vector is called a __latent factor.__\n", "\n", "Likewise, we can think of $\\mathbf{v}_j$ as a \"description\" of movie $j$ (another latent factor)." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "The value in using latent factors comes from the summarization of user preferences, and the predictive power one obtains.\n", "\n", "For example, the winning entry in the Netflix prize competition modeled user preferences with a 20-element latent factor.\n", "\n", "The remarkable thing is that a person's preferences for all 18,000 movies can be reasonably well captured in a 20-element vector!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "Here is a figure from the paper that described the winning strategy in the Netflix prize.\n", "\n", "It shows a hypothetical latent space in which each user, and each movie, is represented by a latent vector." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" }, "tags": [ "hide-input" ] }, "source": [ "
\n", " \n", "\"Figure\"\n", " \n", "
\n", "\n", "Source: Koren et al, IEEE Computer, 2009 " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "fragment" } }, "source": [ "In practice, this is perhaps a 20- or 40-dimensional space.\n", "\n", "Here are some representations of movies in that space (reduced to 2-D).\n", "\n", "Notice how the space seems to capture similarity among movies!" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "-" }, "tags": [ "hide-input" ] }, "source": [ "
\n", " \n", "\"Figure\"\n", " \n", "
\n", "\n", "Source: Koren et al, IEEE Computer, 2009 " ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "## Summary\n", "\n", "* When we are working with data matrices, it is valuable to consider the __effective rank__\n", "* Many (many) datasets in real life show __low effective rank__.\n", "* This property can be explored precisely using the Singular Value Decomposition of the matrix.\n", "* When low effective rank is present,\n", " * the matrix can be compressed with only small loss of accuracy\n", " * we can extract the \"strongest\" patterns in the data\n", " * we can describe each data item in terms of the inner product of __latent factors.__" ] } ], "metadata": { "anaconda-cloud": {}, "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.10" }, "rise": { "scroll": true, "theme": "beige", "transition": "fade" } }, "nbformat": 4, "nbformat_minor": 1 }